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S1 Model definition

In this section, we derive the simplified model of the host bacterial cell, depicted in

Figure 2 and defined by Equations (15)-(20) in the main text’s Methods section. To this

end, we first define a coarse-grained mechanistic cell model that explicitly considers the

competitive binding of ribosomes by different mRNAs present in the cell, then reduce the

number of considered variables by using the Quasi-Steady-State (QSS) approximation.

In order to further simplify the model, we then show how it is possible to omit the

Ordinary Differential Equations (ODEs) describing the expression of one of the gene

classes into which we partition the bacterium’s genome. Finally, we demonstrate how

our framework can be extended to capture the cell’s reaction to changes in the culture

medium’s, comparing our model’s predictions with experimental data.

S1.1 Unsimplified mechanistic cell model with flux- parity reg-

ulation

Our model does not take into account transcriptional resource couplings, as they are be-

lieved to have a negligible effect on gene expression [1]. Hence, we focus on the competitive

binding of a finite pool of ribosomes by mRNAs. We consider three types of native genes

in the bacterial cell: metabolic (a), ribosomal (r), and housekeeping (q). For the gene

i ∈ {q, a, r}, mi signifies the concentration of its free transcript, bi the concentration of

its mRNA-ribosome complex, and pi the concentration of the corresponding protein (the

number of amino acid residues in one molecule of protein pi is denoted as ni). However,

since ribosomes can be either free or bound by an mRNA, instead of modeling the overall

concentration of ribosomal protein pr, we adopt a more specific approach for them, de-

noting the concentration of non-translating ribosomes by r. Therefore, the total ribosome

concentration can be calculated from the modeled variables as

R = r +
∑

j∈{q,a,r}

bj (S1)

Additionally, we look at the pool of protein precursors – aminoacylated (charged)

tRNA molecules tc – as well as uncharged tRNAs tu. The conversion of tu into tc is

catalyzed by the metabolic proteins pa. The set of all reactions that we model is therefore
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as follows:

• Transcription: ∅ Fiαiciλ−−−−→ mi for i ∈ {q, a, r}

• mRNA degradation and dilution: mi
βi+λ−−−→ ∅ for i ∈ {q, a, r}

• mRNA-ribosome binding: mi + r
k−i↼−−⇁
k+i

bi for i ∈ {q, a, r}

• mRNA-ribosome complex dilution: bi
λ−→ ∅ for i ∈ {q, a, r}

• Translation: bi + ni × tc
ϵ/ni−−→ mi + r + pi + ni × tu for i ∈ {q, a}

but denoted as br + nr × tc
ϵ/nr−−→ mr + 2× r + nr × tu for ribosomal genes

• Protein dilution: pi
λ−→ ∅ for i ∈ {q, a}

but denoted as r
λ−→ ∅ for ribosomes

• tRNA synthesis: ∅ ψ−→ tu

• tRNA charging (aminoacylation): tu
νpa−−→ tc

• tRNA dilution: tu
λ−→ ∅ and tc

λ−→ ∅

These reactions give rise to the following ODE model for the dynamics of the species’

concentrations:

ṁi = Ficiαiλ(ϵ, B)− (βi + λ(ϵ, B))mi − k+i mir + k−i bi +
ϵ(tc)

ni
bi for i ∈ {q, a, r} (S2)

ḃi = k+i mir − k−i bi −
ϵ(tc)

ni
bi − λ(ϵ, B) · bi for i ∈ {q, a, r} (S3)

ṗi =
ϵ(tc)

ni
bi − λ(ϵ, B) · pi for i ∈ {q, a} (S4)

ṙ =
ϵ(tc)

nr
br − λ(ϵ, B) · r +

∑
j∈{q,a,r}

(
(
ϵ(tc)

nj
+ k−j )bj − k+j mjr

)
(S5)

ṫc = ν(tu, σ) · pa − ϵ(tc) ·B − λ(ϵ, B) · tc (S6)

ṫu = ψ(T ) · λ(ϵ, B)− ν(tu, σ) · pa + ϵ(tc) ·B − λ(ϵ, B) · tu (S7)

(Model I)

Supplementary Table S1 displays the values, as well as the physiological meaning, of

all the parameters used in (Model I) and defining the rates of the reactions listed above.

The formulae for the regulation functions and reaction rates, as well as their significance,
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are given in Supplementary Table S2. Notably, the expression for λ enforces the constant

cell mass trade-off identified by Weisse et al. [2]. Since the total mass of protein in the

cell is by definition M = nrR +
∑

j∈{q,a} njpj, the mass of protein in the cell is always

constant because:

Ṁ = nrṘ +
∑

j∈{q,a}

nj ṗj ⇔ Ṁ = nr
∑

j∈{q,a}

ḃj + nrṙ +
∑

j∈{q,a}

nj ṗj ⇔

⇔ Ṁ =
∑

j∈{q,a,r}

nj

(
ϵ

nj
bj

)
− λ

nrR +
∑

j∈{q,a}

njpj

⇔

⇔ Ṁ = ϵB − λM ⇔

⇔ Ṁ = ϵB − ϵB

M
·M = 0 (S8)
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Supplementary Table S1: Parameters appearing in the cell model ODEs and
Supplementary Table S2.

Param. Description Value Units∗ Source

M Total cell mass (in amino acids) 1.19 · 109 aa# [3]
σ Extracellular nutrient quality From 0 to 1 None –

ϕq Housekeeping prot. mass fraction§ 0.59 None [4]

Reaction rates
ϵmax Max. translation elongation rate 72,000 aa#/h [5]
νmax Max. tRNA charging rate 4, 046.9 h−1 Fitted
ψmax Max. tRNA synthesis per unit growth

rate
4.32 · 105 nM [6]ℶ

Kϵ Michaelis constant for translation
elongation

1, 239.7 nM Fitted

Kν Michaelis constant for tRNA charging 1, 239.7 nM Fitted
τ Michaelis constant for ppGpp

signaling (determines ψ and Fr)
1 None [6]

Gene expression
ci Concentration of gene i DNA‡ 1 nM Convention
αq Promoter strengthℵ for gene q Unspecified§ None –
αa Promoter strengthℵ for gene a 3.945 · 105 None Fitted
αr Promoter strengthℵ for gene r 4.070 · 105 None Fitted
βi mRNA degradation rate‡ 6 h−1 [2]
k+i mRNA-ribosome binding rate‡ 60 1

nM ·h [2]
k−i mRNA-ribosome dissociation rate‡ 60 h−1 [2]
nq Number of amino acids in protein pq 300 aa#/nM [2]
na Number of amino acids in protein pa 300 aa#/nM [2]
nr Number of amino acids in rib. protein 7,459 aa#/nM [2]
∗E. coli volume is ≈ 10−18 m3, so 1 nM is roughly equivalent to 1 molecule/cell [7].
#Amino acid residues. ‡ Identical across all native genes i ∈ {q, a, r}.
§The final simplified (Model III) avoids explicitly modeling housekeeping genes.
ℵPromoter strength measured as the maximum mRNA synthesis rate per gene copy di-
vided by the cell growth rate at time of measurement.
ℶIn [6], maximum tRNA synthesis rates of 1.08 ·106 nM/h are said to be achieved in very
rich media, in which the growth rate is equal to ≈ 2.5 h−1, hence us dividing the former
value by the latter.
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Supplementary Table S2: Functions and notations appearing in the host cell
model ODEs.

Func./Not. Description Formula Units∗

B Number of translating
ribosomes

∑
j∈{q,a,r}

bj nM

T Proxy for ppGpp concentration
(inversely proportional to the
alarmone’s level)

tc/tu None

Reaction rates
ϵ Translation elongation rate ϵmax · tc

tc+Kϵ
aa#/h

λ Growth/dilution rate ϵB
M

h−1

ψ tRNA synthesis rate ψmax · T
T+τ

nM/h

ν tRNA charging rate νmax · σ · tu

tu+Kν
h−1

Transcription regulation functions
Fq Transcription regulation for

housekeeping genes
Unspecified§ None

Fa Transcription regulation for
metabolic genes (constitutive)

1 None

Fr Transcription regulation for
ribosomal genes (via ppGpp)

T
T + τ None

∗E. coli volume is ≈ 10−18 m3, so 1 nM is roughly equivalent to 1 molecule/cell [7].
#Amino acid residues.
§Defining Fq is not necessary because the final, simplified (Model III) avoids explicitly
modeling housekeeping gene expression, as shown in Supplementary Note S1.5.
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S1.2 The quasi-steady-state approximation

We now apply the QSS approximation to (Model I) by appreciating that mRNA-ribosome

binding and unbinding occur on a much faster timescale than other processes in the cell

[7]. Therefore, the mRNA-ribosome complex concentrations can be assumed to be in

quasi-steady-state. Hence, for all i ∈ {q, a, r} we have:

ḃi = 0 ⇔ k+i mir − k−i bi −
ϵ(tc)

ni
bi − λ(ϵ, B) · bi = 0 ⇔

⇔ bi = mir ·
(
k−i + ϵ(tc)/ni + λ(ϵ, B)

k+i

)−1

=
mi

ki(ϵ, B)
· r (S9)

S1.3 Neglecting the mRNA-Ribosome complex dilution

The retrieval of the mRNA-ribosome complexes’ concentrations using Equation (S9) is

nevertheless hindered by the dilution term λ(ϵ, B) in ki(ϵ, B), which itself depends on the

total concentration of translating ribosomes. Instead of the full expression for ki(ϵ, B),

it would therefore be desirable to use an approximation given by Equation (S10), which

neglects dilution due to cell growth and thus always slightly underestimates ki.

ki(ϵ, B) ≈ ki(ϵ) =
k−i + ϵ/ni

k+i
(S10)

Let us now show that in all realistic scenarios this approximation is reasonably close

to the actual value of ki(ϵ, B). First, we substitute the formula for λ from Supplementary

Table S2 into the full expression for ki(ϵ, B) from Equation (S9), obtaining:

ki(ϵ, B) =
k−i + ϵ(tc)

ni
+ λ(ϵ, B)

k+i
=
k−i + ϵ(tc)

ni
+ ϵB

M

k+i
=
k−i
k+i

+
ϵ

k+i

(
1

ni
+
B

M

)
(S11)

The effect of growth on this value is thus restricted to the B/M component of the ϵ-

dependent term of the expression. Now, let us consider the mass fraction of all ribosomal

proteins in the cell ϕr = nrR
M

. In the extensive experimental studies of E. coli growth

conducted up to this point, it has not been found to exceed 0.3 [6]. Therefore, noticing

that B ≤ R by definition, for all realistic purposes we can impose a cap on B/M:

B

M
≤ R

M
=
ϕr
nr

≤ 0.3

nr
(S12)
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The metabolic and housekeeping proteins are assumed to span nq = na = 300 amino acids,

while a single ribosome comprises nr = 7549 residues (see Supplementary Table S1). For

the former two species we thus have

1

nq
=

1

na
=

1

300
≈ 3.33× 10−3 ≫ 4.02× 10−5 =

0.3

7459
=

0.3

nr
≥ B

M
(S13)

which means that the contribution of dilution to the ϵ-dependent term can be safely

disregarded, vindicating the use of an approximation from Equation (S10).

Nonetheless, the situation is more complicated in the case of ribosomes, as for ni = nr

the B/M component can reach up to 30% of 1/nr. However, for such a high number of amino

acid residues, the whole ϵ-dependent term contributes very little to kr, even at the highest

translation rates possible. This can be demonstrated by calculating the approximation

error δr(ϵ) – that is, the difference between the estimate kr(ϵ) and the real value kr(ϵ, B),

divided by the real value. Since the approximate value of kr is always lower than the real

one, dividing the difference by kr(ϵ) instead of kr(ϵ, B) bounds the approximation error

from above:

δr(ϵ) =
kr(ϵ, B)− kr(ϵ)

kr(ϵ, B)
≤ kr(ϵ, B)− kr(ϵ)

kr(ϵ)
=

ϵ
k+r

· 0.3
nr

k−r
k+r

+ ϵ
k+r nr

=
0.3ϵ

k−r nr + ϵ
= δbndr (ϵ) (S14)

It is easy to see that for positive translation elongation rates this bound increases

monotonously with ϵ, so to cap the error for all cases it is enough to evaluate δbndr (ϵ) for

the maximum possible translation elongation rate. Using the value from Supplementary

Table S1, we find this cap to be merely

δbndr (ϵmax) =
0.3ϵmax

k−r nr + ϵmax
= 4.15% (S15)

In summary, we have shown that for any transcript, it is possible to reliably approxi-

mate its lumped “mRNA-ribosome dissociation constant” ki(ϵ, B) by an expression ki(ϵ)

that does not acknowledge the effects of dilution caused by cell growth, removing this

value’s dependence on the concentration of translating ribosomes (Equation (S11)). As

shown in the next section, this allows to greatly simplify the analysis of competitive

ribosome binding by different mRNAs. From this point on, we will be denoting the ap-

proximate value ki(ϵ) simply as ki to avoid clutter. The number of ribosomes translating
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gene i’s mRNA can therefore be denoted as

bi ≈
mi

ki
r (S16)

S1.4 Cell model with the QSS approximation

Let us now remember the definition for the total number of ribosomes in the cell R from

Equation (S1). Together with Equation (S16), it yields

R =
∑
∀i

bi + r = r(1 +
∑
∀i

mi

ki
) ⇔ r = R/(1 +

∑
∀i

mi

ki
) ⇒

⇒ bi =
mi/ki

1 +
∑

j∈{q,a,r}mj/kj
R =

mi/ki
D

R (S17)

where

D = 1 +
∑

j∈{q,a,r}

mj/kj (S18)

Consequently, we can also state that

B =
∑
∀i

bi =

∑
j∈{q,a,r}mj/kj

1 +
∑

j∈{q,a,r}mj/kj
R = (1− 1

D
)R (S19)

By providing the expressions for {bi} and B, Equations (S17) and (S19) rid us of the

necessity to explicitly consider mRNA-ribosome binding and treat free and translating

ribosomes as separate species. Moreover, with the complex dilution considered insignifi-

cant, the sum of Equation (S2)’s last three terms is roughly equal to −ḃi, which is zero

due to the QSS assumption. This yields us a simplified (Model II). Importantly, Equa-

tion (S22) now gives an ODE for the total number of ribosomes R and not just the free

ribosome count r.

ṁi = Ficiαiλ(ϵ, B)− (βi + λ(ϵ, B))mi for i ∈ {q, a, r} (S20)

ṗi =
ϵ(tc)

ni
· mi/ki
1 +

∑
j∈{q,a,r}mj/kj

R− λ(ϵ, B) · pi for i ∈ {q, a} (S21)

Ṙ =
ϵ(tc)

nr
br − λ(ϵ, B) ·R (S22)
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ṫc = ν(tu, σ) · pa − ϵ(tc) ·B − λ(ϵ, B) · tc (S23)

ṫu = ψ(T ) · λ(ϵ, B)− ν(tu, σ) · pa + ϵ(tc) ·B − λ(ϵ, B) · tu (S24)

(Model II)

If the system is in steady state (which here is indicated by drawing bars over the

variables), a useful expression for a given gene’s equilibrium protein concentration pi can

be derived as shown below.

ṗi = 0 ⇔ ϵ

ni
· mi/ki

D
R− λpi = 0 ⇔

⇔ pi =
M

ni
· mi/ki∑

j∈{q,a,r}mj/kj
(S25)

Importantly, Equation (S25) is merely a relation between the steady-state mRNA and

protein concentrations, and does not allow to analytically determine pi straightaway. This

is because the formulae for ki values include the translation elongation rate ϵ, while the

steady-state mRNA concentrations mi depend on the cell growth rate λ. Since ϵ and λ

are not constant and depend on the cell’s state, the values of mi and ki cannot be found

based on Equation (S25) alone.

Let us conclude this section by stating a useful relation for ϕi, the steady-state mass

fraction of protein pi. Multiplying the protein’s concentration by one molecule’s weight

in amino acid residues and dividing it by the cell’s total protein mass, we get:

ϕi =
nipi
M

=
mi/ki∑

j∈{q,a,r}mj/kj
(S26)

S1.5 Neglecting the housekeeping genes

The key property of housekeeping genes is that their expression remains constant and

growth rate-independent. In fact, the assumption that ϕq is unchanging regardless of

the growth rate or nutrient availability has been shown to hold under a wide range of

conditions [4], yielding reliable predictions about the dynamics of cellular processes and

not just their steady states [6]. Therefore, instead of explicitly modeling transcription

and translation of the housekeeping genes, we can further simplify the model by assuming

12



that ϕq ≡ ϕq ≡ 0.59 (and thus pq ≡ pq ≡
ϕqM

nq
) in all cases [4]. Therefore, at any point in

time
mq/kq∑

j∈{q,a,r}mj/kj
= ϕq (S27)

This in turn means that

∑
j∈{q,a,r}

mj/kj =
1

1− ϕq

∑
j∈{a,r}

mj/kj (S28)

and

D = 1 +
1

1− ϕq

∑
j∈{a,r}

mj/kj (S29)

B, the total concentration of mRNA-ribosome complexes, including those with the

housekeeping gene mRNA, can still be found from D as described by Equation (S19).

Consequently, it is possible to model ribosomal and metabolic protein expression, cell

growth, and tRNA charging and synthesis without knowing the exact mRNA concentra-

tions for the housekeeping genes. Hence, we can modify (Model II) to obtain (Model III).

This is the simplified mechanistic cell modeling framework that we describe in the arti-

cle’s main text (Figure 2 and Equations (15)-(20) in Methods) and employ to obtain the

results presented in this paper.

ṁi = Ficiαiλ(ϵ, B)− (βi + λ(ϵ, B))mi for i ∈ {a, r} (S30)

ṗa =
ϵ(tc)

na
· ma/ka
1 + 1

1−ϕq

∑
j∈{a,r}mj/kj

R− λ(ϵ, B) · pa (S31)

Ṙ =
ϵ(tc)

nr
· mr/kr
1 + 1

1−ϕq

∑
j∈{a,r}mj/kj

R− λ(ϵ, B) ·R (S32)

ṫc = ν(tu, σ) · pa − ϵ(tc) ·B − λ(ϵ, B) · tc (S33)

ṫu = ψ(T ) · λ(ϵ, B)− ν(tu, σ) · pa + ϵ(tc) ·B − λ(ϵ, B) · tu (S34)

(Model III)

Using Equation (S28), it is also possible to rewrite Equations (S25) and (S26) to obtain
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expressions for the steady-state protein concentrations and mass fractions:

pi =
M

ni
· mi/ki

1
1−ϕq

∑
j∈{a,r}mj/kj

(S35)

ϕi =
mi/ki

1
1−ϕq

∑
j∈{a,r}mj/kj

(S36)

S1.6 Nutrient upshift modeling

In this section, we outline a simple extension to our model that allows to simulate the

dynamic shifts in bacterial resource allocation in a nutrient upshift, i.e., a sharp im-

provement in the culture medium’s nutrient quality due to an additional nutrient being

supplemented to it.

The medium’s nutrient quality in our model is given by the coefficient 0 < σ ≤ 1.

A straightforward way to model nutrient upshift is to increase this factor from a lower

pre-shift value σpre to a higher post-shift value σpost. This, however, fails to capture

that different metabolic pathways, and thus different metabolic proteins, are needed to

import different nutrients and convert them into protein synthesis precursors. In absence

of a certain nutrient, the corresponding enzyme is functionally useless and expressing it

only burdens the cell, so the bacterium does not express the unneeded protein so as to

optimize its growth rate. When the nutrient in question is sensed by the cell, the matching

enzyme’s expression is upregulated in response; however, some time may pass until the

new high-expression equilibrium concentration of the metabolic enzyme is achieved [8, 9].

When considering a nutrient upshift, let us then use ã to denote the gene responsible

for the rate-limiting step in the metabolism of the newly introduced nutrient. Notably,

since we are considering a single gene among plenty, any changes in the regulation of its

expression do not invalidate our general assumption that, from a coarse-grained point of

view, the metabolic genes are expressed constitutively. In line with the general form of

ODEs that we use for gene expression, we describe its mRNA and protein concentrations’

dynamics using Equations (S37)-(S38), with all parameters having the same meaning as

for the metabolic genes in general (i.e., αã is its promoter strength, nã is the protein’s

length in amino acids, etc.). Besides the promoter strength αã, which is smaller than

αa to capture the fact that the rate-limiting enzyme is only one among many metabolic
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genes, all parameters of the gene ã are assumed equal to those for the metabolic protein

class a – that is, cã = ca, βã = βa, nã = na, etc..

ṁã = Fãcãαãλ(ϵ, B)− (βã + λ(ϵ, B))mi (S37)

ṗã =
ϵ(tc)

nã
· mã/kã
1 + 1

1−ϕq

∑
j∈{a,r}mj/kj

R− λ(ϵ, B) · pã (S38)

As for the transcription regulation function Fã, the transcription of metabolic enzyme

genes it is known to turn on almost momentarily upon nutrient upshifts [8], so we assume

that just after the upshift we have it at its maximum value Fã = 1 . Owing to their

short half-lives, for the sake of simplicity we also assume that both the specific metabolic

gene’s mRNA concentration mã and the overall metabolic mRNA concentration ma are in

quasi-steady-state relative to the slower changes in the metabolic protein’s concentrations

[7]. Then, ever since the upshift occurs, the mRNA concentrations are given by

mã =
Fãcãαãλ

βã + λ
=

1 · cãαãλ
βã + λ

(S39)

ma =
1 · caαaλ
βa + λ

(S40)

and therefore
mã

ma

=
αã
αa

= Φ = const (S41)

Now, consider the mole fraction of enzymes of interest among all metabolic proteins:

Φ =
pã
pa

(S42)

Unlike Φ, the value Φ is non-constant. However, together these two notations allow us to

compactly rewrite Equation (S38) as

ṗã = Φṗa + λpa · (Φ− Φ) (S43)

Applying the chain rule to differentiation to Equation (S43) and Equation (S31), we

find that the protein mole fraction then evolves according to Equation (S44), which also
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shows that we have Φ = Φ when the cell reaches its new post-shift steady state.

Φ̇ = (Φ− Φ) · ϵ
na

· ma/ka
1 + 1

1−ϕq

∑
j∈{a,r}mj/kj

· R
pa

(S44)

With this in mind, let us go back to the definition of the tRNA aminoacylation rate

from Supplementary Table S2 and apply it to the upshift scenario. The already-present

pre-shift carbon source, with nutrient quality σpre, still contributes to aminoacyl-tRNA

synthesis. However, protein precursor production from the newly added nutrient is also

present, so we sum the two quantities:

ν = νmax ·σpre ·
tu

tu +Kν

·pa+νmax ·∆σ ·
tu

tu +Kν

·pa = νmax ·(σpre+∆σ)· tu

tu +Kν

·pa (S45)

Here, the new nutrient’s quality ∆σ captures the number of aminoacyl-tRNAs that a

single nutrient molecule can produce at a given time. This value is dependent on the

concentration of the protein that limits the rate of the nutrient’s metabolization. Denoting

the coefficient of this proportionality as σ̃, we get:

∆σ = σ̃pã = σ̃Φpa (S46)

We also know that in the steady state, the overall post-shift tRNA aminoacylation

rate is given by Equation (S47).

ν = νmax · σpost ·
tu

tu +Kν

· pa (S47)

Together, Equations (S46), (S45), and (S47) allow to define the tRNA aminoacylation

rate during nutrient upshifts in terms of the rate-limiting enzyme’s molar fraction as

ν(tu,Φ) = νmax ·
(
σpre + (σpost − σpre) ·

Φ

Φ

)
· tu

tu +Kν

· pa (S48)

Therefore, the cell’s state during nutrient upshifts can be simulated simply by keeping

all of the original (Model III) ODEs, augmenting the model with Equation (S44) for Φ,

and replacing the formula for the tRNA aminoacylation rate from Supplementary Table S2

with the one in Equation (S48). As for the initial condition for the additional variable

Φ right after the new nutrient is added, it depends on the level of pã before the upshift.
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This is likely to be nutrient- and enzyme-specific, but is usually not zero, as in most

cases the cell growth rate experiences a sharp initial rise right after the introduction of a

new nutrient, which means that to some extent it can metabolize the new carbon source

straightaway [9]. Here, we use a crude estimate based on the ratio of steady-state growth

rates in preshift and postshift media:

Φinit =
λpost

λpre
(S49)

As a showcase of our model predicting nutrient upshift dynamics, we plot its forecasts

alongside the experimental data for the addition of different nutrient to a medium with

succinate as the only carbon source [8]. Given that the steady-state growth rates in all

media were known, we estimated the corresponding pre- and post-shift σ values by going

through 1, 000 evenly spaced points on the interval 0.01 ≤ σ ≤ 1 and finding the one that

yields the closest steady-state growth rate to the one recorded for a given combination of

nutrients. As it can be seen in Supplementary Figure S1, our model’s predictions indeed

adequately match the nutrient upshift dynamics in almost all scenarios. An exception to

this is the addition of xylose to the medium (green line). This can be attributed to our

very rough estimate of an initial condition. Indeed, while the steady-state growth rate

for the succinate medium with xylose is very close to that for the succinate medium with

glycerol (0.73 vs 0.75, respectively), their corresponding experimentally observed upshift

dynamics are very distinct. This illustrates the limitation of estimating initial enzyme

levels based on steady-state growth rates alone, as we do in Equation (S49).
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Supplementary Figure S1: Cell growth over time in different nutrient upshift
scenarios. A nutrient upshifts constitutes the addition of different additional nutrients
to a culture medium with succinate as the only carbon source. Dots stand for experi-
mental measurements from [8], whereas lines show our model’s predictions. The steady
state growth rates with arabinose-, xylose-, glycerol-, and glucose-supplemented media
are 0.55 h−1, 0.73 h−1,0.75 h−1, and 0.55 h−1 respectively. The steady-state growth rate
in the pre-shift medium is 0.45 h−1 [8]. Source data are provided as a Source Data file.
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S2 Parameter fitting

Here, we provide the details of our fitting procedure for the model parameters that were

not taken from literature. First, we outline how the cell model was modified to incor-

porate the effects of the ribosome-inactivating antibiotic chloramphenicol, since it had

been present in the culture media of some E. coli cells in the experiment whose results

we used for fitting [10]. Next, we describe the parameters and outcome of the Markov

Chain Monte Carlo (MCMC) simulation that we used to infer the parameter values from

data. Finally, we show how the inferred values were postprocessed to make the model

more realistic.

S2.1 Modeling ribosome inactivation

In order to determine the parameters’ values, we fit our model to experimental data

obtained by Scott et al. [10]. In their experiment, the growth rate and the ratio of

total RNA mass to the overall mass of protein in the cell were measured for E. coli

grown in different conditions (for our fitting, the RNA:protein ratios that they recorded

were multiplied by a conversion factor of 0.4558 to obtain ribosomal mass fractions [6]).

These sundry growth conditions were modeled by varying the culture medium’s nutritional

quality and the amount of chloramphenicol present in it. Chloramphenicol is an antibiotic

that inactivates translating ribosomes by binding them instead of the tRNA that carries

the amino acid supposed to be added to the peptide chain. We assume that the presence

of chloramphenicol introduces two additional kinds of reactions besides those displayed

in Supplementary Note S1.1:

• Ribosome inactivation: bi + h
kcm−−→ Bcm for i ∈ {q, a, r}

• Inactivated ribosome dilution: Bcm
λ−→ ∅

Here, bi denotes the mRNA-ribosome complex for gene i, h signifies chloramphenicol, and

Bcm the inactivated ribosome. The first reaction equation stands for ribosome inactivation

by chloramphenicol, whereas the second describes the dilution of the inactivated ribosomes

due to cell division.

Notably, we do not explicitly model the antibiotic’s transport across the cell membrane,

so h denotes the concentration of chloramphenicol in the medium. The value of the binding
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rate constant kcm therefore implicitly accounts for conversion between the extracellular

and the intracellular antibiotic levels. Moreover, the share of chloramphenicol molecules

bound by ribosomes is assumed to be very small compared to the antibiotic’s abundance

in the media, so we consider h constant.

Then, let R = r +
∑

j∈{q,a,r} bi denote exclusively non-inactivated ribosomes, and

let Bcm signify the concentration of ribosomes bound by chloramphenicol. The exper-

imentally measured ribosome fraction, nevertheless, still includes both operational and

disabled ribosomes. Likewise to Supplementary Note S1.1, we obtain the unsimplified

ODE (Model IV).

ṁi = Ficiαiλ(ϵ, B)− (βi + λ(ϵ, B))mi − k+i mir + k−i bi +
ϵ(tc)

ni
bi

for i ∈ {q, a, r} (S50)

ḃi = k+i mir − k−i bi −
ϵ(tc)

ni
bi − λ(ϵ, B) · bi − kcmhbi for i ∈ {q, a, r} (S51)

ṗi =
ϵ(tc)

ni
bi − λ(ϵ, B) · pi for i ∈ {q, a} (S52)

ṙ =
ϵ(tc)

nr
br − λ(ϵ, B) · r +

∑
j∈{q,a,r}

(
(
ϵ(tc)

nj
+ k−j )bj − k+j mjr

)
(S53)

ṫc = ν(tu, σ) · pa − ϵ(tc) ·B − λ(ϵ, B) · tc (S54)

ṫu = ψ(T ) · λ(ϵ, B)− ν(tu, σ) · pa + ϵ(tc) ·B − λ(ϵ, B) · tu (S55)

Ḃcm = kcmhB −Bcmλ(ϵ, B) (S56)

(Model IV)

Applying the QSS approximation to Equation (S51), we obtain

bi = mir ·
(
k−i + ϵ(tc)/ni + λ(ϵ, B) + kcmh

k+i

)−1

=
mi

ki(ϵ, B, h)
r (S57)

An additional non-negative term – that is, kcmh – can only render the growth-dependent

component’s contribution even less significant relative to other terms. Hence, the con-

siderations outlined in Supplementary Note S1.3 remain valid and allow us to employ a

growth-independent approximation for the mRNA-ribosome dissociation constant. We

thus define k̃i, the approximate mRNA-ribosome dissociation constant with adjustment
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for chloramphenicol, as

k̃i(ϵ, h) =
ϵ/ni + k−i + kcmh

k+i
(S58)

Consequently, we can simplify (Model IV) analogously to how we reduced (Model I) in

Supplementary Notes S1.4-S1.5, this time with k̃i instead of ki. This yields us (Model V),

which we used in our fitting procedure to predict a cell’s behavior for given culturing

conditions and parameter values.

ṁi = Ficiαiλ(ϵ, B)− (βi + λ(ϵ, B))mi − kcmh · mi/k̃i

1 + 1
1−ϕq

∑
j∈{a,r}mj/k̃j

R

for i ∈ {a, r} (S59)

ṗa =
ϵ(tc)

na
· ma/k̃a

1 + 1
1−ϕq

∑
j∈{a,r}mj/k̃j

R− λ(ϵ, B) · pa (S60)

Ṙ =
ϵ(tc)

nr
· mr/k̃r

1 + 1
1−ϕq

∑
j∈{a,r}mj/k̃j

R− λ(ϵ, B) ·R− kcmhB (S61)

ṫc = ν(tu, σ) · pa − ϵ(tc) ·B − λ(ϵ, B) · tc (S62)

ṫu = ψ(T ) · λ(ϵ, B)− ν(tu, σ) · pa + ϵ(tc) ·B − λ(ϵ, B) · tu (S63)

Ḃcm = kcmhB − λ(ϵ, B) ·Bcm (S64)

(Model V)

S2.2 MCMC fitting

Fitting was required to determine the values of:

• νmax, the maximum tRNA charging rate

• αa and αr, the metabolic and ribosomal genes’ promoter strengths

• Kϵ and Kν , the Michaelis constants determining the translation elongation and

tRNA charging rates, respectively

• kcm, the chloramphenicol binding rate constant

We performed the fitting with the help of the Differential Evolution Adaptive Metropolis

(DREAM) algorithm [11], running 10 chains in parallel for 20,000 steps. As a Markov
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Supplementary Table S3: Parameters fitted to experimental data and the initial
guesses for their values input to the DREAM algorithm.

Parameter(s) Description Initial guess
(prior mean)

Units Source

Kϵ = Kν Michaelis constants determin-
ing the translation elongation
and tRNA charging rates

3, 000 nM [12]

kcm Chloramphenicol binding rate
constant

3.594 · 10−4 1
nM ·h [2]

αr : αa Ribosomal to metabolic gene
promoter strength ratio

1 None Convention

νmax Maximum tRNA charging rate 6, 000 h−1 [6]

Chain Monte Carlo (MCMC) method, it constructs Markov chains whose states are the

possible sets of parameter values and whose stationary distribution equals the probability

distribution of these parameter sets. To this end, every step a new set of parameter

values is selected according to some proposal distribution; then, the likelihoods of the

experimental measurements are calculated; finally, the new parameter values are accepted

with a probability that is proportional to the ratio of the two likelihoods.

In our case, the experimentally measured values of the steady-state growth rate λ

and ribosomal mass fraction ϕr were assumed to have independent normal distributions

around the mean values predicted by the model with a given parameter set. We used the

standard deviation values of 0.0447 h−1 and 0.018976 for λ and ϕr respectively, calculated

as the average measurement errors across all conditions observed by Scott et al. [10]. In

line with [6], the conversion of the RNA:protein mass ratio into ribosomal mass fraction

was achieved by multiplying the measurement by 0.4558. The likelihood of experimental

measurements for a given parameter set, up to a constant scaling factor that cancels out

when the ratio of likelihoods is calculated, was therefore equal to:

exp

∑
i∈I

(
λi − λ̂i
0.0447

)2

+

∑
i∈I

(
ϕri − ϕ̂ri
0.018976

)2
 (S65)

In Equation (S65), I is the set of all culture conditions for which the measurements were

taken and the model was simulated; λi and ϕri are the steady-state growth rate and

ribosomal mass fraction predicted by the model for the condition i ∈ I; λ̂i and ϕ̂ri are the

experimentally observed values of these quantities.
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Notably, the model was fitted solely to the datapoints with growth rates above 0.3 h−1,

because at slower growth rates metabolic regulation is predominated by mechanisms un-

considered by our model and experimental measurements can be unreliable (see the main

text’s Results section and [6]). Furthermore, to improve the fitting procedure’s efficiency,

we reduced the number of values to be determined as follows. First, near-optimal resource

allocation is known to be achieved when Kϵ and Kν are roughly equal [6]. Consequently,

we treated both Michaelis constants as a single parameter whose value was to be deter-

mined. Second, in our initial MCMC runs, we observed that the likelihood changes very

little when the absolute values of αa and αr are varied but their ratio stays the same

(Supplementary Figure S2b) . Therefore, instead of fitting both values, we fixed α at a

crude order-of-magnitude estimate of αa = 3.89 ·105, making the metabolic genes account

for a third of all mRNA synthesis in the cell at a reference growth rate of 0.7 h−1[3], and

used MCMC to determine the αr:αa ratio. Considering different pairwise combinations

of other fitted parameters does not show relationships as clear as that between αa and αr

(Supplementary Figure S2e), hence them being fit independently.

Prior distributions before the MCMC run we assumed to be normal for all parameters,

with the variance being equal to 0.25 of the mean; the admissible ranges for all parameters

were assumed to be between 1/50 and 50 times the prior distribution’s mean. As for the

prior mean values, for αr : αa it was set at 1 as a convention. For all other parameters, the

prior distributions’ mean were initial guesses from published literature (Supplementary

Table S3). While for Kν = Kϵ and kcm the values could be borrowed from the corre-

sponding papers straightforwardly, the tRNA aminoacylation rate in [6] was calculated

in the relative amioacyl-tRNA mass abundance units and as a function metabolic protein

mass fraction in the cell. Conversely, in our model the tRNA aminoacylation rate is found

from metabolic protein concentrations pa and has the units of nM/h. Since 0.001 tRNA

abundance units per hour in [6] is roughly equivalent to 106 nM/h and ϕa = napa
M

, the

original value of 20 h−1 was transformed into

20 · 106

0.001
· na
M

≈ 6, 000 h−1 (S66)

After running the MCMC algorithm, the estimated parameter values were obtained by

finding the mode of the inferred posterior probability distribution. We then used these

values to improve upon our estimate for αa as described in Supplementary Note S2.3.
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In order to asses the fit’s sloppiness, we estimated the posterior distribution’s Fisher

Information Matrix (FIM) by retrieving the pseudo-inverse of the variance-covariance ma-

trix [2, 13]. The magnitudes of the FIM’s eigenvalues were spread over almost 26 orders

of magnitude (Supplementary Figure S2c), hinting that the model is truly sloppy, i.e.,

that its behavior is largely independent from the exact values of most parameters [14].

Indeed, as shown in Supplementary Figure S2d, the estimates of parameter sensitivities

based on the FIM [13] reveal that the model is relatively insensitive to changes in most

parameter values. An exception to this is the ratio between the metabolic and ribosomal

genes’ promoter strengths αr : αa, the sensitivity to which is overwhelmingly large when

compared to all other parameters. This can likely be explained by the fact that under

our model the cell achieves near-optimal growth rates by managing resource allocation

between ribosome and metabolic gene synthesis. Hence, a very different regulatory re-

sponse may be required from the cell if the transcription rates of the two genes’ mRNAs

are altered, so the cell’s behavior in given conditions may significantly change. The FIM

allows to estimate the model’s local parameter sensitivity, i.e., the likelihood function’s

derivative with respect to a given parameter [13]. Meanwhile, a more global picture is

painted by exploring the parameter space over two orders of magnitude in Supplementary

Figure S2e. In line with sloppy behavior, the likelihood’s peak at the fitted parameter

values is not sharp – rather, its logarithm stays almost as high in the vicinity of the

optimal pair of parameter values.

S2.3 Scaling the promoter strengths

During parameter fitting, we used a crude order-of-magnitude estimate of αa = 3.89 · 105.

However, with the ratio between αa and αr known, the gene transcription rates can be

determined with greater accuracy. To this end, we consider the E. coli cell in steady

state growing at a rate of λ ≈ 0.7/h, which stands for one cell division per hour. The

total rate of mRNA production in these conditions was experimentally observed to be

A = 1.02 ·106 nucleotides/min = 6.12 ·107 nucleotides/h [3]. In the following section, we

express this quantity in terms of αa, hence becoming able to deduce the metabolic gene

transcription rate.

According to the MCMC fit, the maximum ribosomal gene transcription rate αr con-

stitutes 1.0318 of αa (we also found Kϵ = Kν to be 1, 239.79 nM , νmax to be 4, 046.9 h−1,
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and kcm to be 3.5436 · 10−4 (nM · h)−1). Therefore, knowing the value of the ribosomal

gene transcription regulation function F r would enable us to find the total ribosomal

mRNA production rate as

Total mr synthesis rate = F r · λ · αr = F r · λ · 1.0318 · αa (S67)

As for the housekeeping genes, we assume the housekeeping and metabolic gene tran-

scripts to have 1) similar degradation rates βq = βa = 6 h−1 and 2) similar mRNA-

ribosome dissociation constants kq = ka (due to having the same lengths na = nq = 300).

Then, by Equation (S26) we have

ϕq

ϕa
=
mq/kq

ma/ka
=

(
F qcqαqλ

βq + λ
· 1

kq

)
(
caαaλ

βa + λ
· 1

ka

) =
F qcqαq
caαa

⇔

⇔ Total mq synthesis rate =
ϕq

ϕa
· λ · αa =

0.59

ϕa
· λ · αa (S68)

Importantly, our model assumes that a transcript can be bound by one ribosome at

a time. In reality, however, multiple ribosomes can translate the same mRNA molecule

simultaneously. Likewise to the resource competition model proposed by Qian et al. [7], we

implicitly address this discrepancy by the adjusting the mRNA synthesis rates. Namely,

the minimum distance between translating ribosomes is estimated at ≈ 25 codons [15],

so a single mRNA molecule that spans ni codons can be bound by up to ni/25 ribosomes.

Hence, the apparent production rate of the mRNA is the actual transcription rate times

ni/25. In combination with our previous considerations, the real total mRNA production

rate in the cell is the sum of

Actual total mq synthesis rate =
(nq
25

)−1

· 0.59
ϕa

· λ · αa

Actual total mr synthesis rate =
(nr
25

)−1

· F r · 1.0318 · λ · αa

Actual total ma synthesis rate =
(na
25

)−1

· λ · αa
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Finally, considering that A is given in nucleotides per minute, the rate of production

of a given mRNA mi should also be multiplied by the number of nucleotides it comprises,

i.e., 3ni. In summary, all these steps give rise to the following relationship:

A = αa · 0.7 ·
(
75 · 0.59

ϕa
+ 75 · F r · 1.0318 + 75

)
(S69)

Since model predictions change little upon the scaling of αa and αr, we start by

simulating the model for the fitted parameter values given in Supplementary Table S3,

which allows us to numerically estimate F r and ϕa. Using σ = 0.17054 as a nutrient

quality coefficient that yields λ = 0.6926 h−1, we obtain

ϕa ≈ 0.312 and F r ≈ 0.0875

And therefore the metabolic protein transcription rate is

αa = 3.945 · 105

as specified in Supplementary Table S1. The maximum ribosomal gene transcription rate

is therefore obtained by multiplying this value by 0.99811, hence

αr = 4.070 · 105
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Supplementary Figure S2: MCMC fitting outcome and parameter sensitivity anal-
ysis. a MCMC fitting outcome for the model. Thin lines: predictions for 100 parameter
sets randomly drawn from the obtained probability distribution. Bold dark lines and
crosses: model predictions for the maximum a posteriori estimate (found as the distribu-
tion’s mode) of the parameter values, which we ultimately employ in our model and display
in Supplementary Table S1. Bold circles: experimental measurements by Scott et al. [10]
that were used in our fitting procedure. b Logarithms of experimental measurements’
likelihood for different values of metabolic and ribosomal genes’ promoter strengths αa
and αr. Values of all other model parameters were taken from Supplementary Table S1.
Observe how consistent the likelihoods stay along the diagonals going through the points
that have the same αr : αr ratios. c Logarithms of the FIM’s eigenvalues normalized by
the largest eigenvalue’s magnitude. d Parameter sensitivities evaluated using the FIM,
normalized to yield 1 when summed. The closer is the logarithm of parameter sensitivity
to 0, the greater is the effect of the corresponding parameter’s value on the model fit.
e Logarithms of experimental measurements’ likelihood for different pairwise combina-
tions of parameter values. The axes for all parameters are logarithmic and range from
0.1 to 10 times the value determined by MCMC fitting. The pair of the fitted parameter
values therefore always corresponds to the center of the heatmap. The color axis is the
same for all subplots. Source data are provided as a Source Data file.
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S3 Heterologous gene expression modeling

In this section, we describe how to extend the host cell model to include the expression of

heterologous genes. Then, we derive the analytical relations between heterologous gene

expression and the cell’s state that we describe in the main text.

S3.1 Extending the mechanistic cell model

The simplified mechanistic (Model III), described in Supplementary Note S1.5, can easily

be extended to model the expression of heterologous genes in the bacterium. In addition

to the set of the modeled native genes {a, r}, let there also be a set of heterologous genes

X = {x1, x2 . . . , xL}. These genes are characterized by the same types of gene expression

parameters as the native ones ({cxl}, {αxl}, etc.) and each have a corresponding gene-

and circuit-specific transcription regulation function Fxl .

The existence of additional genes besides the native ones does not fundamentally

change the considerations that enabled the reduction of the full mechanistic (Model I)

to the simplified (Model III) outlined in Supplementary Notes S1.2-S1.5, so we can still

apply the QSS approximation and avoid explicitly modeling housekeeping gene expression

(the fixed housekeeping protein mass fraction can be still assumed to equal ϕq = 0.59 [4,

10, 16]). As a result, we use the same general form for the ODEs describing a gene’s

mRNA concentration mi and protein concentration pi as Equations (S30) and (S31) in

(Model III). This lets us describe the host cell and the synthetic circuit by (Model VI).

ṁi = Ficiαiλ(ϵ, B)− (βi + λ(ϵ, B))mi for i ∈ {a, r} (S70)

ṗa =
ϵ(tc)

na
· ma/ka
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · pa (S71)

Ṙ =
ϵ(tc)

nr
· mr/kr
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) ·R (S72)

ṫc = ν(tu, σ) · pa − ϵ(tc) ·B − λ(ϵ, B) · tc (S73)

ṫu = ψ(T ) · λ(ϵ, B)− ν(tu, σ) · pa + ϵ(tc) ·B − λ(ϵ, B) · tu (S74)

ṁxl = Fxlcxlαxlλ(ϵ, B)− (βxl + λ(ϵ, B))mxl for xl ∈ X (S75)

˙pxl =
ϵ(tc)

nxl
· mxl/kxl
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · pxl for xl ∈ X (S76)

(Model VI)
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(Model VI) allows to numerically simulate the behavior of a cell expressing heterolo-

gous proteins, provided that the gene expression burden does not decrease the growth rate

enough to activate the cell’s stress response mechanisms, which our model does not con-

sider (in the main text’s Results section, we postulate a threshold of λ = 0.3 h−1, beyond

which our model’s predictions significantly diverge with experimental measurements).

Moreover, by solving ṗi = 0, it can be seen that the formulae from Equations (S35)-

(S36), which describe the steady-state protein mass fraction, still hold for both native

and heterologous genes. However, they now include a heterologous protein component:

pi =
M

ni
· mi/ki

1
1−ϕq

∑
j∈{a,r}∪X mj/kj

(S77)

ϕi =
mi/ki

1
1−ϕq

∑
j∈{a,r}∪X mj/kj

(S78)

We simulated (Model VI) for a generic heterologous gene, displaying the results in

Figure 5 of the main text alongside the analytical predictions for gene expression, which

we obtained using the relations derived in the following subsections of this section. We

characterized the gene with the parameters given in Supplementary Table S4, explaining

our choices in Supplementary Note S4.1. The same parameters describe the “gene of

interest” poi, for which we show how to maximize its expression by a population of cells

in Supplementary Note S3.7. Equations (S75)-(S76), which define sets of ODEs for all

synthetic genes, in this case become a single pair of ODEs as the synthetic gene set has

exactly one element, i.e., X = {x} or X = {poi}.

Supplementary Table S4: Parameters of the generic synthetic genes x and poi.
The results of simulating their expression are shown in Supplementary Figure S3
and the main text’s Figure 5.

Parameter Description Value Units

cx = cpoi Gene DNA copy number Varied nM
αx = αpoi Promoter strength 1,000 None
βx = βpoi mRNA degradation rate 6 h−1

k+x = k+poi mRNA-ribosome binding rate 60 1
nM ·h

k−x = k−poi mRNA-ribosome dissociation rate 60 h−1

nx = npoi Number of amino acids in protein pi 300 aa/nM
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S3.2 Modeling degradation of heterologous proteins

The half-life of most proteins is much longer than the cell doubling time [17] and the

majority of the host cell’s proteins are not actively degraded [18], which makes it possible

to neglect active protein degradation and assume that protein are removed by dilution

only. Nonetheless, the performance of some synthetic gene circuits may hinge on fast

protein degradation. To enable the simulation of such designs, this section offers a means

of accounting for active protein degradation by making several minor modifications to

(Model VI). Since these adjustments nonetheless complicate the retrieval of the model’s

steady state, note that all of the analytical derivations in Supplementary Notes S3.4-S4.4.2

have been made for the case of negligible degradation rates for all proteins.

Suppose that all synthetic genes in the cell {x1, x2, . . . , xL} encode proteins that are

actively degraded at rates {δx1 , δx1 , . . . , δxL}, where none, several, or all δxl values may

be zero. The ODEs for the synthetic protein concentrations must therefore include an

additional term for protein degradation, turning Equation (S76) into

˙pxl =
ϵ(tc)

nxl
· mxl/kxl

D
R− λpxl − δxlpxl (S79)

where D is the resource competition denominator that scales the translation rates of all

proteins to account for competitive ribosome binding.

Due to the finite proteome cellular trade-off [2], the total protein mass in the cell M

remains constant, which our model enforces through the definition of the growth rate λ.

With protein in the cell now removed not only by dilution due to growth, but also by

protein degradation, a new formula for λ can be obtained:

Ṁ = 0 ⇔ nrṘ +
∑

j∈{q,a}∪X

nj ṗj = 0 ⇔ nr
∑

j∈{q,a}∪X

ḃj + nrṙ +
∑

j∈{q,a}∪X

nj ṗj = 0 ⇔

⇔ ϵB − λM −
∑
xl∈X

δxlnxlpxl = 0 ⇔

⇔ λ =
ϵB

M
−
∑

xl∈X δxlnxlpxl
M

(S80)

As outlined in Supplementary Note S1.5, the fact that the mass fraction of native

housekeeping proteins ϕq in the cell remains constant regardless of the culture conditions
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[4, 6] allows us to avoid explicitly considering the expression of this gene class, capturing

it instead in the definition for D in Equation (S29). However, the derivations to obtain it

hinged on the original formula for the cell growth rate. By substituting the new definition

of λ into ϕ̇q = 0, the updated formula for D – that is, Equation (S82) – can be obtained

as follows:

ϕ̇q =
nq
M

· ṗq = 0 ⇔ ϵ(tc)

nq
· mq/kq∑

j∈{q,a,r}∪X mj/kj
·R−

(
ϵB

M
−
∑

xl∈X δxlnxlpxl
M

)
pq = 0 ⇔

⇔ mq

kq
=

ϕq

(
1−

∑
xl∈X δxlnxlpxl

ϵR

)
·
∑

j∈{a,r}∪X

mj/kj − ϕq

∑
xl∈X δxlnxlpxl

ϵR

1− ϕq

(
1−

∑
xl∈X δxlnxlpxl

ϵR

) (S81)

hence

D = 1 +
∑

j∈{q,a,r}∪X

mj/kj = 1 = mq/kq +
∑

j∈{a,r}∪X

mj/kj =

= 1 +

∑
j∈{a,r}∪X

mj/kj − ϕq

∑
xl∈X δxlnxlpxl

ϵR

1− ϕq

(
1−

∑
xl∈X δxlnxlpxl

ϵR

) (S82)

Notably, for δxl = 0 ∀xl ∈ X this definition is equivalent to the original Equation (S82)

that neglects active degradation of proteins.

S3.3 Stochastic modeling of heterologous gene expression

Plugging the equations of (Model VI) into a numerical ODE integrator, such as the ode15s

function used in our Matlab implementation (see the main text’s Methods), allows to de-

terministically simulate the behavior of a cell expressing heterologous genes of choice while

taking into account resource couplings and host-circuit interactions. However, synthetic

gene circuits can also be significantly affected by noise [19], which calls for the ability to

perform stochastic simulations of our model.

To this end, a hybrid modeling approach was chosen in the vein of prior studies [20]
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– that is, the variables describing the host cell were assumed to be continuous and de-

terministic, whereas the variables describing the synthetic gene circuitry were considered

discrete and stochastic. Indeed, our host cell model coarse-grains the host cell’s genes into

just a few classes and considers the overall pool of protein synthesis precursors as opposed

to treating different tRNAs separately. The cell model’s variables therefore capture the

average behavior of multiple species represented by them, whose stochastic fluctuations

can be expected to average out, vindicating our deterministic treatment of the system

[20].

Therefore, the evolution of native protein mRNA and concentrations ma, mr, pa, and

R was simulated using Equations (S70)-(S72), with all the rates and variables calculated

according to Supplementary Table S2. The charged and uncharged tRNA concentra-

tions evolve according to the slightly amended Equations (S83)-(S84), in which the tRNA

deaminoacylation flux, formerly defined as ϵ(tc)·B, now excludes the translation of heterol-

ogous transcripts. Instead, the translation of the synthetic gene set {x1, x2, . . . xL} = X

is treated as a stochastic reaction as we describe later in this section.

ṫc = ν(tu, σ) · pa − ϵ(tc) ·
(
B −R

∑
xl∈X mxl/kxl

D

)
− λ(ϵ, B) · tc (S83)

ṫu = ψ(T ) · λ(ϵ, B)− ν(tu, σ) · pa + ϵ(tc) ·
(
B −R

∑
xl∈X mxl/kxl

D

)
− λ(ϵ, B) · tu (S84)

Meanwhile, for a heterologous gene xl with mRNA and protein molecule counts of mxl

and pxl , the following the stochastic reactions may occur, where all parameters have the

same meaning as for the deterministic definition of the system.

• Transcription at rate Fxlαxlcxlλ ·
(nxl

25

)−1
. Increases mxl by

nxl

25

• mRNA degradation at rate βxlmxl ·
(nxl

25

)−1
. Decreases mxl by

nxl

25

• mRNA dilution at rate λmxl ·
(nxl

25

)−1
. Decreases mxl by

nxl

25

• Translation at rate ϵ
nxl

· mxl
/kxl
D

·R. Increases pxl by 1, decreases tc by nxl (charged

tRNAs being used up), increases tu by nxl (uncharged tRNAs produced)

• Protein dilution at rate λpxl . Decreases pxl by 1
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Sometimes, two RNA molecules can bind each other and mutually annihilate – for ex-

ample, the act and anti gene transcripts in our RNA-based integral controller, which

is described in the main text’s Results and Supplementary Note S4.4. In this case, an

additional stochastic annihilation reaction is introduced:

• mRNA annihilation at rate θmactmanti. Decreases mact by
nact

25
and decreases

manti by
nanti

25

Notably, the continuous part of the system is defined for molecule concentrations,

while the stochastic reactions are defined for molecule counts. However, the volume of

an E. coli cell is roughly equal to 10−18 m3. Hence, 1 nM is roughly equivalent to

1 molecule/cell [7], so we can use molecule counts and concentrations interchangeably.

Hence, protein synthesis or dilution changes pxl by 1 while tRNA abundances change

by nxl upon translation, as making one protein chain requires nxl amino acids. Never-

theless, mRNA molecules change by
nxl

25
(rounded to the nearest integer) instead of 1 –

this is because mRNA levels in our model are scaled to account for the possibility of a

single transcript being simultaneously translated by multiple ribosomes, as discussed in

Supplementary Note S2.3.

This definition of the continuous and stochastic parts of the hybrid model allows to

simulate it on the time interval t ∈ (tstart, tfinish) using a tau-leaping Algorithm S1,

generally following the steps laid out by Hepp et al. [19]. Note that here all model

variables are gathered into the vector v = (ma mr pa R tc tu mx1 . . .mxL px1 . . . pxL)
⊤.

S3.4 Effect of heterologous gene expression on translation elon-

gation and ribosomal gene transcription rates

The numerical simulations enabled by (Model VI) can be useful in validating gene cir-

cuit designs and ensuring desired responses despite the influence of resource competition

and shifts in the growth rate. Nonetheless, the design of novel resource-aware controllers

can also greatly benefit from analytical insights into the system’s behavior. Although

(Model VI) itself is not analytically tractable, some simplifying assumptions can provide

an approximation of the intracellular variables’ steady-state values, enabling analytical

derivations. Specifically, we assume that the steady state values of the translation elonga-

tion rate ϵ and the ppGpp-dependent ribosomal gene transcription regulation function F r
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Algorithm S1 Hybrid tau-leaping cell model simulation algorithm.

Set t = tstart, v = vstart
while t < tfinish do

Find the deterministic change in variables ∆detv by integrating ODEs (S70)-(S72)
and (S83)-(S84) over (t, t+∆t)

Determine the number of times each stochastic reaction occurred over (t, t+∆t)
by sampling a Poisson distribution with mean equal to reaction rate×∆t

Sum the total changes in variables caused by stochastic each reaction over
(t, t+∆t) to obtain ∆stochv

Set v = v +∆detv +∆stochv
for all entries vj in v do

if vj < 0 then
Set vj = 0 to avoid negative molecule counts

end if
end for
Set t = t+∆t

end while

are virtually unaffected by synthetic gene expression, which enables the analytical deriva-

tions in Supplementary Notes S3.5-S3.7 and S4.4.2. While no experimental evidence

clearly in favor or against this simplification has been found to date, the mathematical

reasoning behind our claim is outlined below.

Consider a cell expressing the set of synthetic genes X = {x1, x2, . . . xL} alongside

its native genes. The resource competition denominator D, originally given by Equa-

tion (S29), in this case should also include synthetic genes, hence

D = 1 +
1

1− ϕq

∑
j∈{a,r}∪X

mj/kj (S85)

Due to the finite-proteome cellular trade-off, its growth rate λ(ϵ, B) is equal to the total

rate of protein translation by all mRNA-bound ribosomes (see Equation (S8)). The share

of ribosomes that are bound to transcripts can in turn be calculated from D according to

Equation (S19). Therefore, the cell’s growth rate can be redefined in terms of the resource

competition denominator and the overall abundance of ribosomes R.

λ(ϵ, B) =
ϵ(tc) ·B
M

=
ϵ(tc)

M
·R ·

(
1− 1

D

)
(S86)

Let us now consider the ODE for the concentration of uncharged tRNAs (Equa-
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tion (S73)) in steady state.

0 = ṫu = ψ(T ) · λ− ν(t
u
, σ) · pa + ϵ(t

c
) ·B − λ(ϵ, B) · tu (S87)

Substituting Equation (S86) into it, we get:

0 = ψ(T )·
(
ϵ(t

c
)

M
·R · (1− 1

D
)

)
−ν(tu, σ)·pa+ϵ(t

c
)·R·(1− 1

D
)−tu ·

(
ϵ(t

c
)

M
·R · (1− 1

D
)

)
(S88)

A crucial feature of Equation (S88) is that all of its terms include a ribosomal or

metabolic protein concentration. The steady-state mRNA concentrations of these genes

can be found as:

ma =
caαaλ

βa + λ
(S89)

mr =
Fr(T )crαrλ

βr + λ
(S90)

Let us now remember Equation (S77), which expresses the steady-state concentration

of gene i’s protein in terms of the cell’s growth rate, RC denominator and gene i’s param-

eters, mRNA concentration and apparent transcript-ribosome dissociation constant ki(ϵ).

Using it, we can substitute pa and R in Equation (S88) as shown below.

0 = ψ(T ) ·
(
ϵ(t

c
)

M
· (1− 1

D
) · Fr(T )crαrλ

kr(ϵ)(βr + λ)
· 1

D

)
−

−ν(tu, σ) · caαaλ

ka(ϵ)(βa + λ)
· 1

D
+

+ϵ(t
c
) · (1− 1

D
) · Fr(T )crαrλ

kr(ϵ)(βr + λ)
· 1

D
− tu ·

(
ϵ(t

c
)

M
· (1− 1

D
) · Fr(T )crαrλ

kr(ϵ)(βr + λ)
· 1

D

)
(S91)

Given that in our model βa = βr, Equation (S91) can be simplified to:

0 = ψ(T ) ·
(
ϵ(t

c
)

M
· (1− 1

D
) · Fr(T )crαr

kr(ϵ)

)
− ν(t

u
, σ) · caαa

ka(ϵ)
+

+ϵ(t
c
) · (1− 1

D
) · Fr(T )crαr

kr(ϵ)
− tu ·

(
ϵ(t

c
)

M
· (1− 1

D
) · Fr(T )crαr

kr(ϵ)

)
(S92)
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According to Equation (S85), the resource competition denominator D is the sum of

all mRNA concentrations (adjusted for multiple ribosomes translating the same mRNA),

which for the native genes are on the order of magnitude of 104 - 105 nM , scaled by

the apparent mRNA-ribosome dissociation constants which have the order of magnitude

of 100 - 101 nM . With ma/ka and mr/kr therefore being large, any additional terms for

synthetic mRNAs being non-negative, and the scaling coefficient 1
1−ϕq

= 1
0.41

> 1 it is

reasonable to suggest that D ≫ 1. This reduces 1
D

to 0 and transforms the steady-state

ODE for the uncharged tRNA concentration into Equation (S93).

0 = ψ(T )·
(
ϵ(t

c
)

M
· Fr(T )crαr

kr(ϵ)

)
−ν(tu, σ)· caαa

ka(ϵ)
+ϵ(t

c
)·Fr(T )crαr

kr(ϵ)
−tu·

(
ϵ(t

c
)

M
· Fr(T )crαr

kr(ϵ)

)
(S93)

Following the same steps, the steady-state ODE for the aminoacyl-tRNA concentration

tc can be reduced to Equation (S94).

0 = ν(t
u
, σ) · caαa

ka(ϵ)
− ϵ(t

c
) · Fr(T )crαr

kr(ϵ)
− tu ·

(
ϵ(t

c
)

M
· Fr(T )crαr

kr(ϵ)

)
(S94)

While complex in form, Equations (S93)-(S94) only have two unknowns – the steady-

state tRNA concentrations t
u
and t

c
(the ppGpp concentration stand-in T is defined as

t
c

t
u ). Moreover, they do not contain any terms dependent on synthetic gene expression.

Therefore, the steady-state t
u
and t

c
values, which comprise the solution to the system of

these two equations, are the same regardless of which, if any, synthetic genes are present

in the cell.

Since the translation elongation rate ϵ(tc) is a function of the aminoacyl-tRNA con-

centration, whereas the ribosomal and tRNA gene transcription regulation function Fr(T )

depends on the ratio of the aminoacylated and uncharged tRNA levels, their steady-state

values are likewise unaffected by the gene expression burden. In Supplementary Figure S3,

we confirm these findings numerically by finding the steady-state values of ϵ and Fr(T )

for different nutrient qualities σ and heteorologous mRNA production rates of up to twice

the highest possible combined rate of ribosomal and metabolic gene transcript synthe-

sis. Indeed, for either of the two physiological variables, the changes in the numerically

obtained steady-state values are on the level of 10−6.
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S3.5 Estimating steady-state protein mass fractions with het-

erologous expression

If we apply the simplifying assumption from the previous Supplementary Note S3.4 to

(Model VI), it becomes possible to derive many useful analytical relations regarding the

host cell state’s interdependence with burden, as well as to analytically predict the per-

formance of synthetic gene circuits in light of resource competition. These derivations

are presented in Supplementary Notes S3.5-S3.7 and S4.4.2. To begin with, here we find

resource- and burden-aware estimates of the steady-state abundances of synthetic proteins

in the cell.

In Supplementary Note S3.4 we showed that the ribosomal gene transcription regu-

lation function Fr and the translation elongation rate ϵ are almost independent of the

heterologous gene expression burden and the parameters describing heterologous gene ex-

pression. Using the index NB to denote the “no burden” steady state values of variables

in absence of heterologous gene expression, this assumption can be written as

ϵ ≈ ϵNB, Fr ≈ F
NB

r ∀{axl}, {bxl}, {cxl}, {Fxl} (S95)
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Supplementary Figure S3: Magnitudes of changes in the steady-state values of
cellular variables due to burden. a Magnitudes of changes in the steady-state trans-
lation elongation rate ϵ caused by expressing a heterologous gene for various heterologous
DNA concentrations and culture medium’s nutrient qualities. b Magnitudes of changes
in the steady-state ribosome transcription regulation function F r caused by expressing
a heterologous gene for various heterologous DNA concentrations and culture medium’s
nutrient qualities. The heterologous gene’s parameters are given in Supplementary Ta-
ble S4. Source data are provided as a Source Data file.
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where ϵNB and F
NB

r are easily determined by numerically retrieving the steady state of

the host cell expressing no synthetic genes (i.e., simulating (Model III) for a given value

of σ). A corollary to that assumption is the notion that the mRNA-ribosome affinities

are also burden-independent, as we show in Equation (S96).

ki = ki(ϵ) =
k−i + ϵ/ni

k+i
≈ k−i + ϵNB/ni

k+i
= k

NB

i (S96)

In this case, what is the steady-state mRNA concentration for a given gene, be it

native or heterologous? From Equations (S70) and (S75), it follows that

mi =
F iciαiλ(ϵ

NB, B)

βi + λ(ϵNB, B)
∀i ∈ {a, r} ∪X (S97)

where F i is the steady-state value of gene i’s regulatory function Fi. Provided that the

mRNA decay rate is roughly the same for all synthetic genes and native gene classes – that

is, βi ≈ βj ∀i, j ∈ {a, r} ∪X – the expression from Equation (S78) for the steady-state

protein mass fraction can be rewritten to only include the gene transcription parameters

and mRNA-ribosome affinities:

ϕi =
mi/k

NB

i

1
1−ϕq

∑
j∈{a,r}∪X mj/k

NB

j

=

F iciαiλ(ϵ
NB, B)

(β + λ(ϵNB, B)) · kNBi
1

1− ϕq

∑
j∈{a,r}∪X

F jcjαjλ(ϵ
NB, B)

(β + λ(ϵNB, B)) · kNBj

⇔

⇔ ϕi = (1− ϕq) ·
F iciαi/k

NB

i∑
xl∈X

F xlcxlαxl/k
NB

xl
+
∑

j∈{a,r}

F jcjαj/k
NB

j

(S98)

Importantly, under the assumption of unchanging translation elongation rate and

ppGpp signal regulating ribosomal gene transcription, Equation (S98)’s terms for both

ribosomal and metabolic genes, which together constitute the set {a, r}, are constant and

independent of the identity and parameters of the heterologous genes being expressed. Let

us then define ξ, the “translational burden” or “translational demand” of heterologous

gene expression – that is, the extent of competition for ribosomes collectively imposed by
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all synthetic genes. This can be found by calculating the product of the copy number,

promoter strength and mRNA-ribosome dissociation constant for every heterologous gene

and adding these quantities together, as shown in Equation (S99).

ξ =
∑
xl∈X

F xlcxlαxl

k
NB

xl

(S99)

Consequently, the total mass fraction of all heterologous genes ϕX follows a relationship

akin to the Hill activation function:

ϕX(ξ) =
∑
xl∈X

ϕxl =
ξ

ξ + (
∑

j∈{a,r} F
NB

j cjαj/k
NB

j )
(S100)

The mass fraction of an individual gene is therefore given by:

ϕxl(ξ) = ϕX(ξ) ·
F xlcxlαxl/k

NB

xl∑
j∈X F jcjαj/k

NB

j

= ϕX(ξ) ·
mxl/kxl∑
j∈X mj/kj

∀xl ∈ X (S101)

As for the native genes a and r, substitution into Equation (S98) shows that their mass

fractions, conversely, obey a Hill repressor function-like law:

ϕi(ξ) = (1− ϕq) ·
F
NB

i ciαi/k
NB

i

ξ +
∑

j∈{a,r}

F jcjαj/k
NB

j

∀i ∈ {a, r} (S102)

S3.6 Estimating steady-state growth rate with heterologous gene

expression

From the previous section, we have an intuition how the steady-state protein mass frac-

tions are affected by the translational burden of expressing heterologous genes. We now

use this knowledge to find how burden influences cell growth. Let us recall the definition

of growth rate λ from Supplementary Table S2. In steady state, it yields:

λ = λ(ϵNB, B) =
ϵNB ·B
M

Let us assume that the share of free ribosomes is negligible – indeed, even without het-

erologous mRNA transcription, at high nutrient qualities D is very high (on the order of

104), so the share of ribosomes not engaged in translation, 1
1+D

, is insignificant. Then, we
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have B ≈ R, which transforms the expression for the steady-state growth rate into

λ ≈ ϵNB ·R
M

⇔

⇔ λ(ξ) =
ϵNB

nr
· ϕr(ξ) =

ϵNB(1− ϕq)

M
· F

NB

r crαr/k
NB

r

ξ +
∑

j∈{a,r}

F
NB

j cjαj/k
NB

j

(S103)

This is similar in form to the Hill relationship between the heterologous gene expression

burden and the steady-state growth rate observed by McBride et al. [1]. Meanwhile, the

ratio between the growth rates with and without heterologous gene expression burden can

be found as shown in Equation (S104). This matches the linear-like relationship between

the growth rate and heterologous protein mass fraction observed by Scott et al. [10].

λ(ξ)

λ
NB

≈

ϵNB(1− ϕq)

M
· F

NB

r crαr/k
NB

r

ξ +
∑

j∈{a,r}

F
NB

j cjαj/k
NB

j

÷

ϵNB(1− ϕq)

M
· F

NB

r crαr/k
NB

r∑
j∈{a,r}

F
NB

j cjαj/k
NB

j

⇔

⇔ λ(ξ)

λ
NB

≈

∑
j∈{a,r}

F
NB

j cjαj/k
NB

j

ξ +
∑

j∈{a,r}

F
NB

j cjαj/k
NB

j

= 1− ξ

ξ +
∑

j∈{a,r}

F
NB

j cjαj/k
NB

j

⇔

⇔ λ(ξ)

λ
NB

≈ 1− ϕX(ξ)

1− ϕq
(S104)

S3.7 Maximizing heterologous protein production

A prominent application of synthetic biology is bioproduction of valuable proteins [21].

In order to ensure the process’s cost-efficiency, it is thus desirable to maximise the yield

of the protein produced by a population of cells in a bioreactor. A key hindrance to

achieving this, however, is the need to balance high protein synthesis rates with small

gene expression burden. Indeed, while a single cell can be made to produce a lot of
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protein, severe impairment of growth by high heterologous gene expression would mean

that the cell population expands very slowly, so the overall rate of protein production

would in fact be low [22].

The relations derived in Supplementary Note S3.5 and S3.6 can be leveraged to address

this issue. Let us define a simple model of a homogeneous population of E. coli cells, dying

at a constant rate δ [2], where N denotes the overall number of cells and λ is the cell

growth rate as predicted by our model (Equation (S105)).

Ṅ = λN − δN (S105)

If the bacteria express a single gene poi encoding the intracellular protein of interest

and are in steady state, how would we approach maximizing the protein yield? Protein

production per cell is commonly characterized as the product of the amount of protein

in one cell and the rate at which the population expands [23]. Under our model, this is

equal to:

µ =M · ϕpoi · (λ− δ) (S106)

Since the steady-state growth rate can be estimated with the help of Equation (S104),

we can make a substitution to obtain:

µ ≈M · ϕpoi ·

(
λ
NB

(
1−

ϕpoi

1− ϕq

)
− δ

)
⇔

⇔ µ ≈ − λ
NB

1− ϕq
Mϕ

2

poi +M(λ
NB − δ)ϕpoi (S107)

This is a quadratic expression, so the value of ϕpoi that maximizes it can be easily

calculated as:

ϕ
max

poi =
1

2

(
1− ϕq

)(
1− δ

λ
NB

)
(S108)

Knowing this value, we can use Equation (S100) to find the translational burden

ξmax corresponding to the optimal heterologous protein mass fraction. This allows to

ensure maximum protein production by imposing a condition on the synthetic gene’s

mRNA-ribosome dissociation constant, gene copy number and promoter strength, which
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we provide below.

ϕpoi(ξmax) = ϕ
max

poi ⇔

⇔ cpoiαpoi

k
NB

poi

= ξmax =
1− δ/λ

NB

1 + δ/λ
NB

·
∑
j∈{a,r}

F jcjαj

k
NB

j

(S109)
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S4 Biocircuit modeling

In this section, we define the ODEs for the synthetic gene circuits considered in the article.

We also provide derivations of the analytical relations that can guide biocircuit design

and show the results of simulations that were conducted in addition to those described in

the main text.

S4.1 Feasible synthetic gene parameter ranges

In order to simulate the circuit ODEs, the parameters found in them must be assigned

with realistic values. For the sake of simplicity, generic values (equal to those for the native

metabolic genes) were chosen for all synthetic gene lengths {nxl} and mRNA degradation

rates {βxl}, as well as mRNA-ribosome binding and dissociation rates {k+xl} and {k−xl}.

All synthetic genes were also assumed to be hosted by high-copy number plasmids, hence

us setting the gene concentrations to be {cxl = 100 nM} when gene copy numbers were

not varied.

Numerous constitutive [24], inducible [25, 26], and repressible [27] synthetic promoters

of different strengths have been defined and characterized over the past years. To define

the feasible range of strengths for a given type of promoter, we therefore considered

the weakest and the strongest promoter in a corresponding published library. Promoter

strengths for these collections were given in relative promoter units (RPU) with respect

to the J23101 promoter. While the exact conversion between RPU and the absolute rate

of mRNA synthesis is dependent on measurement conditions, a rough order-of-magnitude

estimate makes 1 RPU equivalent to 0.03 mRNA molecules being transcribed per second

[24]. The promoter strengths in RPU were thus converted into our dimensionless α

values by estimating the absolute mRNA synthesis rates, then dividing them by the cell

growth rate at the time of measurement (since in our model the rate of transcription is

proportional that of cell growth), and finally scaling them by nxl/25 = 300/25 to account for

the translation of a single transcript by multiple ribosomes as outlined in Supplementary

Note S2.3. In line with our choice of gene concentrations, when promoter strengths were

separately measured for plasmids with different copy numbers [27], we used the data

for the highest-copy number plasmids. The calculated feasible promoter strength ranges,

along with the realistic ranges of values for other parameters characterizing synthetic gene
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transcription regulation, are displayed in Supplementary Table S5.

An exception to the considerations in this section is the T7 RNA polymerase (T7

RNAP) gene t7, whose length nt7 = 883 aa is much larger than the generic value of

300 aa, and mRNA degradation rate is known to be different from those of E. coli ’s

native proteins [20]. As for the plasmid copy number, the toxicity of T7 RNAP made us

choose a low-copy number plasmid (ct7 = 5 nM) as a more realistic vector for it.

Supplementary Table S5: Feasible ranges for the synthetic gene circuit simulation
parameters.

Param. Description Min. Max. Units Source

αxl Constitutive promoter strength 40 2,500 nM [24]
αxl Inducible promoter strength 35.8 6,700 nM [25]
αxl Repressible promoter strength 320 4,750 nM [27]
Kdnaxl

Half-saturation constant for
protein-inducer binding

10−2 104 nM [7]

Kindxl
Half-saturation constant for
transcription factor-inducer
binding

10−2 104 nM [7]

Fxl,0 Gene transcription regulation
function value in absence of in-
ducer

≈ 0 0.2 None [26]

ηxl Cooperativity coefficient
for the transcription factor-
promoter DNA binding

1 5 None [26]

S4.2 Two bistable switches exhibiting “winner-takes-all” behav-

ior

S4.2.1 Description

To demonstrate that our model captures known resource competition phenomena, we

considered the case of two synthetic self-activating genes being present in the same cell.

Here, “self-activation” means that the protein encoded by a gene can bind a corresponding

inducer molecule to form a complex that acts as a transcription activation (TA) factor

for the same gene. On its own, such a gene can act as a bistable switch due to having

two different stable steady states, one with high gene expression and the other with

low expression. Meanwhile, two switches in the same cell may exhibit “winner-takes-all”

behavior – that is, if one gene reaches its high-expression equilibrium faster than the other,
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the increased resource competition from it can prevent the second gene from becoming

highly expressed [28].

For simplicity, we characterized the two synthetic self-activating genes s1 and s2 by

the same parameter values, displayed in Supplementary Table S6. The ODEs describing

their expression mirrored the generic Equations (S75) and (S76) for heterologous mRNA

and protein concentrations, hence:

ṁs1 = Fs1(fs1 , ps1) · cs1αs1 − (βs1 + λ(ϵ, B))ms1 (S110)

˙ps1 =
ϵ(tc)

ns1
· ms1/ks1
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · ps1 (S111)

ṁs2 = Fs2(fs2 , ps2) · cs2αs2 − (βs2 + λ(ϵ, B))ms2 (S112)

˙ps2 =
ϵ(tc)

ns2
· ms2/ks2
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · ps2 (S113)

where the transcription regulation function for gene si is defined as:

Fsi(fi, psi) =

Fsi,0 ·K
ηi
dnai

+

(
fi

Kindi + fi
· psi

)ηi
Kηi
dnai

+

(
fi

Kindi + fi
· psi

)ηi (S114)

Here, fi is the inducer concentration. To simulate the activation of a switch at time

tinduction, we made it follow a step function of time t (Equation (S115)). In order to

investigate different possible behaviors of the system, different combinations of the two

genes’ added inducer concentrations, f1 and f2, were considered as outlined in the main

text.

fi(t) =

0, if t < tinduction

fi, otherwise
(S115)

S4.2.2 Additional simulations

For a system of two self-activating bistable switch genes in the same host cell, additional

simulations were performed besides those discussed in the main text’s Results section and

displayed in the main text’s Figure 4b. The details of these numerical experiments are

outlined in this section.
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Supplementary Table S6: Parameters of the synthetic self-activating genes. Pa-
rameter values were chosen in line with the feasible ranges from Supplementary Table S5.

Parameter Description Value Units

csi Gene copy number 100 nM
αsi Promoter strength 3,000 None
βsi mRNA degradation rate 6 h−1

k+si mRNA-ribosome binding rate 60 1
nM ·h

k−si mRNA-ribosome dissociation rate 60 h−1

nsi Number of amino acids in protein pi 300 aa/nM

Gene transcription regulation function
Fsi,0 Baseline function value in absence of inducer 0.05 None
Kindi Half-saturation constant for protein-inducer

binding
1, 000 nM

Kdnai Half-saturation constant for the TA factor-
promoter DNA binding

5, 000 nM

ηi Cooperativity coefficient for the TA factor-
promoter DNA binding

2 None

In the main text, we discussed the winner-takes-all phenomenon exhibited by the

described system, where the switch that reaches a high-expression equilibrium first (the

“winner”) prevents the other switch from becoming activated due to resource couplings.

In Figure 4b, we demonstrated this by varying the concentration of the first self-activating

gene’s inducer, f1. Since the gene with a higher inducer concentration becomes activated

first, setting f1 lower than that the second gene’s inducer concentration f2 led to the

second switch “winning”. Conversely, for f1 > f2 the first switch gene prevailed while the

expression of the second remained low [28].

To demonstrate that tuning the inducer’s concentration indeed allows to manipulate

the timescale of the corresponding switch’s activation, in Supplementary Figure S4a we

plotted the evolution of a switch protein’s concentration over time upon the addition of

different concentrations of the inducer (f1) to the medium. Indeed, it can be seen that

higher f1 values cause the system to converge to its high-expression equilibrium faster.

Importantly, if resource competition from another synthetic gene prevents activation from

ever occurring, observing its speed would be impossible. Supplementary Figure S4a there-

fore considers the case of a single bistable switch being present in the cell, whereas the

concentration of the second switch gene’s DNA is set to zero.

According to Supplementary Figure S4a, increasing the inducer’s concentration not

only speeds up a switch’s activation, but also shifts the position of the high-expression
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equilibrium towards greater protein concentrations. We therefore aimed to show that

the winner-takes-all phenomenon is primarily enabled by the disparity in the switches’

activation timescales rather than unequal protein expression levels in the activated state.

To this end, one can activate the two switches in different order – but without altering

the inducer levels – to make the system converge to qualitatively different steady states

[28]. We reproduce this observation in Supplementary Figure S4b–d: while inducing both

switch genes simultaneously leads to co-activation (Supplementary Figure S4c), activating

one switch ahead of the other makes it converge to the high-expression equilibrium as the

other switch remains unactivated due to the winner-takes-all phenomenon (Supplementary

Figure S4b and d).

At the same time, the extent of switch protein expression must still have a significant

effect on winner-takes-all behavior. Indeed, since the phenomenon in question is enabled

by gene expression burden, resource competition exerted by the switches must be great

enough to significantly affect gene expression. To investigate the relationship between

winner-takes-all behavior and the burden caused by the switch genes, we repeated the

simulation outlined above but scaled the genes’ promoter strengths by a factor of 1/υ,

since a weaker promoter means that fewer mRNA molecules are transcribed, so fewer

transcripts compete for ribosomes. As decreasing transcription rates also reduces the

overall amount of protein produced, the half-saturation constants for DNA-transcription

factor binding were scaled, too – otherwise, psi could be too low compared to Kdnai for the

switch to exhibit bistability. All other parameters remained as given in Supplementary

Table S6. Supplementary Figure S4 shows that as υ increases, the effect of higher inducer

1 concentrations on the second gene’s expression becomes less significant. Accordingly,

when υ = 5 or υ = 10, no system equilibria for 4 nM ≤ f1 ≤ 8000 nM are associated with

low ps2 values. Hence, even a much faster-activated first switch cannot sequester enough

translational resources to prevent the second switch from becoming activated. Numerical

simulations conducted with the help of our model can therefore not only capture the well-

known winner-takes-all resource competition phenomenon, but also allow to determine if

it will be exhibited for a given combination of design parameters. However, it is important

to note that in vivo a switch circuit is affected not only by resource couplings but also

by other factors, such as the stochasticity of gene expression, which can also significantly

alter its behavior [29].
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Supplementary Figure S4: Additional simulations for the winner-takes-all phe-
nomenon. a Simulations of a single bistable switch in the host cell activated by different
concentrations of the corresponding inducer molecule in the medium. c–d Simulation of
a system of two bistable switches hosted by the same cell and activated in different order.
In all cases, the concentrations of both inducers used to activate the switches were taken
to be identical, i.e., f1 = f2 = 20 nM . e Phase plane diagram for the system of two
self-activating bistable switch genes with the promoter strengths and DNA-transcription
factor binding half-saturation constants scaled by 1/υ for different values of υ. Bold cir-
cles joined by lines show the system’s steady states in presence of 20 nM of inducer 2
and concentrations of inducer 1 ranging between 4 nM and 8000 nM . The arrows on
the lines point in the direction of increasing inducer 1’s concentration, f1. Unless stated
otherwise, all circuit parameters were sourced from Supplementary Table S9. Source data
are provided as a Source Data file.

S4.3 A bistable non-cooperative self-activator

S4.3.1 Description

To show how our model captures the interplay between synthetic gene circuit performance

and the host cell’s growth, we turned to the example of a non-cooperative self-activator

(see the main text, Figure 4c). While the existence of two stable equilibria for a self-

activating gene is conditional on cooperativity, experiments show that the slowdown of

cell growth due to synthetic gene expression can introduce an additional feedback loop and

lift this requirement [30]. Recreating this phenomenon, we therefore model the expression

of a heterologous T7 RNAP gene by the E. coli cell.

The ODE for the corresponding mRNA’s concentration mt7 is defined in the vein of

Equation (S75) for generic heterologous transcripts with a single important distinction

that the rate of mRNA synthesis is not proportional to the cell’s growth rate (hence the

units of the promoter strength αt7 being h−1). Indeed, a likely source of this propor-

tionality for the cell’s native mRNA are changes in the availability of the σ70 factor [31],

which enables the functioning of the bacterial RNAPs but is not relevant for the T7 phage

RNAP [32]. This yields:

ṁt7 = Fxl · cxlαxl − (βxl + λ(ϵ, B))mxl (S116)

The gene transcription regulation function for the gene captures the effect of T7

RNAP’s abundance on the rate of mRNA synthesis with a Michaelis-Menten expression

(Equation (S117)) [30], which is non-competitive because no other genes are transcribed
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by the T7 RNAP.

Ft7(fi, pt7) =
Ft7,0 ·Kt7 + pt7

Kt7 + pt7
(S117)

Since the T7 RNAP decays in the cell at a rate comparable to that of cell growth,

we modify the model to account for protein degradation as outlined in Supplementary

Note S3.2. The ODE for the T7 RNAP protein concentration is therefore given by Equa-

tion (S118).

˙pt7 =
ϵ(tc)

nt7
· mt7/kt7

1 +

∑
j∈{a,r}∪X mj/kj − ϕq

δt7nt7pt7
M

1− ϕq (1− δt7nt7pt7/M)

·R− λpt7 − δt7pt7 (S118)

A key component of the non-cooperative self-activator’s emergent bistability is its

toxicity to the host cell [20]. While part of T7 RNAP-based gene expression systems’

impact on the cell’s viability can be attributed to their demand for ribosomes and tRNAs,

which our cell model captures explicitly, they also interfere with the host’s amino acid

metabolism [33]. We account for the latter effect using a Hill relation, redefining the

aminoacyl-tRNA synthesis rate as

ν(tu, σ) = νmax · σ · tu

tu +Kν

· 1

1 + γtoxpt7
(S119)

where γtox is the inverse of the Hill constant quantifying the toxicity of the T7 RNAP for

the cell. The values of this and other parameters characterizing this circuit are given in

Supplementary Table S7.

S4.3.2 Additional simulations

In order to study whether the system’s bistability depends on the toxicity of T7 RNAP,

we started by setting γtox to different values and simulating the circuit’s behavior for a

wide range of initial synthetic protein concentrations. As it can be seen in Supplementary

Figure S5a–b, when T7 RNAP is non-toxic or weakly toxic, all initial conditions – even

pt7 = 104 nM , which is four times greater than the high-expression fixed point in the

main text’s Figure 4d – converge to a low-expression equilibrium. When γtox is consider-

ably greater than the value of 0.03 nM−1 from Supplementary Table S7, all trajectories,

conversely, converge to a high-expression equilibrium (Supplementary Figure S5c). This
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Supplementary Table S7: Parameters of the T7 RNAP gene.

Parameter Description Value Units

ct7 Gene copy number 5∗ nM
αt7 Promoter strength 170 [20] h−1

βt7 mRNA degradation rate 16.64 [20] h−1

k+t7 mRNA-ribosome binding rate 60 [2] 1
nM ·h

k−t7 mRNA-ribosome dissociation rate 60 [2] h−1

nt7 Number of amino acids in protein pi 883 [20] aa/nM
δt7 T7 RNAP protein degradation rate 0.18 [20] h−1

γtox Toxicity of T7 RNAP 0.03 [20] nM−1

Gene transcription regulation function
Ft7,0 Baseline function value in absence of inducer 0.0016 [20] None
Kt7 Dissociation constant between the T7 RNAP and

the T7 promoter
550 [20] nM

∗ Gene borne by a low-copy number plasmid.

hints that the non-cooperative self-activator is only bistable for a certain range of T7

RNAP toxicity values.

In order to obtain a more comprehensive bifurcation analysis and ensure that our re-

sults in Supplementary Figure S5a–c were not merely caused by shifts in the boundary

between the two stable equilibria’s basins of attraction, we turned to control-based con-

tinuation (CBC). Recently established as a means for studying biological systems [34], it

allows to trace a system’s bifurcation curve for a given parameter. To this end, the bifur-

cation parameter (in our case, γtox) is treated as a control input, which enacts feedback

to drive a state variable (in our case, pt7) to a desired reference value. Once the system

converges to a steady state – possibly with a non-zero error between the state and the ref-

erence if solely proportional feedback is applied – its position on the bifurcation diagram

is recorded and the next reference value is set. Due to feedback’s stabilizing effect, the

obtained sequence of recorded steady states yields the system’s both stable and unstable

equilibria, therefore allowing to reconstruct its bifurcation curve.

Our CBC algorithm, summarized in Algorithm S2, was implemented as a Matlab

script which can be found with the rest of our code at https://github.com/KSechkar/

rc_e_coli [35]. Notably, our program is not specific to the T7 RNAP circuit and can

be easily modified to numerically probe an arbitrary circuit’s bifurcations with respect

to a given parameter, which can be particularly useful in studying burden-related phe-

nomena. The bifurcation diagram obtained by running this code for our case is displayed
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in Supplementary Figure S5d, whereas the reference values, the CBC trajectory and the

feedback gains used are given by Supplementary Figure S5e–g.

The bifurcation curve in Supplementary Figure S5d is consistent with the system

being bistable only for a particular range of parameter values [34]. Starting with a single

low-expression equilibrium when γtox is zero or very small (as we see in Supplementary

Figure S5a–b), it then undergoes a saddle-node bifurcation at around 0.007 nM−1, so

three equilibria arise. The ones at the highest and lowest pt7 values are stable, whereas

the middle equilibrium is unstable and serves as a boundary between the other two fixed

points’ basins of attraction (but can be retrieved by CBC due to stabilizing feedback).

This region – which contains γtox = 0.03 that gave rise to the main text’s Figure 4d–

e – is where the phenomenon of burden-induced emergent bistability is observed. As

γtox is increased further, another bifurcation occurs at γtox ≈ 0.109 nM−1, rendering the

system monostable once more, but now with the equilibrium at high pt7 values, like we

see in Supplementary Figure S5c. These observations are consistent both with the results

obtained by Tan et al. [30] who identified the phenomenon in question, and with prior

cell modeling studies that aimed to capture the behavior of a self-transcribing T7 RNAP

in the host cell [20].

Algorithm S2 CBC algorithm used with our model. Here, Pt7 =
{pref,1t7 , pref,2t7 , . . . , pref,Jt7 } is the list of reference values tracked by CBC; Kj

p is

the feedback gain used for the reference pref,jt7 ; t is the simulation time in hours; v is
the vector capturing the state of the entire system like in Algorithm S1. The results
in Supplementary Figure S5 were obtained with the sampling step ∆t = 0.05 h, initial
simulation time tinit = 960 h and initial toxicity γtox = 0.13 nM−1. For a given reference,
the CBC system was assumed to reach equilibrium after having been simulated for a
fixed time [34] teq = 240 h (4, 800 sampling steps).

Get the system’s steady state vinit for γtox = γinittox by simulating it for tinit hours
Set v = vinit, γtox = γinittox , t = 0 h, j = 1
while j ≤ J do

while t < j × teq do
Get pt7 from v
Set γtox = Kj

p(p
ref,j
t7 − pt7)

Update v by simulating the system for ∆t hours, starting at the old v
Set t = t+∆t

end while
Get pt7 from v
Record Ej = (pt7, γtox) as the system’s equilibrium for reference pref,jt7

end while
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Supplementary Figure S5: Dependence of the non-cooperative self-activator’s
equilibria on T7 RNAP’s toxicity. a–c Simulations of the system’s behavior for
different γtox values starting at mt7 = 5 nM and six different initial concentrations of pt7,
logarithmically spaced between 1 nM and 104 nM . d The non-cooperative self-activator’s
bifurcation curve for γtox values. e CBC time evolution of pt7 and the corresponding con-
trol reference signal. f CBC time evolution of γtox. g Proportional feedback gains used
over the course of CBC simulations – due to the lack of general and systematic meth-
ods for CBC controller design [34], this value was determined by trial and error for each
reference so as to yield stable. All simulation parameters besides γtox were taken from
Supplementary Table S7. Source data are provided as a Source Data file.
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S4.4 An integral feedback controller for mitigating burden

S4.4.1 Description

Here, we consider the antithetic integral feedback (AIF) controller that maintains a con-

stant level of competition for ribosomes in the cell and thus a constant growth rate. This

circuit’s working principle is outlined in the main text’s Results section.

Briefly, it consists of four genes: the “sensor” sens, the “actuator” act, the “annihi-

lator” anti and the “amplifier” amp. The actuator is a constitutive gene, whose mRNA

mact can be translated to produce the regulatory protein pact that activates the expression

of the amplifier gene’s mRNA mamp. As the amplifier gene’s maximum transcription rate

is chosen to be high, mamp significantly contributes to competition for the cell’s transla-

tional resources by binding ribosomes in order to be translated into a non-toxic protein

pamp. Meanwhile, the sensor gene is constitutive and encodes a repressor protein psens,

which regulates the transcription of the annihilator RNAmanti. Sincemanti is an antisense

RNA strand binding and inactivating mact, it affects the production of mamp. Therefore,

the cell’s resource competition landscape is manipulated in response to resource coupling-

induced changes in the expression of the constitutively expressed protein psens. Assuming

non-cooperative binding of all transcription factor proteins to the promoter DNA of the

genes that are regulated by them, the transcription regulation functions are as follows:

Fsens ≡ Fact ≡ 1, Fanti =
Ksens

Ksens + psens
, Famp =

pact
Kact + pact

(S120)

The ODEs describing the system are given in Equations (S121)-(S127). As for the

model’s parameters, different genes’ copy numbers and maximum transcription rates ci

and αi can be multiplied together as shown in Supplementary Table S8 to yield quantities

that are more informative of the controller’s behavior. We thus use the parameters ζ, u, κ,

and χ in model equations and in Supplementary Table S9 displaying the values of the

model parameters.

ṁsens = ζλ(ϵ, B)− (βsens + λ(ϵ, B))msens (S121)

ṁanti = Fantiκλ(ϵ, B)− (βanti + λ(ϵ, B))manti − θmactmanti (S122)
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ṁact = uκλ(ϵ, B)− (βact + λ(ϵ, B))mact − θmactmanti (S123)

ṁamp = Fampχλ(ϵ, B)− (βamp + λ(ϵ, B))mamp (S124)

ṗsens =
ϵ(tc)

nsens
· msens/ksens
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · psens (S125)

ṗact =
ϵ(tc)

nact
· mact/kact
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · pact (S126)

ṗamp =
ϵ(tc)

namp
· mamp/kamp
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · pamp (S127)

We are also interested in observing how the controller mitigates external disturbances

in the form of additional competition form other heterologous genes’ mRNAs. Here,

we investigate the simplest-possible case of one additional heterologous gene dist, whose

transcription is controlled by a function Fdist that rises linearly from 0 (no disturbance)

to 1 (full expression of disturbing mRNA) over a brief period of 0.1 h and then stays at

Fdist = 1. This setup models an abrupt increase in the number of mRNAs competing for

ribosomes, which the AIF controller is expected to counter by decreasing the concentration

of another competing species mact. Since the disturbing gene’s transcript and protein

are not involved in any additional reactions besides transcription, translation, dilution

and mRNA degradation, ODEs describing the dynamics of the corresponding mRNA

concentration mdist and protein concentration pdist are trivial and can be readily obtained

from (Model VI)’s Equations (S75)-(S76) by replacing the generic xl index with dist:

˙mdist = Fdistcdistαdistλ(ϵ, B)− (βdist + λ(ϵ, B))mdist (S128)

˙pdist =
ϵ(tc)

ndist
· mdist/kdist
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · pdist (S129)

In the main text’s Figure 9, we simulate how our controller enhances the modular-

ity of synthetic gene circuits by conferring an inducible genetic module with robustness

to changes in resource availability. This inducible module consists of the transcription

activation (TA) factor encoded by the gene ta, and the output gene x. When bound

to an inducer molecule, present in the medium in the concentration f , the transcription

activation factor upregulates the output gene’s expression cooperatively. Therefore, this

module’s expression dynamics are given by Equations (S130)-(S133).
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ṁta = ctaαtaλ(ϵ, B)− (βta + λ(ϵ, B))mta (S130)

˙pta =
ϵ(tc)

nta
· mta/kta
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · pta (S131)

ṁx = Fx(f, pta) · cxαxλ(ϵ, B)− (βx + λ(ϵ, B))mx (S132)

ṗx =
ϵ(tc)

nx
· mx/kx
1 + 1

1−ϕq

∑
j∈{a,r}∪X mj/kj

R− λ(ϵ, B) · px (S133)

Here, the output gene’s transcription regulation function is given by Equation (S134). The

parameters for the disturbing gene and the inducible module are given in Supplementary

Table S9 alongside those for the antithetic feedback controller itself.

Fx(f, pta) =

Fx,0 ·Kη
dna +

(
f

Kind + f
· pta

)η
Kη
dna +

(
f

Kind + f
· pta

)η (S134)

Supplementary Table S8: Calculation of informative model parameters from gene
copy numbers and promoter strengths.

Variable Description Formula Units

ζ Total transcription rate of sensor mRNA csensαsens nM∗

κ Maximum total transcription rate of
annihilator RNA

cantiαanti nM∗

χ Maximum total transcription rate of
amplifier RNA

campαamp nM∗

u Value of Fanti enforced by the controller
(has one-to-one correspondence with the set-
point psens value defined by Equation (S120))

cactαact
cantiαanti None

∗ Transcription rates given in the units of nM because in Equations (S121)-(S124) the
mRNA production rate is calculated by multiplying these parameters by the cell growth
rate λ (units of h−1).
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Supplementary Table S9: Parameters for simulating the synthetic AIF controller
circuit described by Equations (S123)-(S125). Parameter values were chosen in line
with the feasible ranges from Supplementary Table S5.

Parameter Description Value Units

ζ Total transc. rate of sensor mRNA 5 · 103 nM
κ Max. total transc. rate of annihilator RNA 8 · 104 nM
u Value of Fanti enforced by the controller 0.5 None
χ Max. total transc. rate of amplifier mRNA 4 · 105 nM
θ Actuator-annihilator binding rate 300 1

nM ·h
Ksens Half-saturation constant for psens-annihilator

promoter DNA binding
7, 000 nM

Kamp Half-saturation constant for pact-amplifier
promoter DNA binding

700 nM

βi mRNA degradation rate∗ 6 h−1

k+i mRNA-ribosome binding rate‡ 60 1
nM ·h

k−i mRNA-ribosome dissociation rate‡ 60 h−1

ni Number of amino acids in protein pi
ℵ 300 aa/nM

Disturbance gene
cdist Disturbing gene’s copy number 100 nM
αdist Max. transcription rate for disturbing gene 500 None

Inducible genetic module
cta TA factor gene’s copy number 100 nM
αta TA factor gene’s promoter strength 50 None
cx Output gene’s copy number 100 nM
αx Output gene’s promoter strength 50 None
Fx,0 Baseline function value in absence of inducer 0.1 None
Kind Half-saturation constant for protein-inducer

binding
1, 000 nM

Kdna Half-saturation constant for the TA factor-
promoter DNA binding

7, 000 nM

η Cooperativity coefficient for the TA factor-
promoter DNA binding

2 None

Culture medium
σ Culture medium’s nutrient quality 0.5 None
∗Same generic value, equal to that for native metabolic genes a, for all genes.
‡Same generic value, equal to that for native metabolic genes a, for all protein-encoding
genes act, sens, dist, ta, and x. Undefined for the annihilator gene anti, as it is not
translated.
ℵSame generic value, equal to that for native metabolic genes a. For the annihilator gene
anti, which is not translated, defined as the number of base triplets in the transcript.
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S4.4.2 Estimating the controller’s setpoints and operation range

With the actuator’s and the annihilator’s synthesis rates proportional to u and Fanti, the

error reacted upon by the antithetic integral feedback is the difference between these two

values [36]. According to Equation (S120), the setpoint value of the controlled variable

psens, achieved when the error is equal to zero, is equal to:

psens = Ksens ·
1− u

u
(S135)

However, our model can provide more insights into the controller’s performance than

just this setpoint concentration of psens. Namely, knowing the circuit parameter values

and using the derivations from Supplementary Note S3, we can calculate the values of the

resource competition denominator D (quantifying the extent of competition for ribosomes

in the cell) and the growth rate λ enforced by the controller. Furthermore, it is possible

to find the controller’s operation range boundary – that is, the maximum gene expression

burden that it can mitigate.

The dilution and degradation ofmact andmanti lead to the phenomenon of “leakiness”,

which prevents the antithetic integral feedback controller from reaching perfect adapta-

tion. In the idealized case, however, leakiness can be neglected [37], allowing to assume

a zero steady-state error. Making this simplification in order to obtain easily calculable

analytical estimates for D and λ, we obtain:

 ṁact ≈ λκu− θmactmanti = 0

ṁanti ≈ λκFanti − θmactmanti = 0
⇒ κu = κFanti ⇔

⇔ ϕsens =
psensnsens

M
=
nsens
M

·Ksens ·
1− u

u
(S136)

According to Equation (S78), it can thus be observed that

nsens
M

·Ksens ·
1− u

u
=
msens/k

NB

sens

D − 1
⇔

⇔ D − 1 =
msens

k
NB

sens

·
(
nsens
M

·Ksens ·
1− u

u

)−1

(S137)

Then, by assuming that the share of idle ribosomes is negligible (likewise to Supple-
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mentary Note S3.6), we obtain:

λ =
ϵNB

M
B ≈ ϵNB

M
R ⇔ λ ≈ ϵNB

M
· M
nr

· mr/k
NB

r

D − 1
⇔

⇔ λ ≈ ϵNB

nr
· mr

k
NB

r

·

(
msens

k
NB

sens

)−1

· nsens
M

·Ksens ·
1− u

u
(S138)

Now, let us use substitute the formula for steady-state mRNA concentrations from

Equation (S97) for the sensor and ribosomal gene transcripts. Assuming the two mRNAs

have similar degradation rates, we make the following simplification:

mr

msens

=
F
NB

r crαrλ

λ+ βr
·
(

ζλ

λ+ βsens

)−1

=
F
NB

r crαr
ζ

(S139)

Substituting Equation (S139) into Equation (S138), we finally obtain a formula for

the steady-state growth rate of the cell:

λ ≈ ϵNB

M
· FNB

r crαr ·
nsensk

NB

sens

nrk
NB

r

· Ksens

ζ
· 1− u

u
(S140)

Knowing the growth rate, from Equation (S121) we can find the steady-state value of

the sensor gene mRNA as

msens =
λζ

λ+ βsens
(S141)

which in turn can be plugged into Equation (S137) to yield an estimate for the value of

D — that is, the extent of resource competition maintained by the controller:

D = 1 +
λζ

(λ+ βsens)k
NB

sens

·
(
nsens
M

·Ksens ·
1− u

u

)−1

(S142)

Moreover, with the growth rate known, we can find the total steady-state level of the

actuator and amplifier mRNAs. This is useful because the controller combats the effects

of the appearance of extra competing heterologous mRNAs by decreasing mamp. The

abundance of the actuator mRNA mact is likewise decreased in this case, albeit this has

more relevance for regulating the amplifier gene’s expression via pact levels rather than

for its direct contribution to resource competition, which is small relatively to that of

mamp. The maximum possible total concentrations of mamp and mact are thus achieved in

the case of no heterologous gene expression. Meanwhile, since the actuator mRNA level
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cannot be decreased below zero, the value of

max

(
mact

kact
+
mamp

kamp

)
defines the controller’s operation range. By recalling Equations (S136), (S78) and (S97),

we can find this sum for the case of no heterologous genes being expressed (besides those

comprising the controller). Yielded by the formula in Equation (S143), it gives rise to the

definition of our controller’s operating range in the main text.

nsens
M

·Ksens ·
1− u

u
= (1− ϕq) ·

msens/k
NB

sens

mact/k
NB

act +mamp/k
NB

amp +
∑

j∈{a,r,sens}mj/k
NB

j

⇔

⇔ mact

k
NB

act

+
mact

k
NB

act

=
(1− ϕq)Mζλ

Ksensnsensk
NB

sens(λ+ βsens)
· 1− u

u
−

∑
j∈{a,r,sens}

F
NB

j cjαjλ

k
NB

j (λ+ βj)
(S143)
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S4.4.3 Additional simulations

Here, we provide the outcomes of additional simulations of our controller’s behavior be-

sides those given in the main text’s Results section. We consider how the controller

behaves in presence of time-varying (namely, oscillating) disturbance, as well as how it is

affected by parameter uncertainty and the stochasticity of gene expression. Finally, we

show how changing the circuit’s parameters allows to eliminate the effects of leakiness at

the cost of stability. Likewise to the numerical experiments described in the main text,

all circuit parameters were taken from Supplementary Table S9 unless stated otherwise.

Supplementary Figure S6 demonstrates our controller’s response to a time-varying

perturbation in the form of a disturbing gene whose expression oscillates over time (e.g.,

due a sine wave optogenetic signal being applied to the cell). We simulate this case

with the same Ordinary Differential Equations (S121)-(S129) that we used to simulate a

constant perturbation in the main text’s Figure 7, except that now the disturbing gene’s

transcription regulation function oscillating between 0 and 1 as defined by

Fdist(t) =


0, if t < 0

0.5 + 0.5sin(
2πt

Π
− π

2
), otherwise

(S144)

where t is the time since the introduction of disturbance, Π is the oscillation period of 2.5 h,

and the phase shift of π
2
ensures that Fdist(0 h) = 0 for to ensure the gene transcription

regulation function’s continuity in time. As it can be seen in Supplementary Figure S6c-e,

the antithetic integral feedback controller not only reduces the adaptation error, rendering

the controlled variable, cell growth rate, and the resource competition denominator closer

to their pre-disturbance variables, but also reduces their fluctuations once the disturbing

gene starts being expressed. Indeed, the amplitude of the fluctuations of psens in the

closed-loop system is more than 1.8-fold smaller than that in the open-loop case (i.e., in

the case when canti = cact = camp = 0).

Given that the parameter fit for our cell model has been found to be sloppy (see Sup-

plementary Note S2), it was important to verify that the controller’s performance is not

significantly affected by parameter uncertainty. To this end, we drew 100 samples from

the probability distribution yielded by our MCMC fitting algorithm, reparameterized the

model using the sampled parameter values, simulated the circuit’s reaction to disturbance
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according to Equations (S121)-(S129), and plotted the resultant trajectories in Supple-

mentary Figure S7a–c. It can be seen that the closed-loop system robustly outperforms

the open-loop configuration for all 100 combinations of values of the cell model’s fitted

parameters αr : αa, Kν = Kϵ, and νmax (while the chloramphenicol-ribosome binding rate

constant’s value was also sampled from the distribution, it bore no effect on our simu-

lations due to no antibiotic being present in the culture medium). Moreover, across the

cases considered, the adaptation error stays remarkably consistent, varying by less than

1%.

To evaluate the controller’s stochastic performance, a hybrid tau-leaping simulation

was performed as outlined in Supplementary Note S3.3, where the time step was set to

∆t = 10−6 h and ODE integration was performed using the ode15s function of Matlab

R2023b. The outcomes of our simulations are presented in Supplementary Figure S7d–

f. Characteristically of the AIF controller motif, while the closed-loop system exhibits

greater variance between the stochastic trajectories (especially for D and λ), this is not

detrimental to the control objective of reducing the adaptation error that arises due to

disturbance [36].

Moreover, in the main text’s Results section we mentioned that increasing the actuator

and the annihilator genes’ synthesis and mutual annihilation rates – that is, κ and θ – can

arbitrarily reduce the error between the steady-state value of the controlled variable and

its setpoint [37]. However, this can also lead to instability, although the variable’s average

value will keep converging to the setpoint as the rates increase [38]. As an example of this

behavior, in Supplementary Figure S8 we simulated the behavior of a controller whose

parameters κ and θ are ten times the values given in Supplementary Table S9 and the

disturbing gene’s concentration is cdist = 400 nM as opposed to 100 nM in the main text’s

Figure 7 (all other parameters’ values remain the same). Notably, the pre-disturbance

difference between our analytical estimates for λ and D and the simulated values was

almost two times smaller than for the controller with the original values of κ and θ

(simulations not plotted here but can be obtained by running the script figS8 orig -

kappatheta.m in our GitHub repository at https://github.com/KSechkar/rc_e_coli

[35]). For λ, it decreased from 11.08% to only 6.00%, while for D it shrank from 1.66%

to 0.85%. Moreover, while disturbance causes the system to oscillate, increasing κ and θ

reduces the adaptation error if it is defined as the difference between a variable’s mean
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value before and after disturbance. Indeed, Figure S8h–j shows that the error amounts

to 5.88% for λ and 0.58% for D. With the original κ and θ, while there are no persistent

oscillations, the adaptation error comprises 8.17% and 1.22% respectively, which is ≈ 1.4

times greater.
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Supplementary Figure S6: Simulation of the integral controller’s response to os-
cillating disturbance described by Equation (S144). a–b Evolution of mRNA con-
centrations over time in an example simulation of the first case with the parameters given
in Supplementary Table S9. c–e The Figures c, d, e show the sensor protein’s concentra-
tion psens (the controlled variable), the cell’s growth rate λ, and the resource competition
denominator D. For comparison, the response of an open-loop system (i.e., in absence of
the actuator, the annihilator, and the amplifier genes) is plotted on the same axes. All
variables are plotted relative to their steady-state values. Source data are provided as a
Source Data file.
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Supplementary Figure S7: Effect of parameter uncertainty and stochasticity on
the integral controller’s performance. a–c The sensor protein’s concentration psens
(the controlled variable), the cell’s growth rate λ, and the resource competition denom-
inator D for 100 different cell model parameter value combinations sampled from the
probability distribution obtained by MCMC as outlined in Supplementary Note S2. For
comparison, the response of an open-loop system (i.e., in absence of the actuator, the
annihilator, and the amplifier genes) is plotted on the same axes. All variables are plot-
ted relative to their steady-state values. d–f 48 stochastic trajectories (light blue) of the
sensor protein’s concentration psens (the controlled variable), the cell’s growth rate λ, and
the resource competition denominator D. For comparison, 48 stochastic trajectories of
an open-loop system (i.e., in absence of the actuator, the annihilator, and the amplifier
genes) is plotted on the same axes. All variables are plotted relative to their steady-state
values (light red). The mean trajectories for the closed-and open-loop cases are plotted
in bold. Source data are provided as a Source Data file.
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Supplementary Figure S8: Simulation of the integral controller’s response to dis-
turbance with κ and θ increased tenfold. a–b Evolution of mRNA concentrations
over time in an example simulation of the first case with the parameters given in Supple-
mentary Table S9. c–e The sensor protein’s concentration psens (the controlled variable),
the cell’s growth rate λ, and the resource competition denominator D. For comparison,
the response of an open-loop system (i.e., in absence of the actuator, the annihilator, and
the amplifier genes) is plotted on the same axes. The dashed line represents the average
value of a variable over the last 7.5 h of closed-loop simulation. All variables are plotted
relative to their steady-state values. Source data are provided as a Source Data file.
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