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Glossary

PCAgyy PCA where 90% of the variance is conserved. 6

Acronyms

CAE Convolutional Auto Encoder. 6, 8
CNN Convolutional Neural Network. 6

KNN K-Nearest Neighbors. 6
RF Random Forest. 6
TEM Transmission Electron Microscopy. 12

XGBoost eXtreme Gradient Boosting. 6



A Data generation

A.1 Simulation parameters

This section contains all information about the data set used in this study. The distribution of form factors in the
database is balanced with 4.184 I(q) curves simulated per form factor, which improves the interpretation of the results.
As a result, the density of the parameter space varies according to the number of shape factor parameters, but this
makes it possible to retain a significant number of simulations for form factors with few parameters. For the 9 form
factor used, the following list details how parameters has been chosen. For each occurrence of form factor simulation,
variable parameters are drafted following a uniform law. For some parameter, restrictions are added. When mentioned,
the parameter is poly-dispersed. The poly-dispersion function is a Gaussian with a full width at half maximum equal to
a X param with a randomly selected following a uniform law on [0, 0.3].
Variable parameters

e Sphere:

— Radius: [50,1000]A, log-distribution, poly-dispersed
— Scattering length density: [5,131] x 10642, linear distribution

(https://www.sasview.org/docs/user/models/sphere.html)

Oblate:

— Radius equat:[50, 1000] A, log-distribution, poly-dispersed
— Coeff Radius polar: [0.1,0.77], linear distribution, poly-dispersed
— Scattering length density: [5,131] x 1042, linear distribution

(https://www.sasview.org/docs/user/models/ellipsoid.html)

Prolate:

— Radius equat:[50, 1000] A, log-distribution, poly-dispersed
— Coeff Radius polar: [1.3,5], linear distribution, poly-dispersed
— Scattering length density: [5,131] x 10542, linear distribution

(https://www.sasview.org/docs/user/models/ellipsoid.html)

Cylinder:

— Radius: [50,1000]A4, log-distribution, poly-dispersed
— Length: [100,200] x radius, linear distribution, poly-dispersed
— Scattering length density: [5,131] x 105A~2 linear distribution

(https://www.sasview.org/docs/user/models/cylinder.html)

Core Shell Sphere:

— Radius core: [50,950] A, log-distribution, poly-dispersed

— Shell thickness: [50,950]A, log-distribution, poly-dispersed

— radius core + shell thickness < 10004

— Scattering length density core: [5,131] x 10642, linear distribution

— Scattering length density shell: [5,131]\[0.95ldcore; 1.15ldcore] x 105472, linear distribution

(https://www.sasview.org/docs/user/models/core_shell_sphere.html)
e Hollow Sphere:

— Radius core: [50,950]A, log-distribution, poly-dispersed
— Shell thickness: [50,950]A, log-distribution, poly-dispersed
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— radius core + shell thickness < 10004
— Scattering length density core: same as solvent scattering length density
— Scattering length density shell: [5,131]\[0.95ldcope; 1.18ldeope] x 105A~2, linear distribution

(https://www.sasview.org/docs/user/models/core_shell_sphere.html)
e Core Shell Oblate:
— Radius equat: [50,950]A, log-distribution, poly-dispersed
— Coeff Radius polar: [0.1,0.77], linear distribution, linear distribution, poly-dispersed

Shell thickness: [50,950]A, log-distribution, poly-dispersed
radius equat + shell thickness < 10004

Scattering length density core: [5,131] x 10542, linear distribution
Scattering length density shell: [5, 131]\[0.98ldcore; 1.18ldcore] % 10842, linear distribution

(https://www.sasview.org/docs/user/models/core_shell_ellipsoid.html)

e Core Shell Prolate:

Radius equat: [50,950] A, log-distribution, poly-dispersed

— Coeff Radius polar: [1.3,5], linear distribution, linear distribution, poly-dispersed
— Shell thickness: [50,950]A, log-distribution, poly-dispersed

— radius equat + shell thickness < 10004

Scattering length density core: [5,131] x 10642, linear distribution
Scattering length density shell: [5, 131]\[0.95ldcore; 1.15ldeore] x 105472 linear distribution

(https://www.sasview.org/docs/user/models/core_shell_ellipsoid.html)

e Core Shell Cylinder:

Radius: [50,1000]A, log-distribution, poly-dispersed

Length: [100,200] x radius, log-distribution, poly-dispersed

Shell thickness: [50,1000] A, log-distribution, poly-dispersed

— radius + shell thickness < 10004

— Scattering length density core: [5,131] x 10642, linear distribution

— Scattering length density shell: [5,131]\[0.95ldcore; 1.18ldcore] X 10642, linear distribution

(https://www.sasview.org/docs/user/models/core_shell_cylinder.html)

A.2 Curves examples’ parameters

The parameters used to simulate the curves shown in Figure 1 are as follows:

e Core shell cylinder

— Radius: 1004

Length: 50004

Shell thickness: 1004

Scattering length density core: 20 x 106 A~2
Scattering length density shell: 10 x 10642

e Core Shell Prolate:
— Radius equat: 1004
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Figure 1: Example of noiseless I(q) curves generated using the 9 form factors, all particle sizes having the same order of
magnitude and all particles having the same scattering length density.

— Radius polar: 504

— Shell thickness: 1004

— Scattering length density core: 20 x 10642
— Scattering length density shell: 10 x 10642

e Core Shell Oblate:
— Radius equat: 1004
— Radius polar: 2004
— Shell thickness: 100A

— Scattering length density core: 20 x 10642
— Scattering length density shell: 10 x 106 A~2

e Core Shell Sphere:

Radius: 1004

Shell thickness: 1004

— Scattering length density core: 20 x 10642
— Scattering length density shell: 10 x 106 A~2

e Hollow Sphere:



Radius: 1004

— Shell thickness: 1004

— Scattering length density core: 0 x 10542
— Scattering length density shell: 10 x 106 A2

Cylinder:

— Radius: 2004
— Length: 50004
— Scattering length density: 20 x 10542

Oblate:

— Radius equat:200A
— Radius polar: 1004
— Scattering length density: 20 x 10642

Prolate:

— Radius equat:100A
— Radius polar: 2004
— Scattering length density: 20 x 10542

Sphere:

— Radius: 2004
— Scattering length density: 20 x 10542

There is no polydispersity in parameters of those examples.



B Classifiers hyper-parameters

For each classifier, several hyper-parameters were tested. Other hyper-parameter are the default parameters of the
scikit-learn package.
K-Nearest Neighbors (KNN) tested hyper-parameters:

e number of neighbors: 1, 3, 5, 7, 11, 21

e weights: distance, uniform

KNN best set of hyper-parameters founds:

e | o KNN: number of neighbors=1, weights=uniform

e PCAgy o KNN: number of neighbors=3, weights=distance
e CAE o KNN: number of neighbors=5, weights=distance

e CNN o KNN: number of neighbors=11, weights=distance
Random Forest (RF) tested hyper-parameters:

e number of trees: 10, 40, 100, 200

RF best set of hyper-parameters founds:

e [ o RF: number of trees: 200

e PCAgp o RF: number of trees: 200

e CAE o RF: number of trees: 200

e CNN o RF: number of trees: 200

eXtreme Gradient Boosting (XGBoost) tested hyper-parameters:
e number of estimators: 10, 40, 100, 200

Other hyper-parameters are the default one in the
XGBoost best set of hyper-parameters founds:

e [ o XGBoost: number of trees: 200

e PCAgy o XGBoost: number of trees: 200
e CAE o XGBoost: number of trees: 200
e CNN o XGBoost: number of trees: 200



C Preprocessing selection
Several combinations of preprocessings were tried for each representation space:

e TH o LOG

e THolI0o LOG

e THo LOGoSTD

e THolI0o LOGoQLOG

e THolIntN o LOGo STD

e THolI0o LOG o STD o QLOG

e THolIntN o LOGoSTD o QLOG
e THolIntN oSTD

e THoIntN oSTDoQLOG



D Convolutional Auto-Encoder architecture

There is the architecture of the Convolutional Auto Encoder (CAE):
Encoder:

e 1D convolutional layer (n filters: 64, kernel size: 7, activation function: ReLu)
e 1D convolutional layer (n filters: 64, kernel size: 7, activation function: ReLu)

e Max Pooling operation (kernel size: 6)

Flatten layer

Fully connected layer (n filters: 16, activation function: ReLu)
e Fully connected layer (n filters: latent dimension, activation function: linear)
Decoder:

e Fully connected layer (n filters: 148 x64, activation function: ReLu)

Reshape layer (output shape: (148, 64))

UpSampling1D layer (upsampling factor: 6)

ZeroPaddinglD layer (padding: 1)

1D convolutional layer (n filters: 64, kernel size: 7, activation function: ReLu)

1D convolutional layer (n filters: 1, kernel size: 7, activation function: ReLu)



E Results using Franke’s space

Table 1 summarizes the main results obtained using Franke space on DS3¥"  from which the cylinders and core shell

cylinders have been removed.

Table 1: Accuracy computed by cross-validation on the data set from which cylinders and core shell cylinders have been

removed

Accuracy of classifiers (%)

Representation space | KNN RF XGBoost
I(q) space 476 72.6 71.1
Frankes 38.7 65.9 67.4
Frankesgg 44.3  69.0 68.3




F Experimental data

F.1 Fits of experimental data

To better understand the predictor’s predictions on the experimental data, it is interesting to evaluate the quality of the
fits that can be made with the predicted form factors. We performed fits for each of the experimental curves obtained
from the Xeuss, using the form factors most frequently predicted by classification models trained on DS;Y", . The fits
are represented in appendix F.2 and their obtained x? are as follows:

e Sphere n°1:
— Fit sphere: x? = 2.68
e Sphere n®2:

— Fit sphere: x? = 2.36
— Fit prolate: x? = 1.13

e Sphere n°3:

— Fit sphere: x? = 6.91
— Fit prolate: x? = 5.21

e Sphere n®4:
— Fit sphere: x? = 1.20

e Sphere n°5: a residual pattern from buffer substraction appear at low q. A sphere and core shell sphere form
factor has been used to fit the whole curve, and another fit with sphere form factor has been realized without the
beginning of the curve.

— Fit sphere whole curve: x? = 260
— Fit core shell sphere whole curve: y? = 212
— Fit sphere for ¢ > 0.0034~1: x2 = 3.11

e Sphere n°6:

— Fit sphere: % = 18.5
— Fit core shell sphere: x? = 9.92

e Core shell sphere n°1:

— Fit core shell sphere: x? = 154
— Fit sphere: x2 = 335
— Fit cylinder: x? = 1190

e Prolate n°l: a residual pattern from buffer substraction appear at low q.

— Fit prolate: % = 1.53
— Fit oblate: x? = 3.90

e Prolate n°2:
— Fit prolate: x? = 1.12
e Prolate n°3:

— Fit prolate: x? = 1.08

10



Table 2: Results from predictors and fits and quality of experimental data

Sample Accurate prediction frequency Best form factor to fit Best fit quality SAXS curve quality
Sphere n°1 20/20 sphere Excellent Excellent
Sphere n°2 14/20 prolate Excellent Excellent
Sphere n°3 13/20 prolate Medium Excellent
Sphere n*4 20/20 sphere Excellent Excellent
Sphere n°5 0/20 core shell sphere Bad Bad
Sphere n°6 11/20 core shell sphere Medium Medium

Core shell sphere n°1 0/20 core shell sphere Bad Medium
Prolate n°1 4/20 prolate Excellent Medium
Prolate n°2 20/20 prolate Excellent Excellent
Prolate n°3 20/20 prolate Excellent Excellent

11



F.2 TEM images and SAXS curves

Figures 2, 3, 4, 5,6, 7, 8,9, 10, 11 present a Transmission Electron Microscopy image of each real sample, corresponding
SAXS curve in both device configuration and fits of Xeuss1800HR SAXS curves with various form factors. Some
experimental aspect ratios have been measured using the TEM images: particles in the core shell sphere n°1 sample have
an average aspect ratio of 1.16 between equatorial radius and polar radius, and then are between our definition of core
shell sphere and core shell prolate, so we decided to label them as core shell sphere. In samples sphere n°2 and sphere
n°5 the average aspect ratio is 1.10 and these samples are then labelled as sphere. For sample sphere n°l, the average
aspect ratio is 1.01 and it is then labelled as sphere.
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Figure 2: TEM imaging, SAXS curve recorded on Xenocs devices and fit of the Xeuss1800HR curve for sample sphere
n°l
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Figure 3: TEM imaging, SAXS curve recorded on Xenocs devices and fits of the Xeuss1800HR curve for sample sphere
n°2
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Figure 4: TEM imaging, SAXS curve recorded on Xenocs devices and fits of the Xeuss1800HR curve for sphere n°3

13



I
- )

10! ) o ‘ ——- fit _sphere
TN - Xeussl800HR
™ - NanolnXiderHR

I (photon/s)
i
)
i
K}
i

1072

1074

16*1
q(A™
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Figure 5: TEM imaging, SAXS curve recorded on Xenocs devices and fit of the Xeuss1800HR curve for sphere n°4

e )
S, ——- fit_core_shell_prolate
103 LN ——- fit_sphere q>0.0034 !
Y
_____ ) fit_sphere_full_range
"\'-:.\ . Xeuss1BOOHR
T b . NanolnXiderHR
5 b
5
s
= 107!
1073
10
q(A™
(a) TEM image of sphere n°5 (b) SAXS curves of sphere n°5

Figure 6: TEM imaging, SAXS curve recorded on Xenocs devices and fits of the Xeuss1800HR curve for sphere n°5
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Figure 7: TEM imaging, SAXS curve recorded on Xenocs devices and fits of the Xeuss1800HR curve for sphere n°6
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Figure 8: TEM imaging, SAXS curve recorded on Xenocs devices and fits of the Xeuss1800HR curve for core shell sphere
n°l
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Figure 9: TEM imaging, SAXS curve recorded on Xenocs devices and fits of the Xeuss1800HR curve for prolate n°1
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Figure 10: TEM imaging, SAXS curve recorded on Xenocs devices and fit of the Xeuss1800HR, curve for prolate n°2

16



e ——- fit_prolate
Xeuss1800HR

10° . NanolnXiderHR
107t
°u
£
5
2
21072

1073

107%

1072
g4l
(a) TEM image of prolate n°3 (b) SAXS curves of prolate n°3

Figure 11: TEM imaging, SAXS curve recorded on Xenocs devices and fit of the Xeuss1800HR curve for prolate n°3
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