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MATERIALS AND METHODS  

Sample information 

For our cohort, all samples were diagnosed before the 2016 WHO classification, and 

translocations involving MYC and BCL2/BCL6 were not routinely investigated at diagnosis. 

Informed consent was obtained from all patients. All samples (seven cohorts) included in this 

study were de novo DLBCL and patients with transformed disease were excluded. Patients with 

immunodeficiency (HIV) were excluded from our cohort, Ennishi et al. cohort, Chaupy et al. 

cohort, and GSE117556 cohort, whereas this information in the remaining cohorts (Schmitz et.al, 

GSE181063, Shen et.al. cohorts) was not mentioned in the original references.   

 

Among 1376 samples with gene expression data, 846 cases were evaluated for double-hit status, 

with 63 identified as double-hit. A total of 270 samples were assessed for double-expressor status, 

with 92 identified as double-expressors. Double-hit status was accessible in a subset of all four 

cohorts with gene expression data, while double-expressor status was available solely in the 

GSE117556 cohort. All the information is summarized in Table.S2A. 

 

Whole genome/exome sequencing (WGS/WES) and targeted sequencing 

A DNeasy Tissue and Blood Kit (Qiagen) was used to extract DNA. WGS and WES were 

performed at Macrogen Europe using either the HiSeq 2000 or HiSeq X10 platforms (Illumina). 

The targeted sequencing panel (lymphochip) included 212 genes that were frequently mutated 

in different types of B-cell lymphomas, important for DNA repair, or important for targeted 

therapy1. For the Swedish cohort, 43 pairs of DLBCL tumors with matched peripheral blood 

samples were sequenced by WES and 30 tumor-only samples were tested by lymphochip 

(Table.S1A). The sequencing data for the 88 Chinese DLBCLs have been described 
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previously1-4 and reanalyzed here, including 25 and 15 paired samples sequenced by WGS or 

WES, respectively, and 48 tumor-only samples sequenced by lymphochip.  

 

Burrows‒Wheeler Aligner software was used to align reads to the human reference genome5. 

For the identification of somatic mutations from paired tumors/controls, single-nucleotide 

variants (SNVs) were detected using VarScan6, whereas somatic insertions and deletions 

(InDels) were identified by GATK (WES)7 or Platypus (WGS)8. All reported SNV and InDels 

passed visual inspection using Integrative Genomics Viewer9. For the identification of 

mutations from tumor-only samples, VarScan was used to detect SNVs and InDels using the 

defined parameters, followed by several steps of filtering to remove potential germline 

mutations1.  

 

Transcriptome sequencing and analysis 

Transcriptome sequencing was performed on 108 available tumors (Swedish patient: n=49; 

Chinese patients: n=59). TRIzol (Invitrogen) was used to extract total RNA from tumor samples. 

For the Swedish cohort, the libraries were prepared at Macrogen Europe following the 

manufacturer’s instructions and sequenced on a HiSeq 2000 platform. For the Chinese cohort, 

the libraries were sequenced on a HiSeq 2000 platform, and the details of sequencing and data 

analysis have been described previously1. The transcripts per million (TPM) was used to 

determine gene expression levels, and Log2-transformed TPM values were normalized by 

Limma to remove batch effects10. The normalized expression values were analyzed by Qlucore 

Omics Explorer (Qlucore AB, Lund, Sweden). 

 

Differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) 
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To identify DEGs between DLBCLs with poor and good outcomes, the normalized gene 

expression data were analyzed using Qlucore Omics Explorer (Lund, Sweden), and genes with 

a false discovery rate (FDR)-adjusted p value (q-value hereafter) <0.1 and fold change >1.2 

between groups were considered DEGs. GSEA of DEGs was performed using KEGG and Gene 

Ontology pathways in the DAVID tool (https://david.ncifcrf.gov/)11. Pathways with a q-value 

<0.1 were considered significantly enriched.  

 

Establishment and validation of a risk signature to predict R/R disease within two years 

The RNAseq (n=327) and microarray (n=1049) datasets used in the DEG analysis were further 

merged into a larger cohort (n=1376), using the quantile normalization approach described 

previously to normalize cross-platform datasets12. After data normalization, the establishment 

and validation of risk signatures were performed as follows: 

1). Univariate Cox regression was performed to assess the association between gene expression 

levels and PFS in the entire cohort. A total of 656 genes (referred to as prognostic genes) were 

identified with a prognostic significance (p values < 0.01).  

2). We randomly divided the samples into a discovery cohort (70%, n=964) and a validation 

cohort (30%, n=412). In the discovery cohort, we utilized the least absolute shrinkage and 

selection operator (LASSO) logistic regression to extract a prognostic signature for predicting 

two-year outcomes. This involved using the expression level of 242 overlapping prognostic 

genes and the DEGs (overlapped DEGs from the RNAseq and microarray-based datasets) as 

inputs and the two-year outcome of each patient as the outcome variable. In this process, several 

steps were undertaken: 1) The discovery cohort was further randomly divided into training (80%) 

and test cohorts (20%). 2) Utilizing data from the training cohort, we employed the LASSO 

algorithm to construct a model for predicting two-year outcomes, employing a 10-fold cross-

validation approach. 3) Various parameters were used to measure the performance of the 
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established model using the test cohort, including the receiver operating characteristic (ROC) 

curve, area under the curve (AUC), accuracy, sensitivity, and specificity. Subsequently, we 

repeated steps 1-3 using random seeds to establish 1000 different risk models. Finally, the model 

exhibiting the highest AUC value and accuracy rate in predicting two-year outcomes within the 

test cohort was selected as the optimal risk model.  

3). The risk score of each patient was calculated using the following formula: risk 

score= ∑ 𝐶𝑜𝑒𝑓! ∗ 𝑥!"
!#$ + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 	 where Coef (coefficient factor) and Intercept were 

identified in the LASSO algorithm and 𝑥! is the expression value of each gene.  

4). We determined the optimal threshold of the risk model using the following approach: In the 

discovery cohort, we employed the optimal threshold approach to classify high- and low-risk 

groups. In this approach, all risk scores were used as predictors, and the two-year outcomes were 

used as responses. These data were used as input in the following analysis. Using all risk scores, 

we utilized the mean values of each adjacent risk score to set up a range of testing thresholds. 

For each testing threshold, we calculated the corresponding sensitivity and specificity in 

identifying two-year outcomes and then created an ROC curve by plotting sensitivity against 

specificity. We identified the optimal threshold as the one with the maximum Youden’s J statistic, 

providing the best balance between sensitivity and specificity for risk classification of two-year 

outcomes. This same threshold was subsequently used in the validation cohorts to stratify patients. 

These analyses were performed using various R packages, including Survival (V3.3.1), Glmnet 

(V4.1.4), and pROC (V1.18.0). 

5). The performance of the optimal model was subsequently validated in the validation cohort 

(n=412). 

6). Based on the computational procedures and optimal gene-expression risk scores, we 

developed an online version for risk prediction of DLBCL patients treated with R-CHOP, which 

is available at https://lymphprog.serve.scilifelab.se/app/lymphprog. Moreover, we conducted 
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additional testing of the algorithm using another two independent cohorts: one with RNAseq data 

(Validation cohort-2) consisting of 49 samples (CNP000132713) and another with microarray 

data comprising 484 samples (Validation cohort-3), which were part of the GSE181063 cohort 

but had only OS data available. These validation datasets were derived from various platforms 

and were completely independent of those employed in the discovery and validation phases.  

 
Statistics 

P values were calculated using the χ2-test, Fisher’s exact test, or the Mann‒Whitney U test 

(two-tailed). Statistical tests were performed with SPSS or GraphPad Prism 9 or R 4.3.0. 
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Figure S1. Flow chart of the establishment and validation of a risk signature in predicting 

two-year outcomes in DLBCL patients treated with R-CHOP. 

(A) An outline of the process for developing and validating risk signatures. (B) Bar plots 

showing the proportional distribution of samples from individual datasets within the discovery 

and validation cohorts.   
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Figure S2. Correlation analysis of gene mutation frequencies between the combined 

cohort and individual cohorts. 

(A) The scatter plots display the correlation in gene mutation frequencies between individual 

cohorts and the combined cohort (All samples). The Pearson correlation coefficient was used 

to analyze the r values. (B) The dodged bars illustrate the mutation frequencies of key mutated 

genes across individual cohorts. Mut, mutation. Freq, frequency.  
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Figure S3. Comparison of mutation frequencies of significantly mutated genes in poor and 

good outcome groups from individual cohorts. 

The bar charts display the mutation frequencies of the 12 genes presented in Figure 2C in 

individual cohorts. The chi-square test was used to calculate p values. *, p<0.05. 
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Figure S4. Establishment of two datasets for identifying differentially expressed genes.  

Gene expression data from four cohorts were analyzed, comprising (A) two RNAseq datasets 

(our cohort, n=108; Schmitz et.al., n=219) and (B) two microarray datasets (GSE117556, 

n=723; GSE181063, n=326). To remove batch effects between datasets, the RNAseq and 

microarray datasets were merged separately using the R package Limma. This resulted in two 

combined datasets, an RNAseq-based dataset (n=327) and a microarray-based dataset (n=1049).   

RNAseq dataset (n=327)

Microarray dataset (n=1049)



 10 

 

 
Figure S5. Cross-platform normalization of gene expression data using quantile 

normalization approach.  

To establish a risk model that generalizes well, we combined RNAseq (n=327) and microarray 

(n=1049) datasets into a larger dataset (n=1376), using the quantile normalization approach 

described previously12, which showed good performance for cross-platform normalization. The 

graphs illustrate the data distribution from RNA-seq and microarray datasets before and after 

quantile normalization.   
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Figure S6. Evaluation of the 24-gene expression score with or without considering the 

mutational status of TP53, MYD88, MYC, and SPEN in predicting two-year outcomes in 

DLBCL patients.  

Receiver operating characteristic (ROC) curves demonstrating the performance of the indicated 

factors in identifying DLBCL patients with two-year poor outcomes in the discovery cohort (A) 

and validation cohort (B). Numbers represent the AUC values. AUC, area under the curve. 

Model, 24-gene expression score. 
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Figure S7. The independent prognostic performance of the 24-gene expression score.  

Univariate and multivariable Cox regression was performed to assess the independent 

prognostic significance of the 24-gene expression score when considering double-hit and 

double-expressors in the analysis. The evaluation was conducted exclusively on DLBCL 

patients for whom both the 24-gene expression score and the status of double-hit and double-

expressor (n=270) of BCL2/MYC were available. Among 1376 samples with 24-gene risk 

scores, 846 cases were evaluated for double-hit status, with 63 identified as double-hit. Double-

expressor status was available only for those in the GSE117556 cohort. Of these, 270 patients 

had their double-expressor status accessed, with 92 identified as double-expressors. HR, hazard 

ratio. IPI, International Prognostic Index. COO, cell-of-origin. 
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Figure S8. Comparison of the performance between the 24-gene expression score and 

other existing classifiers in predicting two-year outcomes in DLBCL patients. 

ROC curves demonstrating the comparison of the performance of our 24-gene expression score 

and three other existing classifiers14-16 in predicting two-year outcomes in the validation cohort 

(n=412). ROC, receiver operating characteristic; AUC, area under the curve. 
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Figure S9. Comparison of high- and low-risk groups identified by the 24-gene expression 

scores across individual cohorts.  

 (A) Heat maps showing the expression levels of the 24 genes in DLBCL tumors in individual 

cohorts. Samples are represented as columns, ordered by risk groups. Within each group, 

samples were ordered following the input of the data. Each row represents a gene. (B) Kaplan–

Meier survival analyses (top panel) illustrating the difference in PFS between high- and low-

risk DLBCL patients across the indicated individual cohorts. Bar charts (bottom panel) 
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displaying the distribution of high- or low-risk DLBCL patients within the poor and good 

outcome groups for each cohort. PFS, progression-free survival. For the bar charts, the p value 

was calculated using Fisher’s exact test, and for the Kaplan–Meier survival analyses, the p value 

was determined by the log-rank test. 
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Figure S10. Comparison of high- and low-risk groups identified by the 24-gene expression 

scores in discovery and validation cohorts.  



 17 

 Top panel of A and B: Heat maps showing the expression levels of the 24 genes in DLBCL 

tumors in individual cohorts. Samples are represented as columns, ordered by risk groups. 

Within each group, samples were ordered following the input of the data. Each row represents 

a gene. The bottom panel of A and B: Kaplan–Meier survival analyses illustrating the difference 

in PFS between high- and low-risk DLBCL patients across the indicated individual cohorts. For 

the Kaplan–Meier survival analyses, the p value was determined by the log-rank test. 
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Figure S11. Risk stratification by 24-gene expression score across different COO subtypes 

in the individual cohorts. 

The bar charts in the left panel show the distribution of high- and low-risk DLBCL patients 

across COO subtypes in the individual cohorts. The Kaplan–Meier survival analyses in the right 

panel illustrate the differences in PFS between high- and low-risk DLBCL patients in the 

indicated groups. PFS, progression-free survival. UNC, unclassified. For the Kaplan–Meier 

survival analyses, the P value was determined by the log-rank test.  
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Figure S12. Risk stratification by 24-gene expression score across different COO subtypes 

in the discovery and validation cohorts. 

The bar charts (left panel) show the distribution of high- and low-risk DLBCL patients among 

different COO subtypes. In the right panel, the Kaplan–Meier survival analyses illustrate the 

difference in PFS between high- and low-risk DLBCL patients within these COO subtypes in 

the discovery (n=964) cohort and validation cohort (n=412), respectively. PFS, progression-

free survival; UNC, unclassified. For the Kaplan–Meier survival analyses, the P value was 

calculated by the log-rank test. 
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Figure S13. Risk stratification by 24-gene expression score across different DNA genetic 

subtypes in the discovery and validation cohorts. 
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(A-B) The bar charts and Kaplan–Meier survival analyses illustrating the distribution and the 

difference in PFS in high-risk and low-risk DLBCL patients in the indicated DNA clusters from 

the discovery cohort (A, n=964) and validation cohort (B, n=412), respectively. For bar charts, 

Fisher’s exact test was used to calculate a p value. For the Kaplan–Meier survival analyses, the 

P value was calculated by the log-rank test.  
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