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Abstract

Motivation: Generative Adversarial Nets (GAN) achieve impressive performance for text-guided editing of
natural images. However, a comparable utility of GAN remains understudied for spatial transcriptomics (ST)
technologies with matched gene expression and biomedical image data.
Results: We propose In Silico Spatial Transcriptomic editing that enables gene expression-guided editing of
immunofluorescence images. Using cell-level ST data extracted from normal and tumor tissue slides, we train
the approach under the framework of GAN (Inversion). To simulate cellular state transitions, we then feed edited
gene expression levels to trained models. Compared to normal cellular images (ground truth), we successfully
model the transition from tumor to normal tissue samples, as measured with quantifiable and interpretable
cellular features.
Availability and implementation: https://github.com/CTPLab/SST-editing.

Xenium Dataset

We report experimental results on the 10x Xenium invasive adenocarcinoma
(IAV, lung tumor) (Janesick et al., 2022) dataset including both normal and
tumor tissue slides. With a gigapixel resolution, Xenium extensively curates a
sparse 3D array of 392-plex gene expression and the matched DAPI image.
Cellular expression: Similar to CosMx, we utilize the gene expression table
of detected cells as the ‘text’ input. Such a 1D table is obtained by summing
the 3D sparse array of 392-plex gene expression over spatial dimensions.
Moreover, not only do we examine the whole list of 392 genes but also narrow
down to leading heterogeneous genes such as MUC1, KRT7, RBM3 and
EPCAM for a more detailed analysis of editing effects.
Cellular image: Given the 1D table of gene expression, we then center-crop
the associated DAPI image on the same cell. As such, we have the paired
cellular gene expression and DAPI image data for training.
Cell subtype: Differing from CosMx, the annotation of cell subtypes is not
available in the Xenium dataset. Therefore, we carefully evaluated DAPI
images and cell-level clustering results supplied in the raw data. We found
the second cluster of the ‘kmeans 2 clusters’ category to be highly enriched
in cells of epithelial lineage for both normal and tumor slides (Fig. 3). Given
the susceptible property of epithelial cells in tumor development, we select
normal lung epithelial cells and adenocarcinoma (tumor cells) identified in
‘kmeans 2 clusters’ for the follow-up analysis (Fig. 1 (i.1)).

Here, we run Xenium experiments using the SST-editing approach. Except
for different image dimensions, i.e., CosMx (2 channels, 96× 96) VS Xenium
(1 channel, 160 × 160), which are based on the feasibility of single-cell
analysis and the pathologist review, the GAN (Inversion) training and in silico
editing are performed under the same configurations for both datasets.

Xenium Results

GAN (Inversion) evaluation
Same as the CosMx experiments, we use the dFID (GAN), PSNR and SSIM
(GAN Inversion) to benchmark the model performance. As a result, the best
models are obtained at 800k (GAN, Fig. 4 (c, d)) and 700k (GAN Inversion,
Fig. 5 (c, d)) iterations respectively. Please see also Fig. 1 (i.0, i.2) for more
generated and reconstructed image visualization.

Editing effect evaluation
Cellular quantification:(Before editing) As illustrated in blue plots of Fig. 1
(q.0, q.1), leading heterogeneous genes including MUC1, KRT7, RBM3,
EPCAM, TOMM7 are overall upregulated in cells from the tumor tissue slide.
Compared to the total cell population (Fig. 1 (q.0)), a clearer pattern of gene
expression shift is demonstrated for ‘Epithelial’ subtypes (Fig. 1 (q.1), ∼20%
of the total cells). (After editing) By transforming the sample covariance
matrix (SCM) of gene expression collection from one to another, we shift
edited gene expression levels from one population towards the compared one
(GT). To measure the editing effects on generated (Gen) and reconstructed
(Rec) cellular images, we feed edited genes to the GAN (Inversion) models.
Cellular interpretation: We first observe the morphology-level heterogeneity
for the total cell population, similar to the gene-level heterogeneity discussed
above. However, expected trends of dFID scores immediately arise for the
edited epithelial subtypes (Fig. 1 (q.2)), captured by the decreasing dFID

between transformed normal epithelial cell population and cancer cells. When
focusing on the leading heterogeneous genes MUC1, KRT7, RBM3 and
EPCAM, the editing-driven cellular transition has proven to be effective w.r.t.
the decreasing dFID between the transformed normal cellular images and the
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tumor counterparts. More importantly, the dFID trends are consistent with the
reversed changes of cellular features. This is captured by strongly decreased
variance and mildly decreased mean of the nuclear area when shifting the
distribution of tumor to normal cellular expression, which confirms effective
editing effects achieved by our approach (Fig. 1 (q.3)). As illustrated in the
single-cell gallery of Fig. 1 (i.0) and cellular images within the tissue context
of Fig. 1 (i.3), we demonstrate the emergence of atypical cellular features for
normal epithelial lung cells driven by transforming the expression level of
these four leading genes to the malignant spectrum.
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Fig. 1: q. Numerical quantification of Xenium results. q.0-q.1. The comparison of gene expression shifts on all the cells (q.0) and the ‘Epithelial’ (Epi) cells
(q.1) of the normal and tumor slide. Here, **** means p ≤ 0.0001. q.2. For the generated (Gen, GAN) and reconstructed (Rec, GAN Inversion) cells, the
dFID comparison of cellular state transitions w.r.t. all the cells and Epi subtypes. We randomly repeat the dFID computation four times and report the mean and
standard deviation. q.3. The editing effect comparison of interpretable cellular features for all the cells and epithelial cells. i. Visual interpretation of Xenium
results. i.0. The image gallery of cellular state transitions for Gen and Rec cells. Here, we present the transition that occurred in the DAPI channel. i.1. The
visualization of cell subtypes on a region of interest extracted from the normal and tumor slide. i.2. The randomly sampled ground truth and reconstructed
cellular images within the bounding boxes. i.3. The morphological transitions of these cellular images guided by edited gene expression levels.
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Fig. 2: The plots of positively correlated median color intensity of CD298/B2M fluorescent marker and HLA-A, B2M gene expression levels for the
CosMx human liver dataset. a. The plots of median color intensity of CD298/B2M and HLA-A for all cells from the normal (left) and tumor (right) slide. b.
The plots of median color intensity of CD298/B2M and HLA-A for non-malignant hepatocytes from the normal (left) and tumor (right) slide. c. The plots of
median color intensity of CD298/B2M and B2M for all cells from the normal (left) and tumor (right) slide. d. The plots of median color intensity of CD298/B2M
and B2M for non-malignant hepatocytes from the normal (left) and tumor (right) slide.
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EpithelialNon-epithelial

Fig. 3: The quantitative comparison of the expression level of key genes of interest (EPCAM (top), KRT7 (middle), MUC1 (bottom)) that stratify the
non-epithelial and epithelial-like lung cells of both the normal and tumor slide for the Xenium human lung dataset. Here, **** means p ≤ 0.0001.
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Fig. 4: The dFID results for GAN training. Here, we randomly repeat the dFID computation four times and report the mean and standard deviation. The
overall best dFID scores are highlighted for each case. a. The dFID curve for all cells from the normal and tumor liver slide of the CosMx dataset. b. The dFID

curve for all hepatocytes from the normal and tumor liver slide of the CosMx dataset. c. The dFID curve for all cells from the normal and tumor lung slide of the
Xenium dataset. d. The dFID curve for all epithelial cells from the normal and tumor lung slide of the Xenium dataset.



SST-editing 7

Normal hepatocytes

0

10

20

30

40

0 20 30 40 50 60 70 80

Iterations (×105)

Tumor hepatocytes

0

8

16

24

32

10 20 30 40 50 60 70 80

Iterations (×105)

Normal cells

0

10

20

30

40

0 20 30 40 50 60 70 80

Iterations (×105)

Tumor cells

0

8

16

24

32

0 20 30 40 50 60 70 80

Iterations (×105)

Normal epithelial cells

0

10

20

30

40

0 20 30 40 50 60 70 80

Iterations (×105)

Tumor epithelial cells

0

10

20

30

40

0 20 30 40 50 60 70 80

Iterations (×105)

Normal cells

0

10

20

30

40

0 20 30 40 50 60 70 80

Iterations (×105)

Tumor cells

0

10

20

30

40

0 20 30 40 50 60 70 80

Iterations (×105)

32.13

3.8

26.75

5.6

32.85

3.7

26.55

5.7

29.50

7.5

30.14

6.8

29.37

7.6

29.80

6.5

PSNR SSIM (×10)
a

b

c

d

Fig. 5: The PSNR and SSIM results for GAN Inversion training. Here, we report the mean and standard deviation for both measurements. The overall
best PSNR and SSIM scores are highlighted for each case. a. The PSNR and SSIM curve for all cells from the normal and tumor liver slide of the CosMx
dataset. b. The PSNR and SSIM curve for all hepatocytes from the normal and tumor liver slide of the CosMx dataset. c. The PSNR and SSIM curve for all cells
from the normal and tumor lung slide of the Xenium dataset. d. The PSNR and SSIM curve for all epithelial cells from the normal and tumor lung slide of the
Xenium dataset.
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