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Supplementary Information
Large-scale cranial window for in vivo mouse brain imaging utilizing
fluoropolymer nanosheet and light-curable resin
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Supplementary Figure 1. Time and power programmable UV irradiation

system.

a. Photograph of the handmade programmable UV irradiator.

b.

Temperature changes over 30 seconds of continuous UV irradiation to fix the
light-curable resin. The blue bar indicates the irradiation ON periods.

Temperature changes due to intermittent UV irradiation. The light-curable
resin was irradiated at intervals of 2 seconds every 30 seconds for 3 minutes
and then for 10 seconds every 30 seconds for 7 minutes. Blue bars indicated

irradiation ON periods.
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Supplementary Figure 2. Evaluation of neuroinflammation caused by

a.

the NIRE method.

Immunostaining of astrocytes using anti-GFAP and nuclear counterstaining
in a brain slice obtained 4 weeks after craniectomy and covering with light-
curable resin only (without a PEO-CYTOP nanosheet). The white dashed line
indicates the region where the skull was removed and the resin was fixed.
Immunostaining of astrocytes using anti-GFAP and nuclear counterstaining
in a brain slice obtained 4 weeks after craniectomy and the NIRE method.
The white dashed line indicates the region where the skull was removed and
the resin was fixed.

Box plots showing the ratio of mean GFAP to Hoechst 33258 signal per
300 x 300 ym? in the ipsilateral region and contralateral region (15 ROIs from
three mice in each condition). ***p < 0.005 by Welch’s t-test with Bonferroni

correction.
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Supplementary Figure 3. Transmittance of the PEO-CYTOP
nanosheets and the light curable resin used in the NIRE method

a. Transmittance in the wavelength from 400 to 1000 nm of the CYTOP and
PEO-CYTOP nanosheet.

b. Transmittance in the wavelength from 400 to 1000 nm of the light curable

resin (NOA83H) used in the NIRE method.
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Supplementary Figure 4. Evaluation of spatial resolution through the

light curable resin using fluorescent beads in an agarose gel.
Schematic illustration of the measurement for evaluation of the spatial
resolution through the light-curable resin.

Fluorescence images of 200-nm yellow-green beads at a depth of 200 um
acquired through the light-curable resin. Top image: xy plane. Bottom image:
Xz plane.

Lateral normalized fluorescence intensity of 200-nm yellow-green beads at a
depth of 200 um acquired through the light-curable resin.

Axial normalized fluorescence intensity of 200-nm yellow-green beads at a
depth of 200 um acquired through the light-curable resin.

Fluorescence images of 200-nm yellow-green beads at a depth of 500 um
acquired through the light-curable resin. Top image: xy plane. Bottom image:
Xz plane.

Lateral normalized fluorescence intensity of 200-nm yellow-green beads at a
depth of 500 um acquired through the light-curable resin.

Axial normalized fluorescence intensity of 200-nm yellow-green beads at a
depth of 500 pum acquired through the light-curable resin.

Fluorescence images of 200-nm yellow-green beads at a depth of 2000 um
acquired through the light-curable resin. Top image: xy plane. Bottom image:
xz plane.

Lateral normalized fluorescence intensity of 200-nm yellow-green beads at a

depth of 1000 um obtained through the light-curable resin.
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Axial normalized fluorescence intensity of 200-nm yellow-green beads at a
depth of 1000 um obtained through the light-curable resin.

Average lateral FWHMs measured from the intensity profiles of bead images
at depths of 200, 500, and 1000 pm; ***p < 0.005 by Welch’s t-test with
Bonferroni correction. Error bars represent standard error of the mean.
Averaged axial FWHMs measured from the intensity profiles of bead images
at depths of 200, 500, and 1000 pm; ***p < 0.005 by Welch’s t-test with

Bonferroni correction. Error bars represent standard error of the mean.
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Supplementary Figure 5. Evaluation of spatial resolution using

fluorescent beads in an agarose gel without the light curable resin.
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Schematic illustration of the measurement for evaluation of the spatial
resolution without any sealing materials.

Fluorescence images of 200-nm yellow-green beads at a depth of 200 um
acquired without any sealing materials. Top image: xy plane. Bottom image:
Xz plane.

Lateral normalized fluorescence intensity of 200-nm yellow-green beads at a
depth of 200 pum acquired through a PEO-CYTOP nanosheet and light-
curable resin.

Axial normalized fluorescence intensity of 200-nm yellow-green beads at a
depth of 200 pum acquired through a PEO-CYTOP nanosheet and light-
curable resin.

Average lateral FWHMs measured from the intensity profiles of bead images
at depths of 200 um without any sealing materials and 200, 500, and 1000
um of Supplementary Fig.4; ***p < 0.005 by Welch'’s t-test with Bonferroni
correction. Error bars represent standard error of the mean.

Average axial FWHMs measured from the intensity profiles of bead images
at depths of 200 um without any sealing materials and 200, 500, and 1000
pm of Supplementary Fig.4; ***p < 0.005 by Welch'’s t-test with Bonferroni

correction. Error bars represent standard error of the mean.
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Supplementary Figure 6. Evaluation of motion artifacts in an awake

mouse with cranial windows produced using the NIRE method.

a. Example two-photon image of SR101-labeled astrocytes acquired through a
cranial window consisting of a PEO-CYTOP nanosheet. The directions are
indicated as anterior (A), posterior (P), medial (M), and lateral (L).

b. The cranial window consisting of a PEO-CYTOP nanosheet on primary visual
cortex (V1) of an adult wild-type mouse (same mouse as in a).

c. Time series of a correlation coefficient calculated from each frame in the
anesthetized condition.

d. Time series of a correlation coefficient calculated from each frame in the
awake condition.

e. Example two-photon image of SR101-labeled astrocytes obtained through a

cranial window using the NIRE method (same mouse as in a).
A cranial window over V1 area produced using the NIRE method (same
mouse as in a).
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g.

h.

J-

K.

m.

Time series of a correlation coefficient calculated from each frame in the
anesthetized condition.

Time series of a correlation coefficient calculated from each frame in the
awake condition.

Example two-photon image of SR101-labeled astrocytes obtained through a
cranial window using the glass coverslip.

A cranial window using a glass coverslip with a diameter of 4.2 mm over V1
area (same mouse as in i).

Time series of a correlation coefficient calculated from each frame in the
anesthetized condition.

Time series of a correlation coefficient calculated from each frame in the
awake condition.

Mean of correlation coefficients for each sealing material under anesthesia;
***pn < 0.005 by Welch'’s t-test with Bonferroni correction.

Mean of correlation coefficients for each sealing material in the awake state;

***n < 0.005 by Welch'’s t-test with Bonferroni correction.

Nikon Apo LWD 25x/1.10 NA water-immersion objective lens was used in (a), (e),

().
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NIRE method

Immediately after surgery 35d after surgery

166d after surgery

Glass coverslip
30d after surgery 58d after surgery
WW’. %

1mm

168

169 Supplementary Figure 7. Time-lapse photographs of the cranial
170 window using the NIRE method or a glass coverslip.

171 a. Time-lapse photographs of the large cranial window in Figure 3-5 up to 166
172 days after surgery. The directions are indicated as anterior (A), and posterior
173 (P).

174 b. Time-lapse photographs of the large cranial window in Figure 6 up to 181
175 days after surgery. The directions are indicated as anterior (A), and posterior

176 (P).
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C.

Time-lapse photographs of the small cranial window using a glass coverslip
with 4.2 mm diameter up to 58 days after surgery. The directions are

indicated as anterior (A), and posterior (P).
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Supplementary Figure 8. Evaluation of fluorescent intensities in

different depths through cranial windows produced using the NIRE
method.

Time-lapse fluorescent images of the neurons in the cerebral cortex at the
depth of 100 ym from the same mouse as in Fig. 6. The white dotted lines
are indicated for the intensity profiles in (e). The directions are indicated as
anterior (A), posterior (P), medial (M), and lateral (L).

Time-lapse fluorescent images of the neurons in the cerebral cortex at the
depth of 150 ym from the same mouse as in Fig. 6. The white dotted lines
are indicated for the intensity profiles in (f).

Time-lapse fluorescent images of the neurons in the cerebral cortex at the
depth of 400 ym from the same mouse as in Fig. 6. The white dotted lines
are indicated for the intensity profiles in (g).

Time-lapse fluorescent images of the neurons in the cerebellum at the depth
of 200 um from the same mouse as in Fig. 6. The white dotted lines are
indicated for the intensity profiles in (h).

Fluorescence intensity profiles across the dendrites in the cerebral cortex
indicated with lines in (a).

Fluorescence intensity profiles across the soma of the neuron in the cerebral
cortex indicated with lines in (b).

Fluorescence intensity profiles across the soma of the neuron in the cerebral
cortex indicated with lines in (c).

Fluorescence intensity profiles across the soma of the neuron in the

cerebellum indicated with lines in (d).
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206  Nikon Apo LWD 25x/1.10 NA water-immersion objective lens was used in (a)- (d).
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Supplementary Figure 9. Evaluation of the spatial resolution of the

neurons through the large cranial window from the cerebral cortex to
the cerebellum.

Fluorescence image indicating each region of the target for the FWHM
measurements using the same mouse as in Fig. 6. The directions are
indicated as anterior (A) and posterior (P).

Fluorescence images of single neurons at the center of the large cranial
window produced using the NIRE method indicated in (a). Top image: xy
plane. Bottom image: xz plane.

Lateral normalized fluorescence intensity of single neurons at the center of
the large cranial window produced using the NIRE method.

Axial normalized fluorescence intensity of single neurons at the center of the
large cranial window produced using the NIRE method.

Fluorescence images of single neurons at the middle of the large cranial
window produced using the NIRE method indicated in (a). Top image: xy
plane. Bottom image: xz plane.

Lateral normalized fluorescence intensity of single neurons at the middle of
the large cranial window produced using the NIRE method.

Axial normalized fluorescence intensity of single neurons at the middle of the
large cranial window produced using the NIRE method.

Fluorescence images of single neurons at the edge of the large cranial
window produced using the NIRE method indicated in (a). Top image: xy

plane. Bottom image: xz plane.
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244

Lateral normalized fluorescence intensity of single neurons at the edge of the
large cranial window produced using the NIRE method.

Axial normalized fluorescence intensity of single neurons at the edge of the
large cranial window produced using the NIRE method.

Average lateral FWHMs measured from the intensity profiles of single
neurons at the center, middle, and edge of the cranial window; ***p < 0.005
by Welch’s t-test with Bonferroni correction. Error bars represent standard
error of the mean.

Average axial FWHMs measured from the intensity profiles of single neurons
at the center, middle, and edge of the cranial window; *p < 0.05, ***p < 0.005
by Welch’s t-test with Bonferroni correction. Error bars represent standard

error of the mean.

Olympus XLFLUOR4X/340 4x/0.28 NA air-immersion objective lens was used
in (a).
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Laser Imaging Frame S U] Fluorescen
Fig. / Supplementary Fig. power (mW) |depth (um) per wavelength Objective lens t probe
seconds (nm)
' Olympus XLFLUOR4X/340 4x
Fig. 2b 15 0-600 0.5 960 10.28 NA EYFP
Fig. 2c-f 9-66 100-800 0.5 960 Nikon CFI75 LWD 25x/0.80 NA EYFP
. Olympus XLFLUOR4X/340 4x .
Fig. 4 71 150 3.9 950 /0.28 NA jGCaMP7f
Fig.5 33 150 7.7 950 Nikon Apo LWD 25x/1.10 NA |jGCaMP7f
Fig. 6b, Olympus XLFLUOR4X/340 4x
Supplementary Fig. 9 el Ly = el /0.28 NA EYFP
Fig. 6¢,d, .
! 7-54 100-400 0.5 960 Nikon Apo LWD 25x/1.10 NA EYFP
Supplementary Fig. 8a-c
Fig. 6e,f, .
) 70 200 0.5 960 Nikon Apo LWD 25%/1.10 NA |EYFP
Supplementary Fig. 8d
Supplementary Fig. 6 20 200 7.7 960 Nikon Apo LWD 25x/1.10 NA |SR101
245

246  Supplementary Table 1: The parameters used in each figure to perform in vivo
247  imaging.
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