
Supplementary Methods 

Dataset Descriptions 

Gene-expression and/or genomic data from the Multiple Myeloma Research Foundation 

(MMRF)-Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profiles 

study (CoMMpass), the University of Arkansas for Medical Sciences (UAMS), the MicroArray 

Quality Control (MAQC)-II, the Assessment of Proteasome Inhibition for Extending Remissions 

(APEX) phase 3 trial and Mayo Clinic studies were used for the current analysis (Supplementary 

Table 1).1-5 RNA-seq and whole-exome sequencing (WES) data from the CoMMpass study was 

obtained from the NCI Genomic Data Commons (GDC) Data Portal.6 Gene-expression data of 

the UAMS, MAQC-II, APEX, and Mayo Clinic studies were obtained from the Gene Expression 

Omnibus (GEO) database.7 To decrease the variability and make the expression profiles conform 

more closely to the normal distribution for the subsequent estimation of signature scores, the 

expression data from the CoMMpass, UAMS, MAQC-II, APEX, and Mayo Clinic studies were 

log2-transformed after adding a pseudo-count of 1. 

 

The MMRF CoMMpass Study: The CoMMpass study is a large-scale, longitudinal study initiated 

in 2011 to better understand the molecular and genetic components of MM. Deidentified RNA-

seq read counts and WES mutation data of purified tumor CD138+ cells from the bone marrow 

(BM) samples were obtained from the NCI GDC Data Portal.6 The RNA-seq read counts were 

converted to FPKM (Fragments Per Kilobase of transcript per Million mapped reads) for 

normalization. The expression profiles of 32,594 genes in 859 samples were generated. Among 

them, the expression profiles of 762 samples with corresponding clinical information were 

selected for the current study and used as the training set in the survival analysis.  



 

The UAMS Study: Two gene expression datasets of the UAMS study were used in our analysis. 

UAMS-I (GEO accession number: GSE136400) included 426 patients with newly diagnosed 

MM (NDMM) enrolled between 2004 and 2019.2 Gene expression profiles were generated using 

Affymetrix Human Genome U133 Plus 2.0 Array in 867 whole bone marrow (WBM) samples, 

for which 401 had matched purified tumor CD138+ cells.2 UAMS-I study was used as a 

validation set for the survival analysis. UAMS-II (GEO accession number: GSE5900) profiled 

gene expression of CD138-selected cells from the BM of 22 healthy controls, 44 MGUS, and 12 

SMM patients using Affymetrix Human Genome U133 Plus 2.0 Array.8 UAMS-II data was used 

for the analysis of MM development.   

 

The MAQC-II Study: The MAQC-II study consists of 36 independent teams analyzing six 

microarray datasets to generate predictive models for lung or liver toxicity in rodents, breast 

cancer, MM, or neuroblastoma in humans.3 The MM dataset (GEO accession number: 

GSE24080) including 559 NDMM was contributed by the Myeloma Institute for Research and 

Therapy at the UAMS. Gene expression profiling of highly purified bone marrow plasma cells 

was performed with Affymetrix Human Genome U133 Plus 2.0 Array and used as a validation 

set in the survival analysis. We noticed that there were 136 samples overlapped between the 

UAMS-I and MAQC-II datasets and have removed the expression data of the 136 samples from 

the analysis of MAQC-II study.  

 

The APEX Study: This dataset included patients with relapsed myeloma enrolled in phase 2 and 

phase 3 clinical trials of bortezomib.4 Pretreatment tumor CD138+ cells from the BM were 



profiled with Affymetrix Human Genome U133A/B Array. Gene-expression data (GEO 

accession number: GSE9782) were generated in 264 patients from the APEX phase 3 trial 

(n=213), the SUMMIT phase 2 trial (n=44) and CREST phase 2 trial (n=7).4,9-11 For simplicity, 

we used “APEX” to represent this study in our analysis. The APEX dataset was used as a 

validation set in the survival analysis. 

 

The Mayo Clinic Study: The Mayo Clinic study included 15 healthy controls, 21 MGUS, 23 

SMM, 75 NDMM, and 28 relapsed/refractory MM (RRMM) patients.12 Gene expression (GEO 

accession number: GSE6477) was performed on CD138-selected BM cells using the Affymetrix 

Human Genome U133A chip. The Mayo Clinic dataset was used in the analysis of MM 

development.  

 

Development of the Plasma B-cell Signature 

To define the plasma cell signature, we referred to the immune cell specific marker genes curated 

by the PanglaoDB database.13 The database integrated a large number of single-cell RNA-seq 

datasets from previous publications and defined high-resolution human immune cell clusters.13 

These clusters were corresponding to 16 different types of the human immune cell types, 

including naive B-cell, memory B-cell, and plasma B-cell. The data do not include malignant B 

cells, e.g., CD138+ cells from MM samples. The database manually curated a list of candidate 

marker genes for each immune cell type based on 4,598 previous publications. Following that, a 

ubiquitousness index (UI) and a specificity index (SI) were calculated to quantify the specificity 

of these candidate markers. Based on the provided information, we selected 84 genes specifically 

expressed in normal plasma B-cells to form the plasma B-cell (PB) signature (Supplementary 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782


Table 2). As controls, we also defined signatures for naive B-cell, memory B-cell, and 13 other 

immune cell types (macrophage, dendritic cell, plasmacytoid dendritic cell, myeloid-derived 

suppressor cell, mast cell, natural killer cell, neutrophil, eosinophil, basophil, CD4+ T-cell, 

CD8+ T-cell, regulatory T-cell, memory T-cell) in a similar way.  

  

Calculation of the Plasma B-Cell Malignancy Score 

Given a MM gene expression dataset, we used the plasma B-cell signature to calculate a patient-

specific score named plasma B-cell malignancy score (PBM score). PBM score quantifies the 

level of malignancy of CD138+ cells in MM tumors, with a greater score indicating a higher 

level of malignancy. To calculate the PBM score, a rank-based statical framework called BASE 

(Binding Associated with Sorted Expression)14 was applied to gauge the perturbed expression of 

PB signature genes. Briefly, the analysis includes the following steps. First, in a given MM gene 

expression dataset, the expression of each gene was log-transformed and normalized by 

subtracting its median expression across all samples. Second, the expression of all genes in each 

sample was sorted in the decreasing order. Third, the expression values of all signature genes 

were summarized considering their positions in the ranked gene list, resulting in a raw 

enrichment score for each sample. Finally, the raw score was normalized against the null 

distribution obtained from permutated data to obtain the PBM score. Of note, the BASE 

algorithm was originally designed for weighted gene signatures.15,16 Here we applied it to the 

unweighted gene sets. In this way, the BASE algorithm give rise to similar results with those 

from the single-sample GSEA analysis.17 

 

Gene Ontology Biological Process Analysis 



The Gene ontology (GO) biological process (BP) enrichment analysis was performed to explore 

the biological functions of genes correlated with PBM scores. Using the CoMMpass data, we 

identified genes that were correlated with the PBM scores in their expression values across all 

MM samples. In total, 234 positively correlated genes (Spearman correlation coefficient  r > 

0.25, P < 0.001) and 1,075 negatively correlated genes (r < -0.25 and P < 0.001) were selected 

(Supplementary Table 3). GO enrichment analysis was implemented using the R package 

“clusterProfiler”. We focused on biological process GO terms in our analysis.18  

 

Tumor Microenvironment Immune Cell Inference and Clustering Analysis 

The UAMS-I dataset has gene expression profiles for paired WBM and tumor CD138+ cell 

samples of 401 patients. By referring to the method described by Danziger et al2, we inferred the 

infiltration levels of major immune cell types based on deconvolution analysis. Specifically, the 

digital cell quantifier (DCQ) algorithm, implemented by an R package “ADAPTS”, was used to 

deconvolute WBM expression profiles.19,20 A signature matrix named MGSM27 was used as the 

reference for deconvolution, which included the 22 leukocyte signature matrix (LM22), 4 bone 

marrow cell types (adipocyte, osteoclast, plasma memory cell, and osteoblast), and the malignant 

plasma B cell.20,21  

 

After deconvolution analysis, we obtained the proportion of the above-list 27 cell types in each 

WBM sample. Then we combined these results with CD138+ cell expression data to calculate 

TIME-specific (CD138- cells) gene expression levels of all genes. Specifically, the proportion of 

the CD138+ cells (PropCD138+) in each WBM sample was estimated as the sum of the 



plasma.cells, B.cells.memory, MM.plasma.cells, and PlasmaMemory.2 The expression profiles 

of the CD138- cells (eCD138-) in the WBM of each patient were then estimated as the following: 

𝑒𝑒𝐶𝐶𝐶𝐶138− = (𝑒𝑒𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑒𝑒𝐶𝐶𝐶𝐶138+ × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶138+)/(1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶138+) 

Based on the estimated CD138- expression profiles, we performed unsupervised clustering 

analysis by using the top 5% most expressed genes (n=805 genes). Specifically, the R package 

“ConsensusClusterPlus” was applied to implement this analysis, leading to 5 MM clusters as 

reported in the original study.2,22  

 

The Selection of Myeloma Driver Mutations 

To investigate the relationship between PBM score and myeloma driver mutations, 33 genes with 

nonsynonymous somatic mutations in at least 30 samples in the CoMMpass dataset were listed 

as candidates (Supplementary Table 6). Ten out of the 33 genes that were also included in the 

COSMIC Cancer Gene Census (CGC)23 were selected for the subsequent analysis, including 

KRAS, NRAS, MUC16, BRAF, FAT4, LRP1B, FAT3, CSMD3, FAT1, and TP53.  

 

Integrative Models for Predicting Prognosis 

To examine the additional prognostic value contributed by the PBM score, we constructed 

prognostic models that include clinical variables with and without PBM scores. The performance 

of these models was evaluated and compared based on a 5-fold cross-validation. Specifically, the 

samples in a given dataset were randomly divided into 5 subgroups. Each time, 4 subgroups were 

selected and merged into the training data, and the other subgroup was used as the test data. The 

training data were used to fit a multivariate Cox regression model, which was subsequently used 

to predict the prognostic risk of samples in the test data. This procedure was rotated 5 times until 



the prognostic risk of all samples was predicted exactly once. The predicted prognostic scores 

were compared with known survival information to evaluate the performance of the models. The 

performance of all models was evaluated 100 times, each from different subgroup 

randomization. The R package “rms” was used for model construction and evaluation. 

Specifically, the “cph” function was used to construct the univariate and multivariate Cox 

regression models; the “validate” function was used to perform 5-fold cross-validation for each 

model; and the “survest” function was used to calculate the prognostic risk (i.e., survival 

probabilities) of samples in the testing dataset. The “rcorr.cens” function of the R package 

“Hmisc” was used to calculate the Concordance index (C-index) of prognostic models. 

 

Statistical Analysis 

The R package “survival” was implemented to perform the survival analysis. Univariate and 

multivariate Cox proportional hazard models were constructed to estimate the association 

between PBM score and patient survival by calculating hazard ratios (HRs) and 95% confidence 

intervals (CIs). By using the median of PBM scores as the threshold, MM patients were stratified 

into two groups with “high” and “low” PBM scores, respectively. Kaplan-Meier method was 

used to plot their survival curves and log-rank test was used to compare their survival difference. 

The difference between two samples groups were conducted using the Wilcoxon rank-sum test, 

and further confirmed by the Student’s t-test for values with a normal distribution. The 

Benjamini-Hochberg method was used to correct multiple testing, e.g., in differential gene 

expression analysis. Receiver operating characteristic (ROC) analysis using PBM to predict the 

progression of MGUS was performed using the “roc” function of the R package “pROC”. The 

cutoff value of the optimal PBM and the calculation of the area under the ROC curve (AUC) are 



conducted using the same function.  All statistical analyses were conducted in the R environment 

(v4.0.2).  
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Supplementary Figure 1. Effects of PBM score on MM prognosis.
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Supplementary Figure 2. PBM score predicts MM survival.
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Supplementary Figure 3. Prognostic performance of the PBM score and clinical factors.
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