Line	Allele	Mutagen	Ecotype	Mutation
nab1	ago1-1 ^a *	T-DNA	Col-2	
dlw2	ago1-2 ^a *	T-DNA	WS	
e052	ago1-3 ^a *	EMS	Col-0	G42Stop
e436	ago1-4 ^a *	EMS	Col-0	
e553	ago1-5 ^ª *	EMS	Col-0	22bp deletion
	_			C2726-G2747
e691	<i>ago1-6</i> ^ª *	EMS	Col-0	
abf27	ago1-7 ^b	T-DNA	WS^{b}	
	ago1-8 ^b	EMS	Ld ^b	
	ago1-9°	EMS	Ld ^e	2bp deletion
				C1154-T1155
	ago1-10 ^d	EMS	Ld ^g	1bp deleted
		EV(C	x 1f	A1170
	ago1-11°	EMS	Ld	117(0)
1000	ago1-12 ^ª	EMS	Ld ^g	H/63L
e1099	ago1-13 ¹ *	EMS	Col-0	Q537stop
e1387	$ago1-14^{t}*$	EMS	Col-0	Q885Stop
6w	<i>ago1-15</i> ^f *	EMS	Col-0	
7r	ago1-16 ^f *	EMS	Col-0	
8t	$ago1-17^{f} *$	EMS	Col-0	
14b	<i>ago1-18</i> ^f *	EMS	Col-0	P493S
acx7	<i>ago1-19</i> ^f *	T-DNA	WS	
dsv1	ago1-20 ^f *	T-DNA	WS	
dyp79	ago1-21 ^f *	T-DNA	WS	
23-1	ago1-22 ^g	EMS	Col-0	
46-3	ago1-23 ^g	EMS	Col-0	
60-1	ago1-24 ^g	EMS	Col-0	L571F
19-3	<i>ago1-25</i> ^h	EMS	Col-0	G758S
33-2	ago1-26 ^h	EMS	Col-0	P838S
69-4	ago1-27 ^h	EMS	Col-0	A992S
e965	ago1-28 ^f *	EMS	Col-0	
e1174	ago1-29 ^f *	EMS	Col-0	
dwy4	ago1-30 ^f *	T-DNA	WS	
eai70	ago1-31 ^f	T-DNA	WS	
13-5	ago1-32 ^f	EMS	Col-0	
6-5	ago1-33 ^f	EMS	Col-0	
450-3	ago1-34 ^f	FNM	Col-0	
450-16	ago1-35 ^f	FNM	Col-0	

Supplemental Table 1 : Updated classification of *ago1* alleles

 450-16
 ago1-35*
 FNM
 Col-0

 a - Bohmert et al. (1998), b - Lynn et al. (1999), c - Lippman et al. (2003),

 d- Kidner et al. (2004), e - Kidner et al. (2003), f- Sorin et al. this issue, g

- Fagard *et al.* (2000), h - Morel *et al.* (2002) * analysed on western blot (supplemental fig1)

In a forward genetic screen of EMS mutagenized lines and T-DNA insertion lines we identified 21 argonaute1 alleles showing a strong phenotype (Camus 1999). Some of these alleles had to be renamed, because of the recent publication of new alleles (Kidner and Martienssen 2003; Kidner and Martienssen 2004). An updated nomenclature for our ago1 alleles and their origin is provided here. The first six alleles (ago1-1 to ago1-6) were described in (Bohmert et al. 1998). Fourteen of the other alleles, which showed a similar, strong phenotype, were considered as strong alleles. The allele agol-18 gave rise to a slightly weaker phenotype. The mutation was identified in five of the EMS alleles. These include our reference mutant ago1-3, ago1-18 that had the WT size protein, and three alleles showing truncated proteins (STable1). The ago1-3 mutation induces an early STOP codon in position G42, confirming that it is a null allele. The truncated proteins are likely to be inactive as they certainly lack the conserved PIWI and/or PAZ domain as confirmed by the sequence analysis for three of the alleles. The ago1-18 sequence showed a single amino-acid change (P493S). Interestingly this is the exact same mutation as observed in the allele *zll1-16* of the *ZWILLE/PINHEAD* gene (Moussian et al. 1998), and that also leads to a milder phenotype (Moussian personal communication). Although agol-18 had a weaker phenotype than the null alleles, it was still stronger than that of the hypomorphic ago1 mutants described by Morel et al. (2002) highlighting the importance of that particular amino-acid for the protein functionality. The ago1-5 sequence showed a frame-shift 22 bp deletion that created a STOP codon leading to the deletion of the C-terminus part of the protein including part of the PIWI domain.

- Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. Embo J 17, 170-80.
- Camus, I. (1999). *ARGONAUTE* d'Arabidopsis thaliana Définit une Famille de Gènes Conservés chez les Eucaryotes, Impliqués dans le Développement. PhD thesis, pp. 127. Université Pierre et Marie Curie, Paris, France.
- Fagard, M., Boutet, S., Morel, J.B., Bellini, C., and Vaucheret, H. (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci U S A **97**, 11650-4.
- Kidner, C.A. and Martienssen, R.A. (2003). Macro effects of microRNAs in plants. Trends Genet 19, 13-6.
- Kidner, C.A. and Martienssen, R.A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature **428**, 81-4.
- Lippman, Z., May, B., Yordan, C., Singer, T., and Martienssen, R. (2003). Distinct Mechanisms Determine Transposon Inheritance and Methylation via Small Interfering RNA and Histone Modification. PLoS Biol 1, E67.
- Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P., and Barton, M.K. (1999). The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development **126**, 469-81.
- Morel, J.B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F., and Vaucheret, H. (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629-39.
- Moussian, B., Schoof, H., Haecker, A., Jürgens, G., and Laux, T. (1998). Role of the *ZWILLE* gene in the regulation of central meristem cell fate during *Arabidopsis* embryogenesis. EMBO J. **17**, 1799-1809.