
1

Supplementary Methods, Tables and Figures

Flexiplex: A versatile demultiplexer and

search tool for omics data

Supplementary Methods .. 2

Flexiplex’s Algorithm .. 2

Flexiplex-filter’s Algorithm .. 3

Fast and accurate sequence search.. 3

Demultiplexing cellular barcode from noisy long-read data .. 4

Simulation analysis ... 5

Scmixology 2 analysis .. 5

PromethION analysis.. 6

Discovering cellular barcodes from noisy long-read data ... 7

Computational Benchmarking .. 8

Supplementary Tables ... 9

Supplementary Figures .. 15

2

Supplementary Methods

Flexiplex’s Algorithm

Flexiplex is implemented in C++ using Edlib version 1.2.7. A summary of Flexiplex’s

algorithm is outlined briefly below. The complete source code is open source and available

from https://github.com/DavidsonGroup/flexiplex. All benchmarking was performed with

Flexiplex version 1.01.

FOR each fastq/fasta entry:

FOR forward and reverse strands:

UNTIL no more barcodes identified:

Search read for the sequence “[left flank][?b][?u][right flank]” using

edlib, where ?b = a string of ‘?’s the length of the expected barcode

and ?u is a string of ‘?’s the length of the expected UMI.

 ‘?’ is passed to edlib as a wildcard sequence.

 IF a match is identified within a user specified edit distance

(-f, default: 8):

 IF barcode discovery mode:

 Add sequence corresponding to ?b to the list

of identified barcodes

 ELSE:

 Extract sequence corresponding to ?b?u +/- 5bp (target)

 FOR each known barcode:

 Calculate the Levenshtein distance

 between the known barcode and target,

 penalizing for gaps at the start and end

of the known barcode but not the target

 IF distance is lower than best match:

 Set as current best match

 ELSE IF equal to best match:

 Set barcode as ambiguous

IF final best match is within the user defined

maximum edit distance (-e, default: 2):

 Add best matching barcode and

corresponding UMI to list of

identified barcodes.

 Mask the sequence matching “[left flank][?b][?u][right flank]”

 IF barcode demultiplexing mode:

 FOR each identified barcode:

 Print modified read sequence (e.g. adapter trimming,

read_id supplemented with barcode + UMI depending on user options)

Print table line for read id, barcode, edit distances and UMI

IF barcode discovery mode:

 Print Barcode frequency tables

https://github.com/DavidsonGroup/flexiplex

3

Flexiplex-filter’s Algorithm

Read the list of barcode entries produced by Flexiplex when run in Discovery mode, which

contains each barcode, along with a corresponding number of reads which contain the barcode

(counts)

Sort the list of barcode entries by count

FOR each barcode entry:

 Calculate a rank based on the count, with the entry with the highest count being

rank 1

FOR each barcode entry, with rank i:

Calculate an approximate (numerical) derivative for each entry d(rank)/d(count),

with log-transformed axes:

[log10(i+1) - log10(i)] ÷ [log10(count[i+1]) - log10(count[i])]

Calculate an average derivative for each entry using a ‘window’ of size 9: take the

mean of the approximate derivatives corresponding to ranks

[i-4, i-3, i-2, i-1, i, i+1, i+2, i+3, i+4]

Select the barcode entry with the most negative average derivative which:

- Has a count lower than a user-provided upper bound OR is not ranked in the top 50

if no upper bound is provided; AND

- Has a count higher than a user-provided lower bound OR is not ranked below the

top 95th percentile of entries

FOR each barcode entry with rank better or equal to the selected barcode entry:

 Print the barcode

Fast and accurate sequence search

The single cell sequence search use case used the Illumina short-read single cell RNA-Seq

dataset from Chen et al., Cancer Res., 2021, which is available for download from the

Sequence Read Archive (SRA) under accession number SRR10971813. Grep (GNU version

2.20), ugrep (version 3.11.2), seqkit grep (version 2.3.0) and Flexiplex (version 1.01), were

run on the raw fastq data from the second read pair (R2) using the following commands:

grep:

grep -h --no-group-separator -F -e $SEQ -e $SEQ_R -B1 -A2

ugrep:

ugrep -Z2 --no-group-separator -F --bool "$SEQ|$SEQ_R" -B1 -A2

seqkit:

seqkit grep -j 1 -m 2 -s -p $SEQ

4

flexiplex - BCAS4-BCAS3 & EA1:

flexiplex -x $SEQ -d grep -f 2

flexiplex - rs878887783:
flexiplex -f 2 -e 0 -x ${SEQ:0:25} -k ${SEQ:25:5} -x ${SEQ:30:24} -i false

Where SEQ was one of the following query sequences and SEQ_R refers to its reverse

complement.

BCAS4-BCAS3 (SNP) - CCGATCCTGGGGCCGAGGTACCTTTGACAGGAGC

BCAS4-BCAS3 (reference allele) - CCGAGCCTGGGGCCGAGGTACCTTTGACAGGAGC

Adenovirus 5 EA1 - TTTGGACTTGAGCTGTAAACGCCCCAGGCCATAA

rs878887783 - CTCTGATTACTCCTGCCATCATGACCCCTGGCCATAATATGATTTATCTCCACA

To obtain cellular barcodes we extract the first 16 bases of the matched read pairs, i.e by

identifying the read line and ID (grep “^@”), searching for the matched read in the R1 read

pair file (using grep -A1), and extracting the first 16 characters (cut -c1-16).

To assess the correspondence of cells with gene expression clustering, a standard Seurat

workflow was employed to process the data and visualize the UMAP (Uniform Manifold

Approximation and Projection). The raw counts were downloaded from GEO (accession

number GSM4285803). A Seurat object was created from the raw counts, followed by the

selection of the most variable features (top 2000 features) and data scaling by a linear

model. All the cells in the raw counts were retained. We then ran RunPCA (default

parameters) and RunUMAP by utilizing 1-20 PCAs to reduce the dimensionality.

Subsequently, we ran FindNeighbors (20 PCAs) to find the nearest neighbors of each cell

and then FindClusters with a resolution/granularity of 0.2 to identify the cell clusters.

Orthogonally, we ran cellSNP-lite (version 1.2.0) on the mapped reads from CellRanger, with

a list of common human SNPs provided by the cellSNP-lite authors at

https://sourceforge.net/projects/cellsnp/files/SNPlist/. Vireo (version 0.5.8) was then used to

cluster the cells into seven donors based on expressed SNPs. Cells that were doublets or

unassigned were removed from the analysis. For all remaining cells the SNP-based

clustering and gene-expression clustering gave identical groupings. Only one read was

required to assign a variant to a cell.

Demultiplexing cellular barcode from noisy long-read data

Demultiplexing was assessed using the ‘Large’ simulation from Ebrahimi et al., iScience

2022, available from http://10.0.23.196/m9.figshare.19740475.v1, the scmixology 2 dataset

available from ENA (accession SAMEA110357667), and the PromethION dataset from You

et al., Genome Biology, 2023 available from ENA (accession PRJEB54718).

Corresponding lists of known barcodes were taken from the unique set of true barcodes

(L.truth.tsv) and short-read derived barcodes

(https://melbourne.figshare.com/articles/dataset/Analysis_data_for_BLAZE/20335203/)

https://sourceforge.net/projects/cellsnp/files/SNPlist/
http://10.0.23.196/m9.figshare.19740475.v1
https://melbourne.figshare.com/articles/dataset/Analysis_data_for_BLAZE/20335203/

5

respectively. Flexiplex (version 1.01), scTagger (version 1.1.1) and FLAMES (cloned from

https://github.com/LuyiTian/FLAMES, commit b8c98c2) were run on the gzipped fastq files

using the following commands, varying the maximum edit distance (ED) between 0 and 3.

Flexiplex:

gunzip -c $original_fastq_gz | ./flexiplex \

 -d 10x3v3 \

 -e $ED \

 -k $barcode_file \

 -p $threads \

 | gzip > out.fastq.gz

scTagger:

scTagger.py extract_lr_bc \

 -r $original_fastq_gz \

 -t $threads \

 -z -o temp.out.gz

gunzip temp.out.gz

scTagger.py match_trie \

 -mr $ED \

 -lr temp.out \

 -sr $barcode_file \

 -t $threads \

 -o out.txt

FLAMES:

match_cell_barcode \

 $original_fastq_gz \

 out_stats.txt out.fastq.gz \

 $barcode_file \

 $ED 12

For consistency with Flexiplex, which removes ambiguous barcodes (ie. equi-distant best

matches), only reads reported by scTagger with a single barcode were compared.

Simulation analysis

To assess the accuracy of each tool on the simulation, we compared the demultiplexed

barcodes and their reverse complement against the truth set (L.truth.tsv).

Scmixology 2 analysis

For scmixology 2, we used genotyped reads and short-read SNP-clustering to assess

barcode correctness. Specifically, we:

1. First constructed a set of cell line specific SNP sequences, by:

a. Downloading cell line variants from CCLE

(https://sites.broadinstitute.org/ccle/datasets)

https://github.com/LuyiTian/FLAMES
https://sites.broadinstitute.org/ccle/datasets

6

b. Subsetting to SNPs unique to one of the 5 scmixology cell lines (2479

variants)

c. The SNP +/- 15 bp of sequence from the reference genome (hg19) was

extracted using bedtools.

d. These sequences were subsequently searched for using grep on a long read

replicate dataset of scmixology (~500 cells) available from SRA (accession

SRR12282458), which had been demultiplexed prior, using Flexiplex and

FLAMES.

e. We obtained the cell line annotation of the ~500 cells from prior work

(Davidson et al., Genome Biol. 2022).

f. To remove SNPs which were not cell line specific (e.g. due to sequence

homology), we filtered for only those with >2 reads and where >90% of cells

with the SNP came from the same cell line.

g. SNPs which passed the previous step in both the Flexiplex and FLAMES

demultiplexed fastq were kept (92 SNPs). This dataset comes from a different

set of cells to scmixology 2, so the choice of demultiplexing tool here should

not bias the performance evaluation.

2. Demultiplexed the long read scmixology fastq file using Flexiplex, FLAMES and

scTagger for edit distances 0,1,2 and 3, and a range of threads, as described above.

3. SNP-typed the long reads, by searching each read for each of the 92 cell line specific

SNPs using grep. For Flexiplex and FLAMES, this was done on the demultipled fastq

files. For scTagger, which does not produce a fastq file, we searched the raw fastq

files and then mapped read IDs to the barcodes reported by scTagger.

4. For each SNP-typed read we mapped the cellular barcode to a cell line using the cell

line annotation derived from short-read data from available at:

https://melbourne.figshare.com/articles/dataset/Analysis_data_for_BLAZE/20335203.

Doublet cells were removed. We then counted the number of reads for which there

was a match/mismatch between the cell line known from the SNP and the cell line

derived from the barcode and cell line annotation. The number of reads was then

normalized to the number of SNP-typed reads from the raw fastq.

PromethION analysis

The PromethION dataset and associated short-read barcodes, published in You et al.,

Genome Biology, 2023 was downloaded from ENA (accession PRJEB54718). A list of

barcodes was constructed by mixing the 1022 short-read barcodes (true list) with 10000

barcodes randomly sampled from the 10x Genomic CellRanger whitelist of 3 million possible

barcodes (3M-february-2018.txt) (decoy list). Flexiplex and scTagger were run on the

dataset with maximum threads set to 16. We then counted the number of reads with a

reported barcode in the true list (Tuncorrected) or the decoy list (Funcorrected). As scTagger also

reports ambiguous barcodes ie. multiple equi-distant barcodes for a read, we examined its

output in two way: i) excluding all reads with ambiguous barcodes from the analysis which is

similar to what Flexiplex does and ii) counting ambiguous barcodes towards Tuncorrected if any

of the reported barcodes were in the true list, or Funcorrected if all reported barcodes were in the

decoy list. To account for false positives where a barcode from the true list was reported, we

applied the following correction which assumes false positives to the true list and decoy list

are in proportion to their list length:

Fcorrected = Funcorrected / r

https://melbourne.figshare.com/articles/dataset/Analysis_data_for_BLAZE/20335203

7

Tcorrected = Tuncorrected - (Fcorrected - Funcorrected)

Where r is the proportion of barcodes in the decoy list.

Tcorrecteded and Fcorrected were then normalized by the total number of reads in the raw fastq to

obtain a final estimate of correct and incorrect demultiplexing rates.

Discovering cellular barcodes from noisy long-read data

The four datasets referenced by You et al., Genome Biology, 2023 were used for

benchmarking and are available from ENA under accession PRJEB54718. Each of Flexiplex

(version 1.01), wf-single-cell (version 1.0.0), BLAZE (version 2.1.4) and scTagger (cloned

from https://github.com/vpc-ccg/scTagger, commit 0b1f9b8) were run on the raw fastq files,

using the commands:

Flexiplex:

~/flexiplex/flexiplex -f 0 -p $threads $fastq_file > my_barcode_list.txt

flexiplex-filter --whitelist 3M-february-2018.txt \
 --outfile filtered_barcodes.txt \
 flexiplex_barcodes_counts.txt

BLAZE:

blaze --expect-cells=$expected_cells \
 --threads=$threads \
 --no-demultiplexing \
 $fastq_file

scTagger:

python ~/software/scTagger/scTagger.py extract_lr_bc \
 -t $threads \
 -r $fastq_file \
 -o "lr_output.tsv.gz" \
 -p "plots"

gunzip lr_output.tsv.gz

python ~/software/scTagger/scTagger.py extract_sr_bc_from_lr \
 -i "lr_output.tsv" \
 -wl 3M-february-2018.txt \
 -o "sr_output.tsv.gz"

flexiplex-filter --whitelist 3M-february-2018.txt \
 -u 1000 \
 --outfile filtered_barcodes.txt \
 sr_output.tsv

https://github.com/vpc-ccg/scTagger

8

wf-single-cell:

nextflow run epi2me-labs/wf-single-cell \
 -profile singularity \
 --fastq $fastq_file \
 --kit_name 3prime \
 --kit_version v3 \
 --expected_cells $expected_cells \
 --ref_genome_dir GRCh38-2020-A \
 --max_threads $threads \
 -with-timeline

The estimated number of cells ($expected_cells) passed to BLAZE and wf-single-cell was

200 for scmixology2 and 850 for the three hiPSC datasets. Flexiplex and scTagger both do
not require an estimated number of cells, so this information was not provided. However, in
order for the inflection point to be correctly identified with flexiplex-filter on hiPSC barcodes
from scTagger, the upper search range was set to 1000.

wf-single-cell was run using the Nextflow workflow manager (v23.10.0), using the SLURM
executor (v23.02.7) and singularity container (v3.7.4). 20 concurrent executors were allowed
and we passed in a maximum thread count of 16 to run the workflow. All of the real time and
memory benchmarks for wf-single-cell were obtained from the default timeline generated by
Nextflow when the -with-timeline parameter is given.

Computational Benchmarking

Time and memory requirements were recorded with the Linux /usr/bin/time command. All

use cases were benchmarked on a high performance computing cluster (Intel® Xeon® CPU

E5-2690 v4 @ 2.60GHz) running CentOS 7. Although Flexiplex allows multiple threads, we

benchmarked demultiplexing and search performance using a single thread unless stated

otherwise. This allowed a fair evaluation against the non-threaded methods, grep and

FLAMES (match_cell_barcode). For cellular barcode discovery, we benchmarked each

dataset with 1, 2, 4, 8, and 16 threads, to compare performance across Flexiplex, scTagger,

and BLAZE.

9

Supplementary Tables

Cell Line Tool BCAS4-BCAS3
(SNP)
MCF7

BCAS4-BCAS3
(Ref.)
MCF7

rs878887783

T47D

Adenovirus

HEK293T

MCF7

177 million
reads

Flexiplex 4356 4123 6 0

Grep 3599 4 1 0

Ugrep 4273 4064 7419 0

Seqkit grep 4175 4030 7378 0

T47D

103 million
reads

Flexiplex 0 0 26 0

Grep 0 0 8 0

Ugrep 0 0 27 0

Seqkit grep 0 0 21 0

MDAMB134
VI

126 million
reads

Flexiplex 0 0 0 0

Grep 0 0 0 0

Ugrep 0 0 2872 0

Seqkit grep 0 0 2879 0

Supplementary Table 1: To confirm that false positives seen in single-cell data were

unrelated to errors in sequence searching, we also examine matched bulk RNA-Seq cell line

data. Three of the seven cell lines were available from the Cancer Cell Line Encyclopedia

(CCLE) (SRA Accessions: SRR8615755, SRR8615758 and SRR8615812). Similar to our

single-cell analysis, Flexiplex, ugrep and seqkit were run allowing an edit distance up to two,

whereas grep required a perfect match. Cell lines for which a variant is expected to be found

are highlighted in green. Flexiplex identified the highest or second highest number of reads

for both variants. For BCAS4-BCAS3 and the Adenoviral sequence, no false positives

(variants identified in other cell lines) were found. False positives for rs878887783 were found

in all cell lines and with all tools. rs878887783 is a point mutation and therefore has lower

specificity than BCAS4-BCAS3 or Adenoviral sequence. Flexiplex reported the second lowest

number of false positives amongst the tools tested. The high number of false positives

reported by ugrep and seqkit are due to detection of the reference allele.

10

Dataset Tool Parameters User time System time Mem (GB) Real time

scmixology2

Flexiplex

1 thread 0:15:21 0:00:15 1.47 0:15:37

2 threads 0:15:29 0:00:18 1.47 0:08:40

4 threads 0:15:32 0:00:16 1.46 0:05:06

8 threads 0:15:31 0:00:30 1.46 0:03:27

16 threads 0:18:47 0:00:34 1.47 0:03:18

BLAZE

1 thread 3:37:25 0:00:38 1.14 3:39:32

2 threads 3:39:28 0:00:36 1.14 3:41:39

4 threads 3:36:44 0:01:11 1.13 1:14:08

8 threads 3:45:05 0:01:17 1.14 0:34:04

16 threads 6:20:35 0:01:24 1.16 0:28:44

sctagger

1 thread 0:46:53 0:01:43 39.39 0:46:38

2 threads 0:47:17 0:02:00 39.39 0:29:01

4 threads 0:47:47 0:02:28 39.39 0:20:24

8 threads 0:49:19 0:03:18 39.39 0:16:22

16 threads 1:07:32 0:06:17 39.39 0:16:00

wf-single-cell

up to call_adapter_scan - - 37.96 1:15:09

up to extract_barcodes - - 21.74 9:58:46

11

Dataset Tool Parameters User time System time Mem (GB) Real time

gridION

Flexiplex

1 thread 0:05:11 0:00:05 1.42 0:05:16

2 threads 0:05:21 0:00:06 1.42 0:02:57

4 threads 0:05:22 0:00:09 1.42 0:01:47

8 threads 0:05:32 0:00:07 1.42 0:01:15

16 threads 0:07:14 0:00:12 1.42 0:01:06

BLAZE

1 thread 0:57:08 0:00:11 1.18 0:57:51

2 threads 0:58:10 0:00:11 1.18 0:58:36

4 threads 1:01:17 0:00:25 1.19 0:22:12

8 threads 1:03:34 0:00:33 1.19 0:13:13

16 threads 1:31:14 0:00:36 1.20 0:09:31

sctagger

1 thread 0:13:08 0:00:43 13.16 0:13:03

2 threads 0:13:12 0:00:48 13.16 0:08:31

4 threads 0:13:25 0:00:57 13.16 0:06:21

8 threads 0:13:40 0:01:12 13.16 0:05:22

16 threads 0:18:00 0:01:58 13.16 0:05:13

wf-single-cell

up to call_adapter_scan - - 16.40 0:27:57

up to extract_barcodes - - 19.45 3:43:48

12

Dataset Tool Parameters User time System time Mem (GB) Real time

gridION-q20

Flexiplex

1 thread 0:03:36 0:00:05 1.39 0:03:40

2 threads 0:03:37 0:00:05 1.39 0:02:03

4 threads 0:03:38 0:00:05 1.39 0:01:15

8 threads 0:03:42 0:00:05 1.39 0:00:53

16 threads 0:04:59 0:00:08 1.39 0:00:53

BLAZE

1 thread 0:23:53 0:00:06 1.16 0:24:09

2 threads 0:24:55 0:00:06 1.16 0:25:16

4 threads 0:26:03 0:00:14 1.19 0:09:30

8 threads 0:27:03 0:00:14 1.19 0:05:30

16 threads 0:39:38 0:00:20 1.19 0:04:09

sctagger

1 thread 0:06:00 0:00:23 5.98 0:05:57

2 threads 0:06:09 0:00:26 5.99 0:04:08

4 threads 0:06:11 0:00:31 5.99 0:03:12

8 threads 0:06:18 0:00:36 5.99 0:02:45

16 threads 0:08:00 0:01:01 5.99 0:02:43

wf-single-cell

up to call_adapter_scan - - 15.74 0:13:29

up to extract_barcodes - - 19.17 1:49:31

13

Dataset Tool Parameters User time System time Mem (GB) Real time

promethION

Flexiplex

1 thread 0:50:11 0:00:48 1.61 0:50:58

2 threads 0:54:36 0:00:49 1.61 0:31:31

4 threads 1:02:17 0:00:48 1.61 0:26:06

8 threads 1:02:06 0:00:51 1.61 0:19:21

16 threads 1:08:03 0:02:18 1.61 0:12:52

BLAZE

1 thread 7:42:41 0:01:17 1.40 7:47:25

2 threads 7:39:35 0:01:12 1.40 7:43:25

4 threads 7:55:20 0:02:53 1.37 2:46:53

8 threads 8:42:21 0:04:20 1.38 1:45:28

16 threads 12:47:36 0:05:01 1.41 1:17:35

sctagger

1 thread 2:40:47 0:04:54 103.95 2:41:28

2 threads 2:41:46 0:06:09 103.95 1:35:37

4 threads 2:44:36 0:08:07 103.95 1:03:51

8 threads 2:57:46 0:11:33 104.90 0:48:43

16 threads 4:21:59 0:21:06 103.95 0:47:33

wf-single-cell

up to call_adapter_scan - - 81.16 3:36:26

up to extract_barcodes - - 20.31 28:50:46

14

Supplementary Table 2: Computational performance of Flexiplex, BLAZE, sctagger, and wf-

single-cell for barcode discovery. Flexiplex consistently ran the fastest, with only marginally

higher memory requirements than BLAZE. The scTagger benchmark does not include the

time taken to run flexiplex-filter; in practice, flexiplex-filter had minimal effect on total runtime,

and took under 10 seconds on all the datasets tested. The wf-single-cell pipeline requires full

alignment with the reference human genome in order to produce a barcode list, however, none

of the other tools tested required an alignment. This time is indicated by “up to

extract_barcodes”. A more comparable metric for computational efficiency is the “up to

call_adapter_scan” function, which records only until the read adapter and TSO sequences

are located and oriented. This is more comparable to the computations performed by

Flexiplex, BLAZE, and scTagger.

15

Supplementary Figures

Supplementary Figure 1: Example knee plot generated by Flexiplex-filter showing the

barcode read count (y-axis) against ordered rank (x-axis). The inflection point of the

distribution (red dashed lines) can be used to identify the rank below which barcodes should

be filtered out. Finding the inflection point and filtering is performed automatically by Flexiplex-

filter. This example was made using a barcode list generated by scTagger on the PromethION

dataset from You et al., Genome Biology, 2023.

16

A) BCAS4-BCAS3

B) rs878887783

Supplementary Figure 2: Computational performance of four tools searching for sequence

from (A) the BCAS4-BCAS3 fusion and (B) rs878887783. Computational performance for

ADENO virus is not shown as it is similar to BCAS4-BCAS3. Grep and ugrep could only be

run with a single thread. Seqkit and Flexiplex were run with 1, 2, 4, 8 and 16 threads.

1 2 5 10

2
5

1
0

2
0

5
0

Threads

R
e
a

l
T

im
e

 (
m

in
u
te

s
)

1 2 5 10
1

2
5

1
0

5
0

2
0

0

Threads

U
s
e

r
T

im
e

 (
m

in
u
te

s
)

1 2 5 10

1
2

5
1

0
2

0
5
0

Threads

M
a

x
.

M
e

m
o

ry
 (

M
B

)

flexiplex

grep

seqkit

ugrep

1 2 5 10

1
2

5
1

0
2
0

5
0

Threads

R
e
a

l
T

im
e

 (
m

in
u
te

s
)

1 2 5 10

0
.5

2
.0

5
.0

2
0

.0
1

0
0

.0

Threads

U
s
e

r
T

im
e

 (
m

in
u
te

s
)

1 2 5 10

1
2

5
1

0
2

0
5

0
1

0
0

Threads

M
a

x
.

M
e

m
o

ry
 (

M
B

)

flexiplex

grep

seqkit

ugrep

17

Supplementary Figure 3: The impact of requiring >1 variant UMI per cell. The false positive

rate (`Other cluster` hits) are reduced from up to 9% (Adenovirus) to below 1% for Flexiplex,

however the number of cells which can be correctly genotyped is reduced from 47% to 18%.

The false positive rate for rs878887783 remains high for seqkit and ugrep as these are caused

by detection of the reference allele sequence.

Presumed cluster

Other cluster

g
re

p

s
e
q

k
it

u
g

re
p

fl
e
x
ip

le
x

g
re

p

s
e
q

k
it

u
g

re
p

fl
e
x
ip

le
x

C
e

lls

0

100

200

300

400

500

600

g
re

p

s
e
q

k
it

u
g

re
p

fl
e
x
ip

le
x

0

100

200

300

400

500

600

g
re

p

s
e
q

k
it

u
g

re
p

fl
e
x
ip

le
x

0

100

200

300

400

500

600

BCAS4-BCAS3

(SNP)

BCAS4-BCAS3

(Reference)

Adenovirus

5 EA1
rs878887783

97 104 111 113

0

104 106 106
139 145

170 170 162

199
220 214

18

A) Simulation

B) Scmixology 2

Supplementary Figure 4: Computational performance of three tools for cellular barcode

demultiplexing on (A) the simulation dataset and (B) the scmixology 2 dataset. FLAMES could

only be run with a single thread. scTagger and Flexiplex were run with 1, 2, 4, 8, and 16

threads. We tested all tools over a range of maximum edit distances, 0t to 3.

1 2 5 10

5
1

0
2

0
5

0
2
0

0
5

0
0

Threads

R
e
a

l
T

im
e

 (
m

in
u
te

s
)

1 2 5 10

1
0

2
0

5
0

1
0

0
5

0
0

Threads

U
s
e

r
T

im
e

 (
m

in
u
te

s
)

1 2 5 10

1
e

-0
4

1
e
-0

2
1
e

+
0
0

Threads

M
a
x
.

M
e

m
o

ry
 (

G
B

)

FLAMES

Flexiplex

scTagger

Max. edit distance

0

1

2

3

1 2 5 10

5
0

1
0

0
2

0
0

Threads

R
e
a

l
T

im
e

 (
m

in
u
te

s
)

1 2 5 10

5
0

1
0

0
2

0
0

5
0
0

Threads

U
s
e

r
T

im
e

 (
m

in
u
te

s
)

1 2 5 10

1
e

-0
4

1
e
-0

2
1
e

+
0
0

1
e

+
0

2

Threads

M
a
x
.

M
e

m
o

ry
 (

G
B

)
FLAMES

Flexiplex

scTagger

Max. edit distance

0

1

2

3

	Supplementary Methods
	Flexiplex’s Algorithm
	Flexiplex-filter’s Algorithm
	Fast and accurate sequence search
	Demultiplexing cellular barcode from noisy long-read data
	Simulation analysis
	Scmixology 2 analysis
	PromethION analysis

	Discovering cellular barcodes from noisy long-read data
	Computational Benchmarking

	Supplementary Tables
	Supplementary Figures

