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Protocol for determination of the Lewis acid acceptor numbers for 1 and 2: 0.25 mL of a 9
mM solution of either 1 or 2 (2.25 x 10 mmol) in C;D; was added to a vial containing the given
triethylphosphine chalcogenide (4.5 x 10~ mmol) in 0.25 mL of C¢D,. The reactions were stirred
for 30 min and then analyzed by *'P{'H} NMR spectroscopy.

J X\ 2:1 O=PEt, + 1 in C,D,

JL 2:1 O=PEt, + 2 in C¢D,

8
|
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Figure S15. Stacked plot of the *'P{'H} NMR spectra of the mixtures of Et;PO (i) and Et;PS (ii)
experiments run to evaluate the Lewis acidity of complexes 1 and 2.
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Protocol for the VI-NMR studies of Complexes 4, 6, and 8: ~5 mg of complex was
dissolved in ~0.75 mL of NMR solvent (C;Dg for 4; CDCI; for 6 and 8). The solution was
transferred into an NMR tube equipped with a Teflon J. Young valve and the sample was allowed
to equilibrate at 293 K and a IH NMR spectrum was collected. Then, '"H NMR spectra were
recorded at 303K, 313K, 323K, 333K, 343K, and 353K; before each collection, the sample was
allowed to thermally equilibrate for 30 min and then the sample was shimmed prior to collection
of the spectra.
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Figure S16. Diastereotopic proton region of the 'H NMR spectra of the 4, 6, and 8 complexes
over the temperature range 293-353 K. The samples all contain diethyl ether (marked with an *)
that remains throughout the experiment.
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Protocol for the van’t Hoff experiment of 1 + ‘BuOH: Into a vial was added 500 uL of a 9 mM
stock solution of 1 in C¢D¢ along with 125 pL of a 6 mM stock solution of
hexamethylcyclotrisiloxane as an internal standard, also in C;Dy. Then, 125 pL of a 36 mM
solution of fert-butanol in C,D, was added and the reaction was allowed to stir at room
temperature for 24 h. The reaction mixture was then transferred to a J-young capped NMR tube
and loaded into the NMR spectrometer. "H NMR spectra were collected at each indicated
temperature. In all cases, the reaction was allowed to thermally equilibrate at the given
temperature for 30 min prior to collection of the spectra. The concentration of the metal
complexes 1 and 4 were determined by comparison of the integrations of the resonances for the
Bu and diasteriotopic CH, protons of the TriNOx ligands in each complex relative to internal
standard. K., values were calculated according to the formula:

N C N
K ., = Tiwsuwom (Eq. SI)

Protocol for the determining the K,, values for the reactions of 2 with alcohols. For each
experiment, 500 pL of a 9 mM stock solution of 2 in CDCl; was dispensed into a vial along with
125 pL of a 6 mM stock solution of hexamethylcyclotrisiloxane as an internal standard also in
CDCl;. Then, 125 pL of a 36 mM stock solution of the appropriate alcohol in CDCl; was
dispensed into the vial. The reaction was allowed to stir at room temperature for 24 hours after
which the reaction was transferred to an NMR tube and analyzed by 'H NMR spectroscopy. K.,
values were calculated according to the formula:

_ [(HTTiNOX)MOR]
eq [2][ROH]

K (Eq. S2)

The concentration of the metal complexes were determined by comparison of the integrations of
the ligand NMR signatures to internal standard. For 2 the concentration was taken as the average
value determined from comparison to the rBu groups as well as both diastereotopic protons of
the bridgehead CH, groups. The concentration of the (HTriNOx*)Ga—OR complexes were
similarly determined by the average of the value found for the rBu groups as well as both
diastereotopic protons of the bridgehead CH, groups, as well as with any easily identifiable
NMR handles in the R group of the resultant alkoxide ligand. The concentration of unreacted
alcohol was assumed to be equal to that unreacted complex 2.
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Figure S26. '"H NMR spectrum of a 1:1 mixture of 2:9-fluorenemethanol. Taken in CDCI; and recorded after 24 hours of stirring at
room temperature (Table 1, entry 5).
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Figure S27. '"H NMR spectrum of a 1:1 mixture of 2:propargyl alcohol. Taken in CDCl; and recorded after 24 hours of stirring at
room temperature (Table 1, entry 6).
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Figure S28. '"H NMR spectrum of a 1:1 mixture of 2:CF;CH,OH. Taken in CDCl, and recorded after 24 hours of stirring at room

temperature (Table 1, entry 7).
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Figure S29. 'H NMR spectrum of a 1:1 mixture of 2:CCl;CH,OH. Taken in CDCl; and recorded after 24 hours of stirring at room
temperature (Table 1, entry 8).
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Protocol for kinetic analysis of the reactions of 1 and 2 with alcohols. In the glovebox, 500
pL of a 9 mM stock solution of 1 (or 2) in CsD¢ was dispensed into an NMR tube along with 125
pL of a 6 mM stock solution of hexamethylcyclotrisiloxane as an internal standard, also in C4Dj.
The NMR tube was sealed with a septa-lined cap, removed from the glovebox, and transported to
the NMR spectrometer which has the temperature probe set to 20 °C. Once at the instrument,

125 uL of a 36 mM stock solution of the specific alcohol in C¢D, was added to the NMR tube
via syringe through the septa, the tube was inverted once to start the experiment (time = 0), and
the NMR sample was loaded into the NMR spectrometer. Single-scan '"H NMR spectra of the
reaction were recorded at regular 2 min intervals and the concentration of the H(TriNOx*)M-OR
complexes were determined by integration of the protons on the apical alkoxylate ligands (-OR)
against internal standard. For each experiment, [1], (or [2],) = [ROH], = 6 mM; [i.s.] = 1 mM.
The total reaction volume is 0.75 mL.
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Figure S31. Plot showing the concentration of products over time for the reaction of 1 and 2 with i-PrOH
in C4Dy at 20 °C.
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Figure S32. Initial rate data for the reaction of 2 with i-PrOH in C4Dg at 20 °C. Replicate trials are
represented by blue, black, and red lines.
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Procedure for the calculations to give the predicted-pK, of alcohols in DMSO. All
optimization and frequency calculations were performed with the Gaussian ‘16, Revision B.01
program using the G4 method' implementing a SCRF polarizable continuum solvent model of
DMSO (g = 46.826).

Predicted pK, values were determined by calculating the Gibbs standard free energies for
the alcohols and their corresponding alkoxide conjugate bases (Table S1). The difference of these
energies for each alcohol/alkoxide pair represents the AG® of deprotonation (AG’,,,,,) for each
alcohol (Table S2). The AG’,.,.« values across the range of alcohols were normalized to
2,2,2-trifluoroethanol (AGOdepmt,ref) and then converted to their corresponding calculated pK,
values via the following formula:

AGdeprot,vef
pK =— log[lO ¢ ] (Eq. S3)

where C is equal to [1.9872 cal/Kemol * 298.15 K * [In(10)/1000]. These values represent the
pK, of the alcohols relative to 2,2,2-trifluoroethanol and although the absolute values hold no
meaning, their relative values can be compared. To do so, we generated a calibration curve
(Figure S38) between these calculated pK, values and the pK, values listed in the Bordwell
literature for any alcohol with the latter value being available in DMSO . The line-of-best-fit
equation was then used to determine the predicted pK, values. Table S2 lists these predicted pK,
values for the range of alcohols studied along with the values from the Bordwell literature.?

! Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126, 084108.
2 Reich, H. Bordwell pK, Table. https://organicchemistrydata.org/hansreich/resources/pka/
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Table S1. Raw calculated Gibbs standard free energies at 298 K of alcohols and their

corresponding alkoxides.

alcohol (ROH) Electronic energy + free energy | Electronic energy + free energy

correction of protonated form | correction of deprotonated form
(hartrees) (hartrees)
MeOH -115.67961 -115.17672
EtOH -154.96476 -154.46275
‘BuOH -233.53866 -233.03685
PrOH -194.25147 -193.75025
1-AdOH -465.66954 -465.16899
BnOH -346.60935 -346.11296
9-Me-FIOH -615.64647 -615.15071
HC=CCH,0OH -191.79935 -191.30800
CF;CH,0OH -452.67243 -452.18816
CCI;CH,OH -1533.42630 -1532.94569
4-MeO-C¢H,OH -421.80596 -421.33244
PhOH -307.33497 -306.86398
(CF;),CHOH -789.65321 -789.18690
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Table S2. Calculated standard Gibbs free energies of deprotonation (AGgep,) in DMSO for
alcohols and the manipulation of that data to give predicted pK, values for alcohols.

alcohol AG 4eprot AG jeprotret’ Calculated Predicted Bordwell
(ROH) (kcal/mol) |  (kcal/mol) pkK,’ pK;© pk,’
MeOH 315.57 11.68 8.56 30.77 29
EtOH 315.02 11.13 8.16 30.43 29.8
‘BuOH 314.90 11.01 8.07 30.36 322
PrOH 314.52 10.63 7.79 30.12 30.25
1-AdOH 314.10 10.21 7.49 29.86 —
BnOH 311.49 7.60 5.57 28.26 —
9-Me-FIOH 311.09 7.21 5.28 28.01 —
HC=CCH,OH 308.33 4.44 3.26 26.31 —
CF;CH,OH 303.89 0 0 23.58 23.5
CCl;CH,OH 301.58 -2.30 -1.69 22.16 —
4-MeO-C¢H,OH 297.14 -6.75 -4.95 19.42 19.1
PhOH 295.55 -8.34 -6.11 18.44 18
(CF;),CHOH 292.61 -11.27 -8.26 16.64 17.9

a) AG’ 4pro( ROH) — AG’ i CF;CH,OH); b) Relative to CF;CH,OH.; ¢) Determined using the
line-of-best-fit in Figure S38; d) Values are quoted in DMSO and taken from Reich, H. Bordwell
pK, Table. https://organicchemistrydata.org/hansreich/resources/pka/.
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Figure S33. Correlation plot between the G4-calculated versus experimental determined pK,
values for alcohols.
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Procedure for the calculations to determine the A-values for the alcohol R groups. All
optimization and frequency calculations were performed with the Gaussian ‘16, Revision B.01
program using the G4 method.REF The geometries of both axial and equatorial conformers of
the R-substituted cyclohexanes for each alcohol R group were optimized and the standard Gibbs
free energy (AG®, in kcal/mol) values were calculated. The A-value for a given R substituent is a
measurement of how much the equatorial conformer of the R-substituted cyclohexane is favored
over the axial conformer. The A-values are thus obtained by subtracting AGoequamml from AG®,.,;.

Table S3. Calculated standard Gibbs free energies at 298 K of the equatorial (AG’.uoria) and
axial (AG®,;,) conformers of R-substituted cyclohexanes and the calculated A-values for the R
groups.

H R

= it

equitorial axial
R Group AG’ quatorial AG®, A-value

(hartrees) (hartrees) (kcal/mol)

t-Bu -392.880887 -392.871382 5.96
i-Pr -353.597397 -353.593586 2.39
I-adamanyl -625.040039 -625.035467 2.87
Me -275.027013 -275.023177 2.41
Bn -506.002444 -505.998587 2.42
9-MeF1 -775.083576 -775.083904 -0.21
HCCCH, -351.157602 -351.153909 2.32
CF;CH, -612.065504 -612.062007 2.19
CCl,CH, -1693.113611 -1693.109934 2.31
4-OMe-C¢H, -581.207238 -581.200354 4.32
Ph -466.714283 -466.707497 4.26
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Figure S34. Plot of the pK,, of the reaction of 2 with alcohol versus the A-value of the alcohol R
group.
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