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Supplementary Figures 

 
 
Supplementary Figure 1: Light-field flow cytometer (LFC). (a) Front view of LFC. The pump is slightly higher 
than CH1, 3, and 4 containers for stable control of microfluidics flow. (b) Close view of microfluidics chip loaded 
on the microscope with 3D-printed adapters. (c) Right view of LFC. (d) Schematic of LFC with detailed 
microfluidics illustration. CH1~4: Channel #1~4. DW: deionized water. OL: objective lens. DC: dichroic cube. 
TL: tube lens. NIP: native image plane. FL: Fourier lens. MLA: microlens array. CAM: camera. fFL: focal length 
of Fourier lens. fML: focal length of each microlens. (e) Left view of the LFC. (f) Top view of Fourier light-field 
microscopy. M1, M2: mirrors.  

 
  



 
4 

 

 
 
Supplementary Figure 2: Detailed data processing flowchart of the LFC. The raw data is first converted to “tiff” 
format. Then, the blank frames and frames with non-specific fluorescence are filtered out to increase the post-
processing efficiency. The fluorescence types in the remaining frames are identified based on the organelle 
morphologies. Before reconstruction, the signal-to-noise ratio (SNR) is enhanced using both ACsN denoising1 and 
rolling-ball background subtraction2 methods. After denoising, the region outside field-of-view (FOV) in the three 
elemental images is removed to suppress the reconstruction artifacts. To perform better reconstruction, a hybrid 
point-spread-function (PSF) is generated with a simulated PSF and a PSF calibration scheme (Supplementary 
Software 1 and Supplementary Note 5). During the reconstruction, the volumetric information can be retrieved in 
an iterative manner with back projections and forward projections. 
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Supplementary Figure 3: Bead volume estimation scheme. (a) 200 nm beads. (b) 1 μm beads. (c) 2 μm beads. (d) 
4 μm beads. In each panel, three rows are displayed. First row: 3D reconstructed images shown by layers. Second 
row: edge detection for each layer. Last row: Area calculation for all layers to estimate the 3D volume. Scale bars: 
1 μm. 
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Supplementary Figure 4: Comparisons for bead volumes between wide-field imaging and light-field imaging. 
(a,d,g) Reconstructed light-field (LF) scanned volumes (left columns) and wide-field (WF) volumes (right 
columns) of 200-nm (top row), 1-µm (second row), 2-µm (third row), and 4-µm (bottom row) beads peaked at 
680-nm (a), 599-nm (d), and 516-nm (g) fluorescent emission. (b,c,e,f,h,i) Histograms of bead diameters measured 
using light-field images (b,e,h) and wide-field images (c,f,i) of peak spectra at 680 nm (b, n = 377; c, n = 590), 
599 nm (e, n = 312; f, n = 737), and 516 nm (h,n = 269; i, n = 543).  Scale bars: 10 µm. Source data are provided 
as a Source Data file. 
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Supplementary Figure 5: Raw light-field images of Fig. 3-5. (a) Raw light-field image of Fig. 3a. (b) Raw light-
field image of Fig. 3e. (c) Raw light-field image of Fig. 3f. (d, e) Raw light-field image of Fig. 4g. (f) Raw light-
field image of Fig. 5a. (g) Raw light-field image of Fig. 5b. The pseudo-colors in the figures are consistent with 
those in the main figures. Scale bars: 10 µm. 
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Supplementary Figure 6: Four examples of two-color imaging of mitochondria and peroxisome in flowing HeLa 
cells. (a, d, g, j) Two-color axial layers of 3D reconstructed HeLa cells in microfluidics flow from -3 μm to 3 μm. 
The magenta color is for mitochondria, and the green color is for peroxisomes. (b, e, h, k) Depth-color-coded 
reconstructed volume of HeLa mitochondria ranged from -3 μm to 3 μm. (c, f, i, l) Depth-color-coded reconstructed 
volume of HeLa peroxisomes ranged from -3 μm to 3 μm. Scale bars: 10 μm.  
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Supplementary Figure 7: Comparisons of reconstruction quality between light-field images with and without 
denoising algorithms at different noise levels. (a, e, i) Light-field images of HeLa mitochondria at different noise 
levels without denoising algorithms (left column) and their reconstructions (right column). (b, f, j) The zoomed-
in region marked in the dashed boxes in (a), (e), and (i), respectively, with the intensity profiles along the dashed 
lines. (c, g, k) Light-field images of HeLa mitochondria at different noise levels with denoising algorithms (left 
column) and their reconstructions (right column). (d, h, l) The zoomed-in region marked in the dashed boxes in 
(c), (g), and (k), respectively, with the intensity profiles along the dashed lines. (m, o) Light-field images of HeLa 
peroxisomes and Jurkat mitochondria, respectively, at different noise levels without denoising algorithms (left 
column) and their reconstructions (right column). (n, p) Light-field images of HeLa peroxisomes and Jurkat 
mitochondria, respectively, at different noise levels with denoising algorithms (left column) and their 
reconstructions (right column). Scale bars: 10 μm (a, c, e, g, i, k, m, n, o, p), 1 μm (b, d, f, h, j, l). Source data are 
provided as a Source Data file. 
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Supplementary Figure 8: Human HeLa cell and T cell nucleus and membrane imaging. (a) Light-field raw image 
of HeLa cell membrane (magenta) and nucleus (blue). (b) Visualization of 3D reconstructions of two structures in 
(a) with two-color integration. (c) Axial layers of the two-color volume in (b). (d) Light-field raw image of human 
T cell membrane (magenta) and nucleus (blue). (e) Visualization of 3D reconstructions of two structures in (d) 
with two-color integration. (f) Axial layers of the two-color volume in (e). Scale bars: 10 μm (a, d), 5 μm (c), 1 
μm (f). 
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Supplementary Figure 9: Imaging platelets at a flow rate of ~2,300 cells/sec using LFC. (a) Axial layers for a 
single membrane-labeled platelet volume across 3 μm. (b) Histogram of the diameters of platelets (n = 35) with 
the assumption that the platelets are spherical. The Gaussian fitting of the histogram shows a mean diameter of 
2.26 μm. Scale bar: 1 μm (a). Source data are provided as a Source Data file. 
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Supplementary Figure 10: Wide-field images of mitochondria and nuclei in both live Jurkat cells and STS-treated 
cells in microfluidics. (a) Live cells with no STS treatment. (b) 30 min STS treatment. (c) 60 min STS treatment. 
(d) 120 min STS treatment. (e) 300 min STS treatment. Scale bar: 5 μm. 
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Supplementary Figure 11: Jurkat cell nucleus and mitochondria segmentation and volume estimation. (a) 3D 
visualization of the reconstructed volume of Jurkat cell nucleus. (b) One axial layer of (a) with dashed-area 
segmentation was manually marked for each broken nucleus part. (c) 3D nucleus segmentation was performed by 
algorithm, consistent with manual segmentation results. (d) Axial layers of nuclei 3D reconstruction (first row) 
and their enclosed areas (second row, white part represents nucleus while green part represents enclosed area). (e) 
Axial layers of mitochondria 3D reconstruction (first row) and their recognized areas (second row). (f) The 
intersection of the nucleus-enclosed regions in (d) and mitochondria areas in (e). Scale bars: 1 μm (b, c), 5 μm (d-
f). 
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Supplementary Figure 12: Two-color imaging of mitochondria and nucleus in 15 exemplary flowing Jurkat T cells 
with 300-min STS treatment times. The three panels show 3D rendering on the top of each panel and corresponding 
focal stack images at the bottom of each panel. A majority of results displayed a consistent resolution of the 
subcellular structures compared to those of other treatment times in Fig. 5. Scale bars: 5 µm.  
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Supplementary Figure 13: Flow montage of liver endothelial cells, spleen immune cells, and lung endothelial cells 
with nanoparticles injected. (a) Mouse liver endothelial cells. (b) Mouse spleen immune cells. (c) Mouse lung 
endothelial cells. The cell membrane was displayed in cyan color, and tdTomato expression inside the cells was 
displayed in red color. 
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Supplementary Note 1. Design of the microlens array (MLA) 

 
 
Supplementary Figure 14: Design of the MLA. (a) Photo of the MLA. (b) MLA illustration and light-field 
partitioning at the Fourier plane. dML is the distance between the centers of two adjacent microlenses. (c) Elemental 
images on the camera chip. The three elemental images occupy a 1024-pixel-by-1024-pixel region at the center of 
the camera sensor. (d) An experimental Fourier LFM PSF in an axial range of -5 μm to 5 μm. Scale bar: 10 μm. 
 
 

The Fourier light-field imaging part of the LFC is an aperture-partition system, where an MLA is placed 

to segment the Fourier plane. Such configuration significantly determines the LFM resolution, the field 

of view (FOV), and the depth of focus (DOF). Theoretically, the MLA was designed to minimize the 

Fourier aperture segmentation for a sufficient photon budget. By maximizing the FOV and high spatial 

frequency usage throughout the pupil, the reconstruction quality is secured with an optimum 3D 

resolution. Hence, we customized the MLA especially for subcellular imaging performance according to 
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the optical model (Supplementary Note 4). The hexagonal MLA segments the pupil into three off-axis 

elements with a pitch size of 𝑑𝑑ML=3.25 mm, an f-number of 36, and a microlens focal length of 𝑓𝑓ML=117 

mm (Supplementary Fig. 14a, b). The light field of a single emitter passing through the MLA occupies 

the central quarter of the camera sensor (Supplementary Fig. 14c) and forms a PSF with three elemental 

images (Supplementary Fig. 14d). Here, we omitted the on-axis microlens to reduce segmentation since 

the on-axis element contains mainly the DC component of the light field with a low angular sensitivity, 

which contributes less significantly to the overall 3D imaging capability. 
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Supplementary Note 2. Flow-focusing scheme 

As shown in Fig. 1b and Supplementary Fig. 1, we conducted the flow-focusing methods following the 

hydrodynamic focusing principles3, 4. In the experiments, we injected the samples into the main sample 

channel of the microfluidic chip and red HBSS into the two side channels with a microfluidic pump (OB1 

MK4, Elveflow). We adjusted the pressures in the three channels to control the widths of the sample flow 

and the sheath fluids so that the sample flow width could be constrained within the field-of-view (FOV) 

of the imaging system. Before the acquisition, we set the pressure to 300~600 mbar for the main sample 

channel and 600 mbar for each side channel until we could observe a stable hydrodynamic flow where 

the three channels were merged. The width of the central branch was ~80 μm with these pressure 

configurations. Once the fluids were stabilized, we decreased the pump pressures proportionally to 

reduce the cell speed. For imaging with 100 μs exposure time, we set the pressure of the central channel 

to 12~18 mbar and side channels to 24 mbar. For imaging with 5 μs exposure time, we put the pressure 

of the central channel to ~400 mbar and side channels to ~600 mbar. 
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Supplementary Note 3. Setup of stroboscopic illumination 

We set up the stroboscopic illumination scheme to shorten the illumination period within a camera 

exposure period (Tcam). Therefore, the effective camera exposure time (Teff) was determined by the 

illumination period, with which cell movements could be constrained to less than half of the theoretical 

spatial resolution within Teff. Quantitatively, the displacement d of a sample during Teff can be calculated 

as d = v × Teff, where v is the flow speed of the sample. To suppress motion blur, it is essential that this 

displacement d be less than the lateral resolution of our LFC system at 400-600 nm. For experiments 

with Teff  = 100 μs, we constrained the sample speed to approximately 3 mm per sec, below the maximum 

allowable speed of 4-6 mm per sec, derived using d = v × Teff based on the resolution. Similarly, for 

experiments with Teff down to 5 μs, the flow speed was set to approximately 115 mm per sec, approaching 

the maximum allowable speed of 120 mm per sec. As seen, under both conditions, the sample 

displacement captured within one stroboscopic frame remained shorter than the lateral resolution of LFC, 

thereby mitigating motion blur. As a result, the motion blur could be effectively suppressed for fast-

moving cells (Fig. 1c). In this experiment, we used a 200 Hz frame rate for image acquisition. The rolling 

shutter mode of the camera allowed for a 600-μs global exposure time for a 1024-pixel-by-1024-pixel 

frame. For multi-color imaging, the signal frequency of the two-color laser lines was set to be half of the 

camera frame rate (i.e., 100 Hz), and the two laser wavelengths were switched on and off alternately. 

Here, we designed two stroboscopic illumination schemes to adapt to various throughput requirements 

(Supplementary Fig. 15).  
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Supplementary Figure 15: Stroboscopic illumination schemes. (a) Schematic using NI DAQ devices. AOTF: 
acoustic optical tunable filter. NI-BUS: USB 6210 multifunctional I/O device. PCIe: PCIe-6738 Analog Output 
Device. MDR: mini delta ribbon. (b) Schematic of using function generators and oscilloscopes. Func. Gen: 
function generators. CAM: sCMOS camera. OCS: oscilloscope. CH1, CH2: Channel 1 and Channel 2 of the 
function generator. AOTF CH1, AOTF CH2: the Channel 1 and Channel 2 of the acoustic optical tunable filter. 
 

3.1. Using NI DAQ devices 

For experiments with a cell speed within 10 mm/s, we used NI DAQ devices to conduct stroboscopic 

illumination (Supplementary Fig. 15a). An analog signal waveform was generated by a PCIe board 

(PCIe-6738, National Instruments) and sent by a connector block (CB-68LP, National Instruments) to 

the acoustic optical tunable filter (AOTF, 97-03926-12, Crystal Technology). At the same time, it was 

synchronized with the camera signals by a LabVIEW program. Then a BUS (USB-6210, National 

Instruments) device was used to collect the digital signals from the camera as a feedback source. The 

DAQ devices above are small and easy to implement into a desktop workstation or an optical system, 

while they only support an illumination period of no less than 100 μs. For higher-throughput imaging, 

the signal waveforms generated from DAQ devices become unstable. 

 

 

 



 
21 

 

3.2. Using function-generating devices 

We used two function generators (AFG3102, Tektronix) and an oscilloscope (DPO5104, Tektronix) to 

perform stroboscopic illumination instead (Supplementary Fig. 15b) for higher-throughput imaging. 

Rather than using camera signals from its internal trigger, we used the external trigger mode of the camera 

and drove the camera acquisition with a function generator. Since the internal clocks of the function 

generators were relatively stable with no significant phase shifts within 3-4 rounds of data acquisition 

(15~20 min), we set up the two function generators to control the camera and the AOTF, respectively. 

An oscilloscope was used to monitor the waveforms and the synchronization between two function 

generators. In the experiments, we set the square wave frequency as 200 Hz, peak width as 4.5 ms for 

the function generator controlling the camera, and the square wave frequency as 200 Hz, peak width as 

5 μs for the other one controlling the AOTF. Therefore, we increased our theoretical throughput by >50-

fold with no noticeable motion blur compared with the method described in Supplementary Note 3.1. 
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Supplementary Note 4. Vectorial Debye model 

We derived the wave function at the native image plane (NIP) in Supplementary Equation (1) using the 

vectorial Debye theory to address the high numerical aperture (NA) of the objective lens and the 

corresponding refractive-index mismatch (RIM) between the objective lens immersion medium and the 

sample solution. 

          𝐔𝐔𝐢𝐢(𝐱𝐱,𝐩𝐩) =
𝑀𝑀

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜2 𝜆𝜆2
� �cos 𝜃𝜃1 sin𝜃𝜃1 × exp �𝑖𝑖𝐤𝐤𝟎𝟎Φ(𝑙𝑙) +

𝑖𝑖𝐮𝐮 cos 𝜃𝜃2
4 sin2(𝛼𝛼 2⁄ )�

𝛼𝛼

0

× ��𝜏𝜏𝑠𝑠 + 𝜏𝜏𝑝𝑝 cos 𝜃𝜃2�𝐽𝐽0 �
sin𝜃𝜃1
sin𝛼𝛼

𝐯𝐯� − �𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑝𝑝 cos 𝜃𝜃2�𝐽𝐽2 �
sin𝜃𝜃1
sin𝛼𝛼

𝐯𝐯�� d𝜃𝜃1                 (1) 

where 𝑓𝑓obj is the objective focal length.  𝐽𝐽0 and 𝐽𝐽2 are the zeroth and second-order Bessel functions of 

the first kind, respectively. 𝐯𝐯 and 𝐮𝐮 represent normalized radial and axial coordinates. The two variables 

are defined by 𝐯𝐯 = 𝐤𝐤𝟏𝟏[(𝑥𝑥1 𝑀𝑀⁄ − 𝑝𝑝1)2 + (𝑥𝑥2 𝑀𝑀⁄ − 𝑝𝑝2)2]1/2 sin(𝛼𝛼)  and 𝐮𝐮 = 4𝐤𝐤𝟐𝟐𝑝𝑝3 sin2(𝛼𝛼 2⁄ ) . 𝐩𝐩 =

(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3) ∈ ℝ3  is the point source in the object space; 𝐱𝐱 = (𝑥𝑥1, 𝑥𝑥2) ∈ ℝ2  represents the image 

position on the NIP. 𝑀𝑀 is the objective magnification; 𝛼𝛼 is determined by the minimum half-angle of 

NA and the critical angle of total internal reflection, i.e., 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚[sin−1(NA 𝑛𝑛1⁄ ) , sin−1(𝑛𝑛2 𝑛𝑛1⁄ )]. The 

wavenumbers 𝐤𝐤𝟏𝟏,𝟐𝟐 = 2𝜋𝜋𝑛𝑛1,2𝐤̂𝐤𝟏𝟏,𝟐𝟐/𝜆𝜆 were calculated using emission wavelength 𝜆𝜆, refractive index 𝑛𝑛1 

of the immersion medium and refractive index 𝑛𝑛2 of the sample solution. 𝜃𝜃1 and 𝜃𝜃2 are the refractive 

(objective side) and incident (sample side) angles at the media interface, respectively.  

 

In Supplementary Equation (1), the aberration function Φ(𝑙𝑙), the Fresnel transmission coefficients 𝜏𝜏𝑠𝑠 

and 𝜏𝜏𝑝𝑝  were defined as Φ(𝑙𝑙) = −𝑙𝑙(𝑛𝑛1 cos 𝜃𝜃1 − 𝑛𝑛2 cos 𝜃𝜃2) , 𝜏𝜏𝑠𝑠 = 2sin𝜃𝜃2 cos𝜃𝜃1
sin(𝜃𝜃1+𝜃𝜃2)  and 𝜏𝜏𝑝𝑝 =

2 sin𝜃𝜃2 cos𝜃𝜃1
sin(𝜃𝜃1+𝜃𝜃2) cos(𝜃𝜃1−𝜃𝜃2), where l is the normal focusing position (NFP). In our imaging system, the refractive 

index of the immersion oil 𝑛𝑛1  is 1.515, and 𝑛𝑛2  is 1.33 for the PBS solution. For computational 

convenience, we set the azimuthal angle of the emitter in the polar coordinates 𝜑𝜑p  = 90° since the 
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fluorescence from the emitters exhibited an isotropic polarization so that the light field only pointed to 

the p1 direction.  

 

Next, the image at the NIP 𝐔𝐔𝐢𝐢(𝐱𝐱,𝐩𝐩) was optically Fourier transformed onto the back focal plane of the 

Fourier lens, described as OℱT[𝐔𝐔𝐢𝐢(𝐱𝐱,𝐩𝐩)], which was then modulated by the MLA. The modulation is 

described by the transmission function ϕ(𝐱𝐱′), where 𝐱𝐱′ = (x1′ , x2′ ) ∈ ℝ𝟐𝟐 represents the coordinates on 

the MLA. Specifically, we describe the microlens aperture as a hexagonal amplitude mask hex(𝐱𝐱′ 𝑑𝑑⁄ ), 

combined with a phase mask exp � −𝑖𝑖𝑖𝑖
2𝑓𝑓ML

‖𝐱𝐱′‖22�, where 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆 is the wavenumber in the air. The 

modulation induced by a microlens is then described as: 

ϕ(𝐱𝐱′) = hex(𝐱𝐱′ 𝑑𝑑⁄ ) exp � −𝑖𝑖𝑖𝑖
2𝑓𝑓ML

‖𝐱𝐱′‖22�           (2) 

Thus, the entire modulation can be described by the convolution of ϕ(𝐱𝐱′)  with a comb function 

comb△(𝐱𝐱′ 𝑑𝑑⁄ ) that corresponds to the three microlenses (Supplementary Fig. 14), i.e., Φ(𝐱𝐱′) = ϕ(𝐱𝐱′), 

where ⨂ represents the convolution operator.  

The light field propagation from the MLA to the camera can be modeled using the Fresnel propagation 

over a distance of 𝑓𝑓ML: 

𝐡𝐡(𝐱𝐱′′,𝐩𝐩) =ℱ−1 �ℱ[OℱT[𝐔𝐔𝐢𝐢(𝐱𝐱,𝐩𝐩)]Φ(𝐱𝐱′)] × exp �𝑖𝑖2𝜋𝜋𝑓𝑓𝑀𝑀𝑀𝑀��
1
𝜆𝜆
�
2
− �𝑓𝑓𝑥𝑥2 + 𝑓𝑓𝑦𝑦2���           (3) 

where 𝐱𝐱′′ = (𝑥𝑥1′′, 𝑥𝑥2′′) ∈ ℝ𝟐𝟐 represents the positions on the camera plane. The exponential term is the 

Fresnel transfer function. 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the spatial frequencies in the camera plane.  ℱ and ℱ−1 represent 

the Fourier transform and inverse Fourier transform, respectively. In practice, the Fresnel propagation 

over distance 𝑓𝑓ML was calculated in small steps for computational accuracy. The final intensity image 

O(𝐱𝐱′′) at the camera plane containing elemental images of each microlens is described by:  

O(𝐱𝐱′′) = ∫|𝐡𝐡(𝐱𝐱′′,𝐩𝐩)|2 g(𝐩𝐩)𝑑𝑑𝑑𝑑                (4) 
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where g(𝐩𝐩) is the intensity distribution of the volume of isotropic emitters in the object space. 

Supplementary Note 5. Reconstruction algorithm using hybrid PSF 

As shown in Supplementary Equation (4), the intensity image at the camera image can be described as 

𝑂𝑂 = 𝐻𝐻𝐻𝐻, where the measurement matrix H is determined by the PSF. The elements ℎ𝑗𝑗,𝑘𝑘 in H represent 

the light projection from the k-th volume 𝑔𝑔(𝑘𝑘) in the object space to the pixel O(𝑗𝑗) on the camera plane. 

Therefore, the reconstruction becomes an inverse problem of retrieving the radiant intensity at each point 

of the 3D object volume 𝑔𝑔 with the camera image 𝑂𝑂, which can thus be derived as: 

        𝑔𝑔(𝑘𝑘+1) = diag �diag�𝐻𝐻𝑇𝑇𝐻𝐻𝑔𝑔(𝑘𝑘)�
−1 (𝐻𝐻𝑇𝑇𝑂𝑂)� 𝑔𝑔(𝑘𝑘)        (5) 

where the operator diag diagonalizes a matrix. This expression is a modified deconvolution algorithm 

based on the Richardson-Lucy iteration scheme. In our case, the sampling pixel size for reconstruction 

are ∆𝒙𝒙𝒙𝒙 = 153 nm and ∆𝒛𝒛 = 100 nm. For visualization, we additionally interpolated 2×2×2 pixels into 

each reconstructed pixel to match the camera pixel size.  

 

The 3D deconvolution iteratively performs forward projection (𝐻𝐻𝑔𝑔(𝑘𝑘)) and back projection (𝐻𝐻𝑇𝑇𝑂𝑂 and 

𝐻𝐻𝑇𝑇𝐻𝐻𝑔𝑔(𝑘𝑘)) between the 3D object space and the 2D camera plane. Here, the spatially invariant 3D PSF 

PSF(𝐱𝐱′′, 𝑧𝑧) = |𝐡𝐡(𝐱𝐱′′,𝐩𝐩)|𝟐𝟐 can be described and numerically derived by an on-axis emitter 𝐩𝐩 = (0, 0, 𝑧𝑧). 

As a result, the forward projection can be obtained by summing up the 2D convolutions on each layer 

within an axial range [𝑧𝑧0, 𝑧𝑧1] , i.e., 𝐻𝐻𝑔𝑔(𝑘𝑘) = ∑ PSF(𝐱𝐱′′, 𝑧𝑧)⨂ g(k)(𝑧𝑧)𝑧𝑧=𝑧𝑧1
𝑧𝑧=𝑧𝑧0 , where g(k)(𝑧𝑧)  represents a 

single layer located at z in the 3D object volume. Hence, The back projection can be given as [𝐻𝐻𝑇𝑇𝑂𝑂](𝑧𝑧) =

PSF′(𝐱𝐱′′, 𝑧𝑧)⨂𝑂𝑂 and �HTHg(k)�(𝑧𝑧) = PSF′(𝐱𝐱′′, 𝑧𝑧)⨂𝐻𝐻𝑔𝑔(𝑘𝑘), where PSF′(𝐱𝐱′′, 𝑧𝑧) is acquired by rotating 

PSF(𝐱𝐱′′, 𝑧𝑧) by 180 degrees. 
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To be further mentioned, the spatial positions of the elemental images of the numerical PSF were adjusted 

based on the experimental results to compensate for any instrumental misalignment between the 

theoretical model and the actual optical system (Supplementary Fig. 16). Moreover, the use of such 

hybrid PSF values circumvents the intensity value discreteness of the experimental PSF since the 

sCMOS-recorded images are unsigned integer values representing the photon numbers acquired by the 

camera chip. On the contrary, the numerical PSF images provide a double precision to estimate the PSF 

better, thereby enhancing the accuracy of the 3D information retrieval of the object. 

 

Supplementary Figure 16: PSF calibration. (a) Experimental PSF of Fourier light-field microscopy. (b) PSF 
calibration between experimental PSF and simulated PSF. Magenta: experimental PSF. Green: simulated PSF. (c) 
Hybrid PSF (hPSF) after calibration. (d) Comparisons among hPSF in LFC, hPSF in previous work and hPSF in 
a different refractive index. Scale bars: 10 µm (a, c, d), 5 µm (b). 

 
In practice, we calculated the Fourier transform (i.e., the optical transfer function, OTF) of the PSF as 

OTF =  ℱT{PSF} in advance to enhance the computational efficiency before loading them into the GPU 

for iterative computation of forward and back projections. Specifically, the forward projection can be 

performed as 𝐻𝐻𝑔𝑔(𝑘𝑘) = ∑ ℱ−1�OTF(𝐱𝐱′′, 𝑧𝑧) ∙ G(k)(𝑧𝑧)�𝑧𝑧=𝑧𝑧1
𝑧𝑧=𝑧𝑧0 , where G(k)(𝑧𝑧)  represents the Fourier 
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transform of a single layer at z in the 3D object volume. Similarly, the back projection can be conducted 

as [HTO](𝑧𝑧) = ℱ−1�OTF′(𝐱𝐱′′, 𝑧𝑧) ∙ ℱ{𝑂𝑂}�  and �HTHg(k)�(𝑧𝑧) = ℱ−1 �OTF′(𝐱𝐱′′, 𝑧𝑧) ∙ ℱ�𝐻𝐻𝑔𝑔(𝑘𝑘)�� , where 

OTF′(𝐱𝐱′′, 𝑧𝑧) is the transposed OTF(𝐱𝐱′′, 𝑧𝑧). 

To further improve the spatial resolution of our LFC system, we have implemented radFLFM method 

using the radiality of the light-field images5. The method achieves a better spatial resolution beyond the 

theoretical Fourier light-field resolution without compromising the throughput (Supplementary Fig. 17). 

 

Supplementary Figure 17: Comparisons of reconstructions between with and without radiality analysis. (a) Raw 
light-field images of mitochondria in flowing HeLa cells. (b) The 3D reconstruction of (a). The depth information 
was color-coded according to the color scale bar. (c) Corresponding light-field image in (a) using ACsN and 
radiality analysis. (d) The corresponding 3D reconstruction of (c). Scale bars: 10 µm (a, c), 5 µm (b, d). 
 
Additionally, we have made substantive advancements in our algorithmic framework, specifically 

incorporating deep neural networks for the task of image reconstruction. To elaborate, traditional 

Richardson-Lucy deconvolution algorithms have been replaced by deep-learning algorithms optimized 

for 3D light-field image retrieval. Typically, using the conventional Richardson-Lucy deconvolution 

(RLD) method requires 30-50 iterations to retrieve the volumetric details of samples with near-
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diffraction-limited resolution, which can take around 8-10 seconds. This can be quite time-consuming 

when dealing with terabytes of IFC data. However, by utilizing a deep learning approach and a well-

trained U-Net network, 3D volume prediction can be achieved in as little as 60-80 milliseconds. This 

means that the deep-learning-powered reconstruction is over 100 times faster than the conventional RLD 

method, making it possible to quickly analyze large data sets. 

For the training dataset, we utilized a collection of 500 previously acquired wide-field volumes featuring 

HeLa peroxisomes (Supplementary Fig. 18a). These volumes were subjected to deconvolution using a 

3D wide-field PSF to enhance their SNR, thereby serving as our ground truth (GT), shown in 

Supplementary Fig. 18b. Subsequently, these deconvolved wide-field volumes were convolved with a 

3D light-field PSF to generate synthetic light-field images. The resultant elemental images were 

segmented and compiled along the channel dimension to create the training input for the neural network 

(Supplementary Fig. 18c). The network architecture employed is based on the U-Net framework, as 

depicted in (Supplementary Fig. 18d). To accommodate the GPU memory constraints of our workstation, 

the training inputs were resized to dimensions of 512 × 512 × 3 pixels, while the ground truths were 

resized to 512 × 512 × 64 pixels. The voxel dimensions are set at 130 nm × 130 nm × 65 nm. The network 

underwent 500 training epochs, completed in an approximate time span of 5-6 hours, utilizing an Nvidia 

TITAN RTX graphics card for computation. The deep learning-generated reconstructions of 

(Supplementary Fig. 18e, h, k) are presented in (Supplementary Fig. 18f, i, l) and are compared with 

corresponding wide-field scanning results in (Supplementary Fig. 18g, j) and Richardson-Lucy 

deconvolution (RLD) results in (Supplementary Fig. 18m). The quality of the deep learning-

reconstructed image is found to be comparable to that achieved through wide-field scanning results and 

deconvolved results. The intensity values were normalized to a 0-1 scale. The image quality of the deep 

learning results was measured with 3D structure similarity indices (3D SSIM) and peak signal-to-noise 

ratios (PSNR).  
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Supplementary Figure 18: Implementation of deep learning scheme. (a) The wide-field z-scanning volume of dish-
cultured peroxisomes. (b) The 3D deconvolution volume of (a). (c) The elemental images were segmented and 
stacked into a channel dimension. (d) The architecture of the network. Z represents the depths of the tensors while 
the heights and widths of the tensors are marked below the level numbers. (e, h, k) The light-field image of dish-
cultured HeLa cell peroxisomes (e), mitochondria (h), and flowing HeLa cell peroxisomes (k). (f, i, l) The deep-
learning reconstructed volume of (e, h, k), respectively. (g, j) The wide-field scanning results of the same cell in 
(e, h). (m) The RLD-reconstructed volume of (k). Scale bars: 10 µm (c, e, h, k), 5 µm (f, g, i, j) ,1 µm (l, m). 
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Supplementary Note 6. Jurkat cell nucleus imaging with higher throughput  

 
Supplementary Figure 19: Higher throughput imaging with Jurkat cell nucleus. (a) Scatter plot for flow rate 
measured by microfluidics sensor and pump pressure with linear fitting. (b) Scatter plot for cell speed measured 
with acquired image sequences and pump pressure with linear fitting. (c) Light-field raw image of a Jurkat cell 
with the dual-snapshot scheme. (d) Visualization of 3D reconstruction of the Jurkat cell in (c). Scale bar: 10 μm. 
Source data are provided as a Source Data file. 
 
Using function generators and an oscilloscope, we achieved a more stable stroboscopic illumination in 

our LFC system, allowing for imaging with a higher throughput. Here, we took advantage of our large 

field of view (more than twice the size of a Jurkat cell) and implemented a dual snapshot scheme to image 

a single cell twice in one frame (Supplementary Fig. 19 and Supplementary Movie 15). By controlling 

the time interval of two snapshots and measuring the distance between two shots, we can accurately 

estimate the cell speed, which can be further used to estimate the theoretical cell throughput. In practice, 

we first calibrated the relations between microfluidic pump pressures and flow rates read from a 

microfluidic flow sensor (MFS, Elveflow). The linear trend of the curve (Supplementary Fig. 19a) 
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allowed linear interpolation when we set the pressures to specific numbers for a desired flow rate. 

Secondly, we maintained the distance between two snapshots at ~150 pixels on the camera and calibrated 

the relations between pump pressures and cell speeds. The linear relations between them (Supplementary 

Fig. 19b) also allowed interpolation between the calibrated data points. 

After the calibrations, we set the microfluidic pump pressure to 414 mbar for the main sample channel 

and 622 mbar for the side channels to allow a flow rate of ~10.87 μL/min. We set the peak interval of 

the square wave signals to 239.81 μs and the peak width to 5 μs. The results shown in Supplementary 

Fig. 19c, d exhibit no noticeable motion blur and can be well reconstructed volumetrically within the 

field of view and a depth of focus of ~5 μm. The distance between the two snapshots is 190 pixels, 

equivalent to 27.55 μm. Therefore, the cell speed is estimated to be ~115 mm/s. Assuming the cell-to-

cell interval in the flow is around twice the cell size (~20 μm), the theoretical cell throughput we can 

achieve in our LFC system is ~5,750 cells/s. 

To be mentioned, a shorter stroboscopic time reduces motion blur but may weaken the signal-to-noise 

ratio (SNR), owing to the reduced photon count during the effective exposure time. To address this trade-

off, we have implemented our lab-written algorithms, including both background rejection and ACsN1. 

While ACsN has previously been validated for its efficacy in restoring low-SNR light-field images5-8, its 

deployment in flow setting has not been demonstrated. In addition, we have also rigorously optimized 

fluorescent staining protocols, selecting dyes and proteins through multiple rounds of testing to ensure 

robust results. As a result, our experimental data corroborate that even when utilizing stroboscopic 

illumination periods as brief as 5-µs, our approach is proficient at reliably restoring raw fluorescent light-

field signals for precise 3D image reconstruction (Supplementary Fig. 19). It should be mentioned that 

efficient illumination and denoising have been primarily employed for recent high-throughput 2D IFC 

techniques, typically utilizing stroboscopic illumination durations of 10-20 µs9, 10. It is worth noting that 

hardware solutions such as VIFFI11 or FIRE12 have also been proposed by high-throughput 2D IFC 
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techniques to recover a high SNR, however, at the expense of increased instrumental complexity. 

Furthermore, we have conducted additional experiments with various stroboscopic illumination periods. 

These experiments were accompanied by a quantitative analysis evaluating the SNR and image quality, 

both with and without the implementation of ACsN denoising (Supplementary Fig. 20). Our results 

substantiate that our strategy significantly elevates the quality of reconstructed images. This approach 

provides compelling evidence supporting the optimized parameters we have employed in the LFC system, 

effectively balancing robust SNR with minimal motion blur.  

 

Supplementary Figure 20: Image quality in different noise and motion-blur levels and the effects of using ACsN 
method. (a-d) Light-field images of the nucleus of flowing Jurkat cells with 5-ms (a), 2.7-ms (b), 100-μs (c), and 
5-μs (d) effective exposure time. (e) ACsN denoised light-field image of (d). (f) The relationship between motion 
blur and SNR. Black lines and dots represent images without ACsN, and the red dot represents the image with 
ACsN. The gray dashed arrow shows the improvement of SNR by the denoising algorithm. (g, h) The 3D 
reconstruction of (d) and (e), respectively. (i) 2D images on the focal plane of (g) and (h), respectively. Scale bars: 
10 μm (a-e), 1 μm (i). Source data are provided as a Source Data file. 
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Supplementary Note 7. Imaging system characterization  

7.1. Spatial resolution 

7.1.1. Lateral resolution 

We calculated the lateral resolution of the imaging system as: 

𝑅𝑅𝑥𝑥𝑥𝑥 = 1
𝑀𝑀

× 𝜆𝜆
2NAML

× 𝑓𝑓𝐹𝐹𝐹𝐹
𝑓𝑓𝑀𝑀𝑀𝑀

                      (6) 

where M is the objective magnification, and λ is the fluorescence wavelength. NAML is the numerical 

aperture of each microlens. The focal lengths of the Fourier lens and the microlenses are represented as 

fFL and fML, respectively. Our imaging system uses a 100× objective lens with NA = 1.45, λ is 680 nm 

for dark red fluorescence, 599 nm for orange fluorescence, and 510 nm for green fluorescence. The focal 

length of the Fourier lens is fFL = 275 mm. The NA of each microlens can be calculated as NAML =

 𝑑𝑑𝑀𝑀𝑀𝑀
2𝑓𝑓ML

= 0.014. Therefore, the lateral resolution is 575 nm for dark red fluorescence, 507 nm for orange 

fluorescence, and 432 nm for green fluorescence, consistent with the measurements of phantom samples 

(Fig. 2b-e) and biological samples (Fig. 3c, i). Note that the analytical model is derived based on 

elemental images in the raw Fourier light-field data, while the deconvolution process provides a moderate 

enhancement in the resolution. When estimating the sizes of the phantom samples, we calculated the 

phantom volumes V and converted the values to diameters using 𝐷𝐷 = �6𝑉𝑉/𝜋𝜋3 . The distributions reveal 

that the resolving capability of the LFC system is ~500 nm (Fig. 2f-k). 

 

7.1.2. Axial resolution 

We assume that the axial positions of the two emitters can be resolved if they can be resolved laterally 

in the elemental images. Therefore, we calculated the axial resolution of the imaging system as: 

𝑅𝑅𝑧𝑧 = 1
𝑀𝑀2 × 𝜆𝜆

2NAML
× 𝑓𝑓𝐹𝐹𝐹𝐹

𝑓𝑓𝑀𝑀𝑀𝑀
× 1

tan𝜃𝜃′
                      (7) 
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where tan𝜃𝜃′ = 𝑑𝑑ML �√3𝑓𝑓FL�⁄ . In this case, the axial resolution can be obtained as 843 nm for dark red 

fluorescence, 743 nm for orange fluorescence, and 632 nm for green fluorescence, consistent with the 

measurements of phantom samples (Fig. 2b-e) and biological samples (Fig. 3d, j). 

 

Note that it is feasible to apply advanced strategies, such as light-field super-resolution algorithms (e.g., 

VsLFM13 or HyLFM14) or digital adaptive optics (J. Wu, et al. Cell, 202115) to enhance the resolution 

during the post-processing process. Specifically, VsLFM enhances resolution by leveraging multiple 

angles of views scanned by piezo-steering mirrors combined with a digital adaptive optics algorithm. In 

addition, HyLFM employs an additional light-sheet illumination, facilitating the simultaneous capture of 

high-resolution images that serve as the training and validation datasets for deep learning networks. We 

expect both techniques to achieve effectiveness in resolution enhancement. We illustrated these potential 

strategies as integrated into the LFC system (Supplementary Fig. 21a and b). It should also be noted that 

it would be the first integration of these methods into Fourier light-field and cytometric imaging fashions. 

 

7.2. Depth of focus (DOF) 

Here we treated the full width of the axial PSF (i.e., 2× full width at half maximum (FWHM) in the axial 

direction) as the DOF of the system, which, therefore, can be calculated as:  

DOF = 4𝑅𝑅𝑥𝑥𝑥𝑥2

𝜆𝜆
�2 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒

𝑅𝑅𝑥𝑥𝑥𝑥
�                          (8) 

Peff is the effective pixel size of the elemental image, which is 153 nm based on the configuration of our 

setup. Hence, the DOF is obtained as 4.41 μm for dark red fluorescence, 3.95 μm for orange fluorescence, 

and 3.44 μm for green fluorescence, which is consistent with the measurements of bead phantoms (Fig. 

2b-e) and biological samples (Fig. 3g). Note that the deconvolution in the reconstruction process using 

PSF considering spherical aberration can retrieve the diffracted information moderately outside of the 
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Rayleigh range of the axial PSF. Therefore, the LFC presents a depth of field (DOF) of ~6 μm in 

experimental results (Fig. 3 and 4). 

 

To enhance the coverage, three practical solutions (1-3) can be feasibly executed to extend the DOF in 

the further development of the LFC system. These solutions include the implementation of (1) a low-

magnification objective lens, (2) an additional Fourier light-field path, and (3) an electrically tunable lens 

(illustrated in Supplementary Fig. 21c-e). In particular, the initial alteration (1) involves transitioning to 

a 40× objective lens (e.g., Nikon CFI Plan Fluor 40×, 1.3NA Oil). This switch is concomitant with 

adjustments in the design parameters for both the micro-lens array (MLA) and the Fourier lens16 

(Supplementary Fig. 21c). Here, we propose the parameters for the MLA (fML = 55.8 mm, pitch d = 3.3 

mm, 7 hexagonal microlenses) and the Fourier lens (fFL = 150 mm). Based on our theoretical model, 

these modifications lead to ~1.5-fold improvement in the DOF (i.e., ~8.2 μm), 3× expanded field of view 

(220 μm), 3D resolution of 600-850 nm and 1.1-1.5 µm in the lateral and axial dimensions, respectively. 

In the alternative solution (2), we propose a multi-focal Fourier light-field design to enhance the DOF by 

placing an additional Fourier light-field path with an offset of 40 mm away from the native image plane 

so that the two Fourier light-field paths simultaneously capture connective focal ranges (Supplementary 

Fig. 21d). Last but not least, the solution (3) will replace the normal tube lens with a focus tunable lens 

(e.g., an electrically tunable lens or ETL) so that different depth layers can be refocused corresponding 

to the focal changes of the ETL (Supplementary Fig. 21e). By synchronizing the focal scan of the ETL 

and camera frames, the DOF can be efficiently extended by accumulating the images acquired from 

multiple frames. 
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Supplementary Figure 21: Experimental diagrams. (a) Scheme of integrating VsLFM to LFC, which implements 
piezo-steering mirrors into the Fourier light-field acquisition. The tomographic images taken will be sent to a deep 
learning network for training, so the scanning images can eventually be virtually predicted. (b) Scheme of 
integrating HyLFM to LFC, which concomitantly acquires light-sheet image stacks serving as continuous training 
and validation for deep learning network reconstructing the LFC data. (c-e) The proposed solutions (1-3) to DOF 
extension. NIP: Native image plane. FL: Fourier lens. MLA: microlens array. SPIM: selective plane illumination 
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microscopy. LFM: light-field microscopy. OBJ: objective lens. DM: dichroic mirror. EF: emission filter. TL: tube 
lens. FP: Fourier light-field paths. ETL: electrically tunable lens. 
 

7.3. Field of view (FOV) 

The FOV was calculated at the focal plane in the object space of the system: 

FOV = 𝑑𝑑𝑀𝑀𝑀𝑀 × 𝑓𝑓𝐹𝐹𝐹𝐹
𝑓𝑓𝑀𝑀𝑀𝑀

× 1
𝑀𝑀

         (9) 

Using the system configuration parameters, we got a FOV of 76.39 μm × 76.39 μm, which is consistent 

with the measurements (~70 μm × 70 μm) of our previous results6. Supplementary Table 1 summarizes 

the system parameters and the design principles of MLA. 

 

Supplementary Table 1. System parameters and MLA design principles 

Input parameters Design parameters 

Emission 
wavelength 
λ (nm) 

516, 599, 
680 

(Use 600 for 
calculations) 

Effective 
pupil size 

at the 
MLA 

Dpupil (mm) 

2𝑓𝑓𝐹𝐹𝐹𝐹 ∙
NA
𝑀𝑀  7.98 

Objective 
magnification 

M 
100× 

Fourier 
lens 
focal 

length 
fFL (mm) 

𝑀𝑀 ∙ 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2𝑁𝑁𝑁𝑁  275 

Numerical 
aperture 

NA 
1.45 

Occupancy 
ratio 

N 

2𝑁𝑁𝑁𝑁
𝜆𝜆 ∙ 𝑅𝑅𝑥𝑥𝑥𝑥 2.45 

Camera pixel 
size 

Pcam (μm) 
6.5 

Microlens 
diameter 
dML (mm) 

𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁  3.25 

Physical size 
of the camera 

sensor 
Dcam (mm) 

13.3 

Microlens 
focal 

length 
fML (mm) 

𝑆𝑆𝑟𝑟 ∙ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑑𝑑𝑀𝑀𝑀𝑀
𝜆𝜆  117 

 

7.4. Temporal resolution 

We achieved an effective exposure time of 100 μs without any noticeable motion blur using the NI DAQ 

devices and 5 μs when using function generators and an oscilloscope. Therefore, we claimed a temporal 
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resolution of up to 5 μs with our current system configurations. The temporal resolution is mainly 

constrained by the responding limit of the AOTF. 

 

7.5. Analytical cell throughput 

As shown in Supplementary Fig. 22, assuming the cell flow is continuous and stable with a constant cell-

to-cell interval, the cell throughput can be directly defined by the following equation: 

𝑁𝑁𝑐𝑐 = 𝑣𝑣𝑐𝑐
𝛥𝛥𝑐𝑐

= 𝛿𝛿∙𝜂𝜂
𝛥𝛥𝑐𝑐

       (10) 

where Nc is cell throughput, vc is cell speed, Δc is cell-to-cell interval size, δ is the cell displacement 

between adjacent frames, and η is camera frame rate.  

 

Our system can achieve a cell speed of up to 115 mm/s. Assuming the cell-to-cell interval is twice the 

cell size (i.e., approximately 20 μm), we claim an analytical throughput of 5,750 cells/s. In multi-color 

imaging experiments, the relative distance of two cells between two adjacent frames was measured to 

estimate the cell speed. For example, in Fig. 3, the relative distance between mitochondria and 

peroxisome images was measured to be 17.11 μm, equivalent to a flowing speed of 3.4 mm/s. 

 
Supplementary Figure 22: cell throughput estimation. (a) Illustration of cells flowing in the microfluidics channel 
at a speed of vc. Δc represents the cell-to-cell interval. (b) Frame sequence during the high-throughput acquisition. 
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δ represents the moving distance of cells between two adjacent frames (i.e., within one camera exposure time). η 
represents the camera frame rate. 

 
 
7.6. Spatial resolution versus throughput 

In essence, high throughput is one primary advantage of IFC over traditional single-cell platforms. This 

major advantage leads to processing and analyzing thousands to millions of cells in a single experiment, 

orders of magnitude higher than conventional imaging techniques. Specifically, high throughput offers 

high content, multiparametric analysis, and statistical significance for large-scale cell studies and screen-

ing applications. These single-cell details allow for identifying genes, pathways, and cell biological 

mechanisms at the population level underlying disease diagnosis in clinical settings17, 18. The high num-

ber of cells analyzed per sample increases the statistical power and reduces the impact of sample bias in 

the experiments, which is crucial for detecting subtle and rare phenotypic changes and for robust data 

interpretation in biological research. The automated nature of cytometric imaging allows for rapid sample 

loading, data acquisition, and analysis, reducing the time and labor required for experiments. This effi-

ciency is vital in high-throughput screening and large-scale studies. The throughput of IFC also enables 

cell studies that necessitate imaging of fresh clinical samples or in their native state post-extraction from 

organs (e.g., Fig. 6). In this case, confocal or super-resolution microscopy becomes limited. The high 

throughput system can be integrated with other technologies, such as mass spectrometry or genomics 

platforms, providing a more comprehensive analysis of the cellular state.  

 

On the other hand, LFC overcomes the trade-off between resolution and throughput that is inherent in 

existing IFC systems. High-resolution imaging provides detailed insights into subcellular structures, yet 

this is often at the cost of throughput. Conversely, systems tailored for enhanced throughput may com-

promise resolution. Theoretically, analytical throughput decreases quadratically to the increase in mag-

nification (i.e., resolution) due to constraints imposed by the effective pixel size and the maximal flow 
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velocity that precludes motion blur (see Fig. 1c)10. Conventional approaches have typically achieved high 

or super-resolution imaging by considerably restricting throughput19-21. However, LFC marks a signifi-

cant advance by formulating an effective magnification of 42.5× (thereby enhancing the throughput) by 

combining the 100× objective lens with individual microlenses. LFC then restores the near-diffraction-

limited resolution, characterized by the 100× objective lens, through the wave-optics-based reconstruc-

tion of elemental light-field images. This combinatorial strategy represents a substantial advance in alle-

viating the resolution-throughput tradeoff for IFC while retaining the unique snapshot 3D ability of light-

field imaging, which, as a result, collectively surpasses the analytical throughput of conventional wide-

field systems (Supplementary Fig. 23).  

 

Supplementary Figure 23: Variation in the analytical throughput of LFC and conventional 2D wide-field cytometry 
(WFC) as a function of objective magnification (10×, 15×, 20×, 40×, 100×). In addition to the 3D ability, LFC 
achieves a higher throughput owing to the use of the microlens array that results in an effectively lower 
magnification. The reconstruction of elemental images allows for the recovery of the full resolution. Source data 
are provided as a Source Data file. 
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Supplementary Note 8. Comparison with structured illumination microscopy for HeLa cells 

We performed additional experiments and analysis by imaging mitochondria and peroxisomes in HeLa 

cells across multiple platforms. In particular, we compared the results generated by light-field 

microscopy (Nikon Eclipse Ti2U; OBJ: 100×/1.45NA), wide-field microscopy (the same Nikon Eclipse 

Ti2U setup as for LFC), and commercial 3D-SIM microscopy (Zeiss LSM 780 with Zeiss ELYRA PS.1; 

OBJ: 100×/1.46NA, images acquired and processed with Zeiss ZEN 2012 SP5). Also, we used cultured 

HeLa cells and ensured the quantitative comparison of the same cells across multiple modalities. As seen 

in Supplementary Fig. 24, the 3D light-field results of subcellular structures displayed a high consistency 

compared with the scanning wide-field stacks and 3D super-resolution results. Furthermore, we 

employed the 3D structural similarity index measure (SSIM) to quantitatively verify the accuracy of the 

results. 3D-SSIMs of mitochondria and peroxisomes exhibited (0.83, 0.95; wide-field) and (0.78, 0.82; 

SIM) of the light-field images in comparison with the wide-field and SIM results, respectively. In 

addition to our demonstration, we would also like to clarify that the accuracy and fidelity of light-field 

microscopy techniques have been demonstrated utilizing various sample types and imaging conditions. 

Also, to address the flow setting in this study, we used hybrid point-spread functions (hPSFs)6, 7, 

considering the spherical aberration caused by the depth in the flow and any actual experimental 

misalignments and imperfections. In summary, we expect these results and elaborations to clarify the 

high accuracy of 3D structural retrieval of light-field images consistent with the wide-field and super-

resolution SIM images. 

 

Indeed, super-resolution techniques such as SIM can attain a sub-diffraction-limited resolution but 

remain largely incompatible with the flow setting due to their sequential (rather than snapshot and 

volumetric) acquisition scheme. As a result, the available super-resolution strategies still rely on 

conventional platforms to trap and acquire static super-resolution images, unable to preserve the 
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throughput19, 22. As another example, we have also developed a technique termed optofluidic scanning 

microscopy (OSM)21 based on image-scanning microscopy (a variant of SIM) to achieve the first super-

resolution acquisition of flow cells, but the method was still realized at a significantly reduced throughput 

(a few cells per second)21. In contrast, LFC presents about three orders of magnitude of improvement in 

the throughput and diffraction-limited 3D resolution, which could be the main desirable and long-seeking 

feature for researchers using IFC. Regarding the further improvement of the 3D resolution, we have 

recently reported a computational strategy (Han, 2022)5 based on the radiality of the light-field images 

to achieve a resolution doubling comparable to SIM (Supplementary Fig. 17). 

 

Regarding the image resolution difference between Fig. 3 and Supplementary Fig. 24, we want to note 

that (1) The 3D-SIM experiments (Supplementary Fig. 24) were performed in a culture dish, purposefully 

designed to allow for cell-to-cell identification and comparison with other wide-field and structured 

illumination modalities. The cells were attached to the substrate and exhibited flat-distributed subcellular 

morphology in this condition. In contrast, Hela cells in Fig. 3 were captured in the microfluidic 

environment, where the flowing cells display their native spherical morphology. Mitochondria and 

peroxisomes are volumetric and densely packed in this condition, complicating the resolved subcellular 

structures. (2) The exposure times were different in the two cases. In Fig. 3, the cells were imaged with 

a short exposure time of 100 µs, and in Supplementary Fig. 24, the images were acquired with a 

considerably 1000× longer exposure time of 100 ms. This resulted in different signals collected and 

signal-to-noise ratios (SNRs), thus leading to variations in image quality. (3) The cells were prepared 

using different staining methods, i.e., GFP/Tracker-staining and immuno-staining, for Fig. 3 and 

Supplementary Fig. 24, respectively (see Supplementary Note 13), which resulted in relatively higher 

SNR in Supplementary Fig. 24. (4) The spherical aberrations of flowing cells degrade the overall 

resolution and image quality in Fig. 3, considering the refractive index mismatch for the high-NA 
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objective lens. Here, we performed numerical simulations to show the influence of aberration on the LFC 

results (Supplementary Fig. 25). As seen, the simulated Siemens stars at different axial positions 

(Supplementary Fig. 25a) were convolved with PSFs taken at the surface of the substrate (approximating 

the condition in Supplementary Fig. 24) and at 10 μm deep into the solution (approximating the condition 

in Fig. 3), respectively, to generate synthesized light-field images (left columns in Supplementary Fig. 

25b and c). The synthesized light-field images were then deconvolved with the corresponding PSFs to 

get the reconstructed volumes. The image quality was quantitatively measured with the reconstructed 

depth layers at the corresponding axial positions (middle and right columns in Supplementary Fig. 25b 

and c). At each axial position, the intensity profiles along the dashed circles of the same size in both 

conditions were plotted for comparison. As shown in Supplementary Fig. 25d, the intensity profiles of 

the sample at the surface shows higher contrast and better resolution compared to the sample 10 µm deep 

in the solution. 
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Supplementary Figure 24: Mitochondria and peroxisome imaging using structured illumination microscopy. 3D-
rendered (leftmost column) and axial slices at various depths (other columns) of mitochondria (a, b, c) and 
peroxisome (d, e, f) of HeLa cells, taken by LFC (a, d), scanning wide-field microscopy (b, e), and 3D SIM (c, f). 
The boxed regions were zoomed in for better visualization and comparison. The green arrows mark the 
corresponding structures displayed using each imaging method. The 3D structural similarity index measure 
(SSIM) values were shown in the wide-field and SIM images. Scale bars: 10 µm. 
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Supplementary Figure 25: Simulation of Siemens stars at different axial locations in the solution. (a) Illustrations 
of Siemens star patterns at various axial positions away from the focal plane. (b, c) Raw light-field images (left 
columns), the corresponding z layers of 3D reconstructions (middle columns) with zoomed-in region within the 
solid-line circles (right columns) of the Siemens stars at the surface of the substrate (b) and 10 µm deep into the 
solution (c). (d) Intensity profiles along the dashed circles in (b) and (c). Scale bars: 10 µm (b, c, left and middle 
columns), 1 µm (b, c, right columns). Source data are provided as a Source Data file. 
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Supplementary Note 9. K-means clustering for blood cell morphology identification 

The k-means clustering algorithm is a machine-learning algorithm that aims to partition the observations 

into k clusters where the elements within the cluster have the smallest distance mean (i.e., nearest mean)23. 

Mathematically, the algorithm is to minimize: 

��‖𝑥𝑥 − 𝑋𝑋𝑖𝑖‖2
 

𝑥𝑥∈𝑋𝑋𝑖𝑖

𝑘𝑘

𝑖𝑖=1

(11) 

where 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑘𝑘} is the clustered dataset.  

 

Using MATLAB functions, we applied this algorithm to identify blood cells with different morphologies. 

First, we used the radii along three axes from the ellipsoid fitting results as clustering parameters and 

imperially set the cluster number to be 3. The results identified three types of cells: (A) adhered cell pairs, 

(B) single spherical cells, and (C) single non-spherical cells. Then we used the eccentricity values along 

two of the three axes as the clustering parameters to further identify more morphological feathers. We 

imperially set the cluster number to 2 to further cluster the results from group (A) and group (B). The 

results showed that for group (A), the algorithm further identified (A1) smaller spherical cells and (A2) 

larger spherical cells; for group (B), the algorithm further identified (B1) elliptical cells and helmet-shape 

cells and (B2) stick-like cells and cell fragments. Hence, the entire clustering process identified 5 types 

of morphologies based on the 3D volumes of the cells. 
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Supplementary Note 10. Comparison with structured illumination microscopy for Jurkat cells 

We performed imaging of staurosporine (STS) treated Jurkat cells across multiple platforms. We utilized 

light-field microscopy (Nikon Eclipse Ti2U; OBJ: 100×/1.45NA), wide-field microscopy (the same 

Nikon microscope as for LFC), and commercial 3D-SIM microscopy (Zeiss LSM 780 with Zeiss ELYRA 

PS.1; OBJ: 100×/1.46NA, images acquired and processed with Zeiss ZEN 2012 SP5). Also, using a lab-

derived protocol (Supplementary Note 13) treating the coverslip, we immobilized Jurkat cells to ensure 

the quantitative comparison of the same cells across multiple modalities. In Supplementary Fig. 26, we 

measured 3D-SSIMs of mitochondria at 0.87 (0 min after STS treatment), 0.87 (30 min), and 0.89 (120 

min) between the wide-field and light-field results. Similar high consistency is also verified between the 

SIM and light-field results, with 3D-SSIMs of 0.89 (0 min), 0.94 (30 min), and 0.97 (120 min). Consistent 

measurement (0.80, 0.81, and 0.77 for respective treatment times) was obtained for nucleus imaging 

using light-field and wide-field microscopy. 

 

Supplementary Figure 26: Mitochondria and nucleus imaging using structured illumination microscopy. 3D 
rendering of light-field reconstructions (first and fourth column), wide-field z-scanning stacks (second and fifth 
column) and SIM z-scanning stacks (third column) of Jurkat cells with staurosporine (STS) treatment. (a, c, e) 
Jurkat cell mitochondria with 0-min (a), 30-min (c) and 120-min (e) STS treatment. (b, d, f) Jurkat cell nuclei with 
0-min (a), 30-min (c) and 120-min (e) STS treatment. 
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Supplementary Note 11. Comparison with the state-of-the-art IFC techniques 

Supplementary Table 2. Comparisons with the state-of-the-art fluorescent IFC techniques 

References 3D Objective (M, 
NA) 

Resolution 
(nm) 

Throughput 
(objects/sec) Imaging Instrument 

This work  ̶  LFC yes 100×, 1.45 400-600 5,000-10,000 Epi-fluorescence with MLA 
Quint, et al., 201724 yes 60×, 1.2 200-300 75-150 Tilted stage, tomography 
Fan, et al., 202125 yes 40×, 0.8 1,000 <10 Lattice light-sheet microscopy 

Ugawa, et al., 
202226 yes 20×, 0.75 880 1200 Strobe light-sheet imaging 

Kleiber, et al., 
202027 yes 20×, 0.42 700-900 350 3D focusing tomography 

Kumar, et al., 
202228 

(VFC/iLIFE) 
yes 20×, 0.4 1,786 10-20 Light-sheet microscopy 

Han, et al., 201929 yes 10×, 0.28 2,000 500 Scanning light-sheet 
illumination 

Zhang, et al., 202230 yes 10×, 0.28 10,000 500-1,000 Scanning light-sheet 
illumination 

Miura, et al., 201831 yes 20×, 0.75 1,000 10,000 Light-sheet microscopy 
Nitta, et al., 201832 

(IACS) no 60×, 1.4 2,000 100 FDM confocal microscopy 

Holzner, et al., 
202133 no 

40×, 0.75 
20×, 0.5 
10×, 0.5 

500-1,000 
 

5,350 (40×) 
10,900 (20×) 
20,500 (15×) 
61,000 (10×) 

Light-sheet illumination 

Mikami, et al., 
202011 

(VIFFI) 
no 20×, 0.75 700 10,000 Polygon scanner  

light-sheet illumination 

Isozaki, et al., 
202034 

(iIACS2.0) 
no 20×, 0.75 700 2,000 Polygon scanner 

Munoz, et al., 
201835 no 20×, 0.45 700-900 7,000-23,000 Beat-frequency multiplexing 

ThermoFisher 
Scientific 

(Attune CytPix) 
no 20×, 0.45 800 6,000 Commercial system 

Rane, et al., 20179 no 10×, 0.5 20×, 
0.45 700-800 50,000-100,000 Multichannel chip  

Gong, et al., 202336 no 20×, 0.4 390 10,000 Anti-diffraction  
light sheet illumination 

Ota, et al., 201837 
(FiCS) no 20× 1,000 10,000 

Static random light structure 
Structured 

illumination/detection 
Schraivogel, et al., 

202238 
(ICS) 

no 10×, 0.3 1,550  15,000 Radiofrequency–tagged 
emission (FIRE) 

George, et al., 
200439 
(Amnis 

ImageStream) 

no --, 0.75 500-1,000  1,200 (60×) 
2,000 (40×) Commercial system 

Goda, et al., 201240 
(STEAM) no --, 0.65 1,400 100,000 Serial time-encoded amplified 

microscopy  
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We have generated a coordinates system of the spatial resolution, the throughput, and their 3D imaging 

capability, based on Supplementary Table 2 (Supplementary Fig. 27). 

 

Supplementary Figure 27: State-of-the-art IFC techniques. Red diamond: LFC; Round black dots, 3D IFC 
techniques. Gray crosses, 2D IFC techniques. Miura, 2018 showed 2D results and claimed the system is capable 
of 3D imaging. 
 

It is also noteworthy that the light-field cytometer is implemented seamlessly with standard epi-

fluorescence microscopy and microfluidic systems. This quality facilitates a platform of ready and high 

accessibility and relevance for broad existing IFC studies. For example, in this work, we have 

demonstrated various applications such as particle sorting, cell morphology screening, cell heterogeneity, 

chemical-induced cell apoptosis, and lipid nanoparticle-enclosed mRNA delivery. The resolution (400-

600 nm) has been validated by visualizing subcellular structures such as nuclei, mitochondria, 

peroxisomes, cytoplasm, and membranes. These demonstrations will contrast existing 3D IFC 

applications of similar subcellular entities, typically relying on a spatial resolution of 800-1800 nm25, 28, 
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31. Furthermore, LFC will enable the visualization of many other subcellular features that require IFC, 

such as spot counting for nanoparticle uptake in cells, calcium location detection in T cells, the activation 

of eosinophils, blood cell classification, and micronucleus phenotypes identification in cells exposed to 

a genotoxic compound41.  
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Supplementary Note 12. System configurations for image processing 

We used a desktop workstation (Intel Xeon W-2145 3.70 GHz Processor, 64.0 GB RAM, Nvidia GeForce 

GTX 1080 GPU, 2560 NVIDIA CUDA Cores, 8 GB GPU memory, and Samsung Sm961 Series 1 TB 

Solid State Drive) to perform image acquisition. The data processing and analyses were conducted with 

another desktop workstation with an Intel Xeon E5-2620 v4 2.10 × GHz Processor, 128 GB RAM, 

NVIDIA TITAN RTX GPU, 4608 NVIDIA CUDA cores, and 24 GB GPU memory. The numerical PSFs 

were generated using Python 3.5+ and CUDA C++ (with CUDA 10.1+). We used MATLAB R2021+ 

with a CUDA-enabled GPU computing kit to perform hybrid PSF implementation and 3D reconstruction. 

We fully utilized the matrix operations in MATLAB, which helped significantly reduce the use of loops. 

GPU computing allows the computation to be conducted parallelly.  We reconstructed volumes with 101 

transverse layers, and the computing time for each transverse plane within a single iteration is less than 

2 ms. As a result, we can complete a single iteration of all the layers in less than 0.2 sec. For a 50-iteration 

3D reconstruction, the total time consumed (excluding file reading and writing to disk) is about 8 seconds. 

The microfluidics system was controlled by Elveflow ESI software, and the imaging data was recorded 

by HCImage. The NI-DAQ-based stroboscopic illumination was controlled by a self-written LabVIEW 

program. The simulated PSF was generated by a self-written Python program integrated with CUDA 

C++ and OpenCL. We used MATLAB R2022b, Python 3.9+ (including PyVista42 for 3D rendering), 

Origin 2023, and Fiji ImageJ (including the ClearVolume43 for 3D rendering and 3D ImageJ suite44 for 

3D segmentation) for further data processing and visualization.  
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Supplementary Note 13. Additional sample preparation 

 
13.1. Mouse platelet acquisition and staining 

C57BL/6 mice (N = 2 mice/group) were anesthetized with ketamine and xylazine (doses of 150 mg/kg 

and 15 mg/kg, respectively). 1 mL of blood was drawn from the vena cava, and the animal was sacrificed 

upon completion of the procedure. Murine blood was withdrawn into a 1.0 mL syringe containing 100 

μL of Clexane (final concentration 40 U/mL). Blood was transferred to an Eppendorf tube and topped 

with an appropriate amount of 7X acid citrate dextrose (ACD, Sodium Citrate (2H2O) 2.5 g /100 mL 85 

mM, Citric Acid (Anhydrous) 1.4 g/100 mL 72.9 mM, D-Glucose 1.5 g/100 mL 110 mM, Theophylline* 

70mM) buffer for a final concentration of 1X. After inversion, the blood was placed in a 37°C oven, and 

blood and all buffers were kept at 37 °C for the remainder of the process. The blood was transferred to a 

PRP separation tube and centrifuged at 250× g for 2.5 minutes. The platelet-rich plasma (PRP) was 

removed, and enough platelet washing buffer (PWB, K2HPO4 43 mM, Na2HPO4 43 mM, NaH2PO4 243 

mM, NaCl 1.13 M, D-Glucose 55 mM, Theophylline* 100 mM) was added with 20 U/mL Clexane, 0.01 

U/mL apyrase, and 5 mg/mL bovine serum albumin (BSA) for a final volume of 1 mL. The PRP was 

centrifuged at 2000g for 1 minute, the supernatant was discarded, and the pellet was resuspended with 

PWB containing 20 U/mL Clexane for 1 mL total volume. The platelets were centrifuged again in 1950× 

g for 1 minute, the supernatant discarded, and the pellet was resuspended with Tyrode’s buffer (NaHCO3 

120 mM, HEPES 100 mM, NaCl 1.37 M. KCl 270 mM, D-Glucose 550 mM) containing 0.02 U/mL 

apyrase. The platelets then rested at 37 °C for 30 minutes before use.  

On the day of imaging, 15 μL WGA was added to the platelet vial for 25 min incubation at 37 ℃. Then 

the solution was washed once with 1.5 mL PBS in the centrifuge with 600× g for 8 min. 1.5 mL 4% PFA 

was added to perform fixation at room temperature for 12 min. After the fixation, the solution was washed 

again with 1.5 mL PBS in the centrifuge with 600 × g for 8 min. 3 mL PBS with 5 mM EDTA was added 
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to the solution before imaging. 

 

13.2. Immunostaining for HeLa peroxisomes and mitochondria 

Fixed peroxisome and mitochondria imaging was performed with HeLa cells. The cells were cultured in 

Dulbecco’s modified Eagle medium with 10% fetal bovine serum and 1% PenStrep at 37 °C and in a 5% 

CO2 condition. Once reached ~80% confluency, The cells were passaged and cultured in an 8-well glass-

bottom µ-Slide with 200 µL of growth medium in each well. 

One day prior to the day of imaging, each well was first washed with 500 µL PBS once. Then, each well 

was fix with 200 µL 3.7% PFA in PBS at 37°C for 12 minutes. Extra aldehyde groups were reduced with 

200 µL of 0.1% sodium borohydride, followed by 3 times PBS washing, 5 minutes each. After that, the 

cells were permeabilized with 0.1% Triton X-100 in PBS for 10 minutes and blocked with 4% bovine 

serum albumin (BSA) in PBS for 45 minutes. The cells were labeled with TOMM20 Polyclonal Antibody 

at 2 µg/mL in 0.1% BSA, incubated at 4°C overnight. 

On the next day, the cells were then labeled with PMP70 Polyclonal Antibody at 10 µg/mL in 0.1% BSA 

for 1 hour at room temperature, with light avoided, by simply changing the medium. Next, each well was 

washed 5 times with 200 µL washing buffer (0.2% BSA with 0.05% Triton X-100 in PBS) for 10 minutes 

per wash at room temperature. After washing, 150 µL of anti-rabbit and anti-mouse secondary antibody 

dilutions (final concentration 2 µg/mL; final concentration 2 µg/mL) in blocking buffer (3% BSA with 

0.2% Triton X-100 in PBS) was added to each well and incubated for 30 minutes at room temperature, 

light avoided. Then, each well was washed 3 times with 200 µL washing buffer for 10 minutes per wash 

at room temperature, followed by one time washing in 500 µL PBS for 5 minutes. For better fluorescence 

imaging, the cells were post-fixed 200 µL 3.7% PFA in PBS at room temperature for 10 minutes, 

followed by 3 times washing in 500 µL PBS for 5 minutes per wash. Finally, cells were stored in 500 µL 

PBS for imaging purposes. 
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13.3. Floating Jurkat cell mounting onto the imaging dish 

Since Jurkat T cells are floating cells, stacking z-depth scanning requires the cells to be mounted firmly. 

A protocol introduced previously was generally followed and modified to our needs45. Briefly, an 8-well 

glass-bottom µ-Slide was first incubated with 0.1% poly-L-lysine in each well for 10 minutes. Then, the 

poly-L-lysine was washed off with 70% ethanol, and the coverslips were left to dry. Then, CD3 

antibodies (Hit-3a, 10 μg/mL) were added to each well and incubated for 2 hours at 37 °C. Excess anti-

CD3 was removed by washing with L-15 imaging media immediately before cell plating. Jurkat T cells 

were centrifuged (250 g) and resuspended in L-15 medium and then plated in each well with 200 µL of 

cell solution (~1×105 cells). The cells were allowed to settle for 10 minutes. The STS treatment is the 

same as mentioned in Methods. After treatment, the cells were rinsed with 500 µL PBS three times at 

room temperature, covered with 100% methanol, cooled to −20 °C for 3 minutes, and, finally, washed 

three times with 500 µL PBS. 
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Supplementary Table 3. List of experimental samples and materials 

Name Brand Category ID 
200 nm fluorescent beads Thermo Fisher Scientific T7280 
1 µm fluorescent beads Thermo Fisher Scientific T7282 
4 µm fluorescent beads Thermo Fisher Scientific T7283 

2 µm fluorescent beads Bangs Laboratories, Inc. FSFR005, FCSY007, 
FSDG005 

Citrate buffer Teknova  
cKK-E12 Oragnix Inc. O-8744 

C18PEG2K Avanti Lipids  
18:1 (Δ9-Cis) PE (DOPE) Avanti Lipids  

Microfluidic device for LNP 
formulation Hamilton Company  

Dynamic light scattering Wyatt DynaPro Plate Reader II 
20 kD dialysis cassette Thermo Scientific  

NanoDrop Thermo Scientific  
1X TE Thermo Fisher Scientific  

Triton X-100 Fisher BioReagents BP151-100 
RiboGreen reagent Thermo Fisher Scientific  

Plate reader BioTek Synergy H4 Hybrid 
Ai14 mice Jackson Laboratories C57BL/6J (B6/000664) 

Wheat germ agglutinin (WGA) Thermo Fisher Scientific W11261 
phosphate-buffered saline (PBS) Corning 21-040-CM 

4% paraformaldehyde (PFA) solution Thermo Fisher Scientific FB002 

16% paraformaldehyde (PFA) Electron Microscopy 
Sciences 15710 

EDTA Thermo Fisher Scientific 15575038 
trypsin-EDTA Thermo Fisher Scientific 25200056 

HeLa cells Sigma-Aldrich 93021013 
Dulbecco’s modified Eagle medium 

(DMEM) Corning 10-013-CV 

10% fetal bovine serum (FBS) Corning 35-011-CV 
1% Penicillin-Streptomycin 

(PenStrep) Thermo Fisher Scientific 15140122 

CellLight Peroxisome-GFP Thermo Fisher Scientific C10604 
MitoTracker Deep Red FM Thermo Fisher Scientific M22426 

Hank’s balanced salt solution (HBSS) Corning 21-021-CV 
Hank’s balanced salt solution without 

Phenol Red Corning 21-023-CV 

CD8+ T cell isolation kit Stemcell Technologies  
Rosewell Park Memorial Institute 

medium (RPMI) Thermo Fisher Scientific 11875101 

FluoroDish World Precision Instruments FD35-100 
SYTO16 Thermo Fisher Scientific S7578 

1.2X HCS CellMask Deep Red Thermo Fisher Scientific H32721 
Dimethyl sulfoxide (DMSO) Thermo Fisher Scientific D12345 
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Density gradient centrifugation Lymphoprep 07801 
SepMate-15mL tube STEMCELL technologies 85415 

EasySep Human CD3 Positive 
Selection Kit II STEMCELL technologies 17851 

Dynabeads Human T-Activator Thermo Fisher Scientific 11131D 
X-vivo 10 Serum-free Hematopoietic 

Cell Medium Lonza 04-380Q 

5% Human AB serum Valley Biomedical HP1022 
10 mM N-Acetyl-L-cysteine Sigma Aldrich A9165 
55 µM 2-Mercaptoethanol Sigma Aldrich M3148-100ml 

50 µ/mL recombinant human IL-2 TECIN™ Teceleukin, NCI Bulk Ro 23-6019 
Collagenase Type I Sigma Aldrich  

Collagenase XI Sigma Aldrich  
Hyaluronidase Sigma Aldrich  

anti-CD31 BioLegend 390 
anti-CD45 BioLegend 30-F11 

TruStain FcX™ (anti-mouse 
CD16/32) Antibody BioLegend 93 

Jurkat T cells Sigma Aldrich 88042803 
Staurosporine (STS), 99+% Thermo Scientific J62837. #0 

SYTO deep red Thermo Fisher Scientific S34900 
8-well glass-bottom µ-Slide  ibidi USA 80827 

sodium borohydride Sigma-Aldrich 452882 
bovine serum albumin (BSA) Sigma-Aldrich A7906 

TOMM20 Polyclonal Antibody Thermo Fisher Scientific PA5-52843 
PMP70 Polyclonal Antibody Thermo Fisher Scientific MA5-31368 

anti-rabbit secondary antibody Thermo Fisher Scientific A32723 
anti-mouse secondary antibody Thermo Fisher Scientific A32733 

CD3 antibody (Hit-3a) Thermo Fisher Scientific 16-0039-81 
L-15 imaging media Thermo Fisher Scientific 21-083-027 
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Supplementary Table 4. List of LFC experimental configurations 

Imaging experiment targets Beads HeLa cells Blood 
cells Spleen cells Mouse T cells 

Acquisition configurations 

Microscope 
magnification 100× 

Excitation 
wavelength  

(nm) 
488,561,647 488 (peroxisome) 

647 (mitochondria) 488 488 488 (nucleus) 
647 (membrane) 

Emission 
wavelength  

(nm) 
512,599,680 512 (peroxisome 

680 (mitochondria) 512 512 512 (nucleus), 
680 (membrane) 

sCMOS  
FOV 

1024 pixels x 1024 pixels (72.5 μm x 72.5 μm) for HeLa cell imaging with continuous exposure 
1024 pixels x 900 pixels (72.5 μm x 70.1 μm) for other experiments 

sCMOS  
exposure time 5 ms 

sCMOS  
frame rate 200 Hz 

Effective exposure 
time (μs) 100  5000 (continuous) 

100 (stroboscopic) 100 100 100 

Flow rate (μL/min) 0.4-0.6 0.03 (continuous) 
0.4-0.6 (stroboscopic) 0.4-0.6 0.4-0.6 0.4-0.6 

Cell speed (mm/s) 3 0.11 (continuous) 
3 (stroboscopic) 3 3 3 

Processing configuration 

ACsN 
(Yes/No) Yes 

Deconvolution 
iterations 30 80 (continuous) 

50 (stroboscopic) 50 50 30 (nucleus)  
50 (membrane) 

Imaging experiment targets Human T cells/ 
HeLa cells 

Liver/lung 
endothelial and 

spleen cells 
Platelets Jurkat cells Jurkat cells 

(fast) 

Acquisition configurations 

Microscope 
magnification 100× 

Excitation 
wavelength  

(nm) 

488 (nucleus), 
647 (membrane) 

561 (tdTomato),  
647 (membrane) 488 488 (nucleus) 

647 (mitochondria) 488 

Emission 
wavelength  

(nm) 

512 (nucleus), 
680 (membrane) 

599 (tdTomato),  
680 (membrane) 512 512 (nucleus) 

680 (mitochondria) 512 

sCMOS  
FOV 1024 pixels x 900 pixels (72.5 μm x 70.1 μm) 

sCMOS  
exposure time 5 ms 

sCMOS  
frame rate 200 Hz 

Stroboscopic 
exposure time 

(μs) 
100 100 100 100 5 

Flow rate 
(μL/min) 0.4-0.6 0.4-0.6 0.4-0.6 0.4-0.6 10.87 

Cell speed (mm/s) 3 3 3 3 114.88 

Processing configuration 

ACsN 
(Yes/No) Yes 

Deconvolution 
iterations 

10 (nucleus),  
30 (membrane) 50 30 50 30 
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