
Supplementary Text 1 

 2 

Building Trust in Deep Learning-based Immune Response Predictors 3 

with Interpretable Explanations 4 

Piyush Borole, Ajitha Rajan 5 
 

 

Supplementary Note 1: Introduction 6 
 

 In this document, we look at additional experiments that support the results in the main 7 
manuscript. Firstly, we look at additional benchmarking of the predictors by looking at a variant 8 
of the benchmark dataset and evaluate them on variety of metrics.   9 

Furthermore, we show that explanations for alleles can also be generated using LIME [1] 10 
and SHAP [2] and global explanations can be formed by aggregation of attribution values. We 11 
also demonstrate that LIME and SHAP explanations are mostly correlated, and SHAP feature 12 
attribution values shows correlation while LIME attribution values are independent. 13 
 While BAlaS provides an important alternative to resource intensive Alanine-scanning 14 
Mutagenesis [3] to identify peptide residues contributing to binding to MHC molecule, it suffers 15 
two major limitations. The first limitation is that the energy calculations BAlaS does over the PDB 16 
structure of bound peptide-MHC allele molecule is seemingly affected by the resolution of the 17 
PDB structure. Here we demonstrate examples where difference in resolution marks a residue to 18 
be contributing to binding in one resolution while not contributing to binding in another resolution. 19 
The second major limitation is that BAlaS calculates energies by replacing the residue in peptide 20 
with alanine. However, if the input peptide contains alanine residue, the contribution of this residue 21 
cannot be calculated by BAlaS. 22 
 Next, we show the GibbsCluster [4] report of clustering input peptides for HLA-A*02:01 23 
used to test stability of the explanations generated by LIME and SHAP. We also provide 24 
supplementary tables reporting the effect size and p-values. Supplementary Data 4 and 6 reports 25 
effect size in terms of Pearson’s r and Supplementary Tables 1-3 reports effect size using Cohen’s 26 
d. 27 

The quality of explanations depends on the choice of certain parameters. LIME and SHAP 28 
are perturbation based XAI techniques, meaning that they generate test samples by mutating the 29 
original input peptide to evaluate the predictor and generate an explanation. The number of test 30 
samples to be generated (or the number of times the model should be evaluated) is one of the 31 
parameters that can be passed to the XAI techniques. If the model is not evaluated sufficiently, the 32 
attribution values display high variance. This variance reduces as the number of mutated samples 33 
increases. To find the right number of mutated samples for reducing variance, we set up an 34 
evaluation where we generate explanations for a peptide by varying the number of mutated samples 35 
the XAI technique should produce.  36 
 To generate these mutated samples, LIME and SHAP relies on the training data used to 37 
train predictor. Here, we explore if there is any difference in explanations generated if we provide 38 
training data covering all peptides across alleles or training peptides specific to the MHC allele of 39 
interest. We test the validity of the explanations generated by providing these two training datasets. 40 
 We also look at the nature of these explanations and the congruence between the 41 
explanations generated by LIME and SHAP. 42 



Supplementary Note 2: Additional benchmarking of predictor performance 43 
  44 

In the main manuscript, we assessed performance of the predictors using the MHC-Bench 45 
dataset. However, as mentioned earlier, MHC-Bench contains Peptide-MHC pairs that were not 46 
seen during training, though the peptides themselves may have been part of the training data for 47 
the predictors. Here, we present additional analysis by excluding training peptides from the MHC-48 
Bench dataset, creating a new dataset referred to as “MHC-Bench-v2”. 49 
 After removing training peptides, we observed that, for 36 MHC alleles, there were no 50 
binder peptides available. We excluded these MHC alleles from our analysis, as the calculation of 51 
AUROC and AUPRC scores is not possible with only the negative or non-binder class. The MHC-52 
Bench-v2 dataset comprises of 79 alleles, 1,282,057 unique peptides, and 1,666,269 peptide-MHC 53 
combinations. We calculated AUROC and AUPRC scores per allele which are provided in 54 
Supplementary Data 7 and 8. The percentage of binding peptides per allele is reported in 55 
Supplementary Data 9. In Supplemental Figure S1a, the AUROC v1 scores represent the scores 56 
on the original MHC-Bench dataset, and AUROC v2 scores represent the scores on the MHC-57 
Bench-v2. The performances appear to be comparable to the performance on the MHC-Bench. In 58 
Supplemental Figure S1b, the AUPRC v1 scores represent the scores on the original MHC-Bench 59 
dataset, and AUPRC v2 scores represent the scores on the MHC-Bench-v2. With AUPRC, there 60 
is a noticeable drop in performance. Nevertheless, the performance of the predictors is still 61 
comparable and not significantly different (Kruskal-Wallis p-value: 0.45, H-statistic: 4.67). 62 

Additionally, considering that the threshold for HLA alleles varies [7], many predictors 63 
recommend using a percentile score for the classification of peptides into binders or non-binders. 64 
However, not all predictors provide the percentile score. Among our selected predictors, 65 
MHCfovea and NetMHCpan offer %Rank, whereas MHCflurry provides the percentile only for 66 
the final presentation score (referred to as MHCflurry-PS in our manuscript). TransPHLA does 67 
not provide %Rank (or percentile) for the peptides but a binding probability. This limitation 68 
hinders our comparison across all predictors. Nonetheless, we compare the performance of the 69 
four predictors based on %Rank (or percentile). We set 0.5% as the cut-off for binders, as 70 
recommended in the original publications of the predictors, and calculate the F1 score per allele 71 
(results in Supplementary Data 10). Supplemental Figure S1c shows the distribution of the F1 72 
score for the four predictors. We find that the performance of the predictors is comparable and not 73 
significantly different (Kruskal-Wallis p-value: 0.19, H-statistic: 4.73). 74 

These two analyses indicate that the performances of the predictors are comparable across 75 
metrics and scoring methods. 76 

 77 



 78 
Supplemental Figure S1:  Additional benchmarking results. a) AUROC scores for the predictors 79 
on MHC-Bench and MHC-Bench-v2. b) AUPRC scores for the predictors on MHC-Bench and 80 
MHC-Bench-v2. c) F1 scores for the predictors on MHC-Bench calculated using %Rank (or 81 
percentile in MHCflurry-PS).   82 



Supplementary Note 3: Explanations for MHC Allele (TransPHLA) 83 
 

 Similarly, to peptide explanations, we can also generate explanations for alleles in MHC 84 
class I predictors that take MHC molecules as input sequences. For example, TransPHLA accepts 85 
both peptide and MHC molecule pseudo-sequences as input. A pseudo-sequence of an MHC 86 
molecule consists of 34 residues forming the binding pocket of the MHC molecule's alpha subunit. 87 
To generate explanations for MHC alleles, we use the same framework but modify it such that the 88 
input peptide remains constant, while the MHC allele pseudo-sequence is perturbed. In 89 
Supplemental Figure S2, we demonstrate that both LIME and SHAP can generate explanations for 90 
the HLA-A*02:01 allele sequence for TransPHLA. 91 

 92 
Supplemental Figure S2. Explanation for MHC allele HLA-A*02:01 for TransPHLA. a) BAlaS 93 
result indicating allele residues contributing to binding (marked in red) from left, center, and right 94 
view of the PDB structure. The molecule in white is the ligand peptide ITDQVPFSV. b-d) G, 95 
calculated using BAlaS [3,5], for 34 pseudo-sequence positions of HLA-A*02:01 (b) along with 96 
SHAP (c) and LIME (d) explanations for those positions. Explanations for TransPHLA can be 97 
generated as it accepts allele input as a sequence of amino acids.  98 
 99 
 100 



Supplementary Note 4: Global Explanations as Aggregation of Attribution Values 101 
 

 Local instance-based explanations do not eliminate the need for global explanations; each 102 
has its role. For example, global explanations help in understanding commonly presented peptide 103 
patterns for a tumor, which can be utilized in the development of a cancer vaccine. It is essential 104 
to note that local instance-based explanations can be aggregated to generate a global explanation. 105 
Consider Supplemental Figure S3a, c, which displays the distribution of SHAP and LIME 106 
attribution values for all amino acids at peptide positions P1, P2, P8, and P9 for HLA-A*02:01 for 107 
MHCflurry-PS. This distribution serves as a global explanation across all peptides for the MHC 108 
allele HLA-A*02:01. The heatmaps in Supplemental Figure S3b, d are produced by averaging all 109 
the values from plots like Supplemental Figure S3a, c for all positions. We observe that the SHAP 110 
attribution values for an amino acid have a wider range of values, whereas LIME attribution values 111 
for the corresponding amino acid tend to have a very narrow range of values. This difference could 112 
explain why LIME produces more stable and consistent explanations than SHAP.  113 

  114 



 115 
Supplemental Figure S3. Aggregation of SHAP and LIME attribution values to form global 116 
explanation. a) SHAP attribution values distribution for MHC allele HLA-A*02:01 for all amino 117 
acids at N- and C- terminus (P1, P2, P8 and P9) for peptide. b) Heatmap of average SHAP values 118 
for all amino acids at all peptide positions (P1-P9) for HLA-A*02:01. c) LIME attribution values 119 
distribution for MHC allele HLA-A*02:01 for all amino acids at N- and C- terminus (P1, P2, P8 120 
and P9) for peptide. d) Heatmap of average LIME values for all amino acids at all peptide positions 121 
(P1-P9) for HLA-A*02:01. SHAP attribution values for an amino acid tends to have wide 122 
distribution compared to corresponding LIME attribution values.  123 
  



Supplementary Note 5: Limitation of BAlaS  124 
  

 BAlaS [3,5] offers a cost-effective alternative to the expensive Alanine-scanning 125 
mutagenesis [3] for calculating the free energy of interaction (∆∆G) from the PDB structure of a 126 
peptide ligand bound to an MHC molecule. This ∆∆G can help identify peptide residues 127 
contributing to binding. However, BAlaS has two main limitations: ∆∆G calculations are 128 
influenced by the resolution of the PDB structure, and the contribution of alanine residues cannot 129 
be determined. Supplemental Figure S4 illustrates the first limitation, where for the same peptide-130 
MHC allele pair, one PDB structure highlight certain residues as 'hot' residues, while another 131 
structure may not. In Supplemental Figure S4b, it is evident that in structure 5D2L, residue N has 132 
a negative ∆∆G, whereas for the same peptide-MHC allele pair in structure 3GSO, residue N has 133 
a neutral effect. The second limitation is demonstrated in Supplemental Figure S5, where the 134 
residue at peptide position P2 in both structures is alanine. Although P2 is an anchor residue 135 
appropriately highlighted by the SHAP explanation, BAlaS is unable to quantify the contribution 136 
of this position. 137 

 138 



 139 
 

Supplemental Figure S4. Impact of resolution of PDB structure on ∆∆𝐺 calculation. In all a, b 140 
and c, there are two PDB structure of different resolutions showing peptide bound to MHC allele. 141 
The residues that have relatively large difference in ∆∆𝐺 are highlighted in red. The difference in 142 
free energy (∆𝐺) due to difference in resolution can be more than 20 kJ/mol. In a, residue R is not 143 
highlighted as ‘hot’ residue in coarser resolution PDB structure whereas for 7P3D, ∆∆𝐺 >144 
4.18 𝑘𝐽/𝑚𝑜𝑙 indicating that it is contributing to binding. In b, we see that the residue N have 145 
negative ∆∆𝐺 for PDB structure 5D2L whereas for the finer PDB structure 3GSO, the same residue 146 
has no impact. The peptide-HLA models are created by BAlaS online.  147 



 

 148 
Supplemental Figure S5. Additional examples of comparison between BAlaS G and SHAP 149 
explanations and demonstration of limitation of BAlaS. Here, peptides AAGIGILTV (a) and 150 
LAGIGILTV (b) are both binding peptides to MHC allele HLA-A*02:01 with only first amino 151 
acid difference. a) The BAlaS identifies that for peptide AAGIGILTV, peptide positions P6, P7 152 
and P9 are important for the binding. The two heatmaps are SHAP explanations for MHCfovea 153 
and TransPHLA which correctly classified the peptide as binder. The explanations reveal that 154 
while P9 is important position, they do not place high importance to other important positions P6 155 
and P7. b) For peptide LAGIGILTV, P1, P6, P7 and P9 are important residues contributing to the 156 
binding. The two heatmaps are SHAP explanations for MHCfovea and TransPHLA which 157 
correctly classified the peptide as binder. The explanations reveal that while P9 is important 158 
residue, P6 and P7 are not considered highly important for classification even though they 159 
contribute strongly to binding. We see that in (b) ‘L’ has very high (G) indicating the 160 
importance of the position. However, neither of the models highlights this to be an important 161 
position. TransPHLA indicates P2 as important position contributing to binding which is not 162 
indicated by BAlaS. This is important as P2 is one of the primary anchor positions. However, as 163 
BAlaS replaces amino acids with ‘A’ to calculate (G), we cannot calculate the contribution of 164 
‘A’ towards binding (For example at position P2 in LAGIGILTV). The peptide-HLA models are 165 
created by BAlaS online 166 
  



 167 

 168 
Supplemental Figure S6. GibbsCluster [4] report for MHC allele HLA-A*02:01 peptides. a) 169 
Kullbach-Leibler Distance (KLD) when peptides are clustered into 1-10 clusters. The KLD 170 
increases with the number of clusters. The number of clusters with maximum average KLD (Here 171 
10 clusters) is recommended as best clustering result [4]. The length of labelled section in each 172 
column represents the size of that cluster. For 10 clusters, all the clusters contain nearly the same 173 
number of peptides as seen by similar length of sections. b-k) The motifs of the peptides present 174 
in 10 clusters. 175 
 176 
 177 



Supplementary Note 6: Convergence of Explanations 178 
  

 To generate explanations, LIME produces perturbed samples where it replaces an amino 179 
acid with another amino acid sampled from a distribution derived from the training peptide dataset. 180 
Similarly, SHAP evaluates the model by replacing the amino acid in the test peptide with an amino 181 
acid from the training peptide dataset. As the number of test samples generated by LIME and 182 
SHAP increases, the variance of the attribution value decreases. To test this, we generated 183 
explanations for 20 peptides (10 binders, 10 non-binders) for HLA-A*02:01 using LIME and 184 
SHAP. We considered explanations generated with 25,000 perturbed samples as the baseline. 185 
Next, we generated explanations for all 20 peptides using 1,000 – 25,000 perturbed samples, and 186 
the Euclidean distance is calculated from the baseline. In Supplemental Figure S7, we see that the 187 
Euclidean distance approaches zero for SHAP (Supplemental Figure S7a) rapidly as the number 188 
of perturbed samples increases until 10,000 samples. While for LIME explanations, Euclidean 189 
distance initially drops rapidly until 7,500 perturbed samples, after which the value plateaus and 190 
does not approach zero (Supplemental Figure S7b). In Supplemental Figure S7, each dot represents 191 
the average Euclidean distance calculated for 20 peptide explanations. The errorbar indicates the 192 
variance in Euclidean distance, and as the number of perturbed samples increases, the errorbar 193 
reduces, indicating a reduction in variance in both LIME and SHAP attribution values. 194 
  195 

 196 
 197 
Supplemental Figure S7. Convergence of explanations. LIME and SHAP generate explanations 198 
by evaluating the model over perturbed samples. The attribution values start to converge from 199 
10,000 samples for SHAP (a) and 7500 samples for LIME (b). The SHAP attribution values comes 200 
very close to baseline (attribution values generated using 25,000 samples) but LIME attribution 201 
values do not eventually converge to baseline. However, as the number of samples increase, the 202 
error bar size reduces in both SHAP and LIME. 203 
 

  



Supplementary Note 7: Impact of Training Data  204 
  

 Since generating explanations requires training data, we also explored whether the 205 
explanation changes if we provide the entire training data across all alleles or just training data 206 
specific to the allele of interest. From our PDB dataset of bound peptide-MHC structures, we 207 
selected structures for alleles HLA-A*02:01, HLA-B*07:02, and HLA-B*35:01. These alleles 208 
have many peptides-MHC bound PDB structures (105, 9, and 11 structures for HLA-A*02:01, 209 
HLA-B*07:02, and HLA-B*35:01, respectively). We used the ΔΔG for peptide positions obtained 210 
from BAlaS for these structures and generated LIME and SHAP explanations using the ‘All 211 
training peptides’ dataset and ‘Allele-specific peptides’ dataset. For each structure, the Pearson 212 
correlation coefficient between ΔΔG and explanations is calculated and plotted in Supplemental 213 
Figure S8a, b for SHAP and LIME, respectively. We found that SHAP explanations generated 214 
using ‘Allele-specific peptides’ are similar to explanations generated using ‘All training peptides’ 215 
and are no more or less correlated to the BAlaS ΔΔG. On the contrary, we observed that limiting 216 
training data to allele-specific peptides could be detrimental to the accuracy of the LIME 217 
explanations than the explanations generated using ‘All training peptides’. 218 

 219 
Supplemental Figure S8. Impact of limiting training data on SHAP and LIME explanations. 220 
Validity is tested for two sets of explanations generated using ‘All training peptides’ and ‘Allele 221 
specific peptides’ against G values. a) SHAP explanations are not affected either positively or 222 
negatively by limiting training data to alleles specific peptides. This is indicated by similar 223 
distribution of correlation coefficient between G and attribution values generated from two 224 
training datasets. b) On the contrary, LIME explanations become unreliable when training data is 225 
limited to allele specific peptides as seen by difference in correlation coefficient distribution 226 
between the two training datasets. The correlation coefficients are reported in Supplementary Data 227 
11.  228 



Supplementary Note 8: Properties of Explanations 229 
 

 LIME and SHAP produce stable and consistent explanations for MHC class I predictors 230 
which mostly agree with the independently derived important positions using BAlaS. We wanted 231 
to further explore qualities and features of the explanations. First, we explored if the SHAP and 232 
LIME explanation for an MHC class I predictor (MHCflurry-PS) agree with each other. 233 
Supplemental Figure S9a shows distribution of correlation coefficient between LIME and SHAP 234 
for 9 MHC class I allele. We find that the LIME and SHAP explanations are highly correlated. We 235 
also explored if the attribution values of explanations are dependent on each other. Supplemental 236 
Figure S9b are correlation heatmaps of SHAP/LIME attribution values of peptide positions. For 237 
all 3 alleles, SHAP attribution values interdependent (especially for anchor positions P1, P2 and 238 
P9) while LIME attribution values were independent. This is possible when SHAP produces test 239 
samples from a distribution that has dependent features [9] whereas LIME samples independently 240 
for each peptide position from the amino acid frequency generated from training data.  241 

 242 
Supplemental Figure S9. Comparison of explanations produced by SHAP and LIME for same 243 
input samples and correlation between the attribution values for peptide positions. a) The LIME 244 
and SHAP explanations are highly correlated for the nine MHC class I alleles. b) Correlation 245 
heatmaps for attribution values among all peptide positions indicates that SHAP attribution values 246 
can be correlated whereas LIME attribution values tend to be independent. The correlation 247 
coefficient values are reported in Supplementary Data 12.  248 



Supplementary Tables 249 
 

Cohen’s d is calculated as follows: 250 

𝑑 =
𝑥1̅̅̅  −  𝑥2̅̅ ̅

𝑠
 251 

𝑠 =  √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
 252 

 253 
Where,  𝑥1̅̅̅, & 𝑥2̅̅ ̅  are mean of the two group, s is pool standard deviation, 𝑠1

2 and 𝑠2
2 are variances 254 

of two groups and n1 and n2 are number of samples in the groups. 255 
 

Supplementary Table 1: Kruskal Wallis test results: p-values, H-statistic and effect size Cohen’s 256 
d for SHAP explanations generated for testing Consistency. 257 
 

HLA p-value H-statistic Cohen’s d 

HLA-A*02:01 1.067e-24 105.267 1.369 

HLA-A*24:03 2.709e-18 76.090 0.944 

HLA-A*32:01 8.583e-34 146.822 1.613 

HLA-B*07:02 2.235e-33 144.920 1.443 

HLA-B*39:01 6.167e-10 38.267 0.741 

HLA-B*15:17 9.774e-26 110.004 1.177 

HLA-C*06:02 4.157e-40 175.725 1.717 

HLA-C*14:02 2.302e-56 250.240 2.196 

HLA-C*15:02 1.143e-39 173.713 1.888 

 

Supplementary Table 2: Kruskal Wallis test results: p-values, H-statistic and effect size Cohen’s 258 
d for LIME explanations generated for testing Consistency. 259 
 

HLA p-value H-statistic Cohen’s d 

HLA-A*02:01 4.856e-65 290.046 2.754 

HLA-A*24:03 3.792e-26 111.881 1.174 

HLA-A*32:01 1.091e-48 215.040 1.770 

HLA-B*07:02 1.027e-57 256.435 1.364 

HLA-B*39:01 2.366e-53 236.425 1.565 

HLA-B*15:17 4.785e-57 253.369 2.019 

HLA-C*06:02 4.284e-57 253.589 2.273 

HLA-C*14:02 3.016e-62 277.228 2.663 

HLA-C*15:02 1.057e-61 274.728 2.792 

  



Supplementary Table 3: Kruskal Wallis test results: p-values, H-statistic and effect size 260 
Cohen’s d for SHAP and LIME explanations generated for testing Stability. 261 
 

Pairs Order 
SHAP LIME 

p-val. H Cohen’s d p-val. H Cohen’s d 

c2, c5 

IntraclusterL 

- Intercluster 
1.552e-18 365.819 0.842 9.022e-29 123.863 0.487 

IntraclusterR 

- Intercluster 
0.964 0.001 0.022 1.231e-09 36.918 0.283 

c3, c5 

IntraclusterL 

- Intercluster 
1.245e-145 660.362 1.014 1.302e-125 568.320 0.854 

IntraclusterR 

- Intercluster 
5.611e-07 25.041 0.232 4.379e-77 345.342 0.869 

c5, c6 

IntraclusterL 

- Intercluster 
0.119 2.425 0.077 1.104e-38 169.202 0.463 

IntraclusterR 

- Intercluster 
3.758e-199 906.517 0.757 1.129e-87 393.974 0.470 

c5, c9 

IntraclusterL 

- Intercluster 
2.728e-09 35.368 0.241 1.878e-87 392.958 0.723 

IntraclusterR 

- Intercluster 
0.0 1470.400 0.847 4.420e-167 759.004 0.632 

c5, c10 

IntraclusterL 

- Intercluster 
0.064 3.415 0.099 3.654e-56 249.319 0.571 

IntraclusterR 

- Intercluster 
1.431e-133 604.910 0.581 5.690e-24 101.951 0.259 

c3, c8 

IntraclusterL 

- Intercluster 
1.424e-80 361.358 1.077 7.986e-57 252.348 0.819 

IntraclusterR 

- Intercluster 
1.152e-05 19.239 0.292 6.720e-21 87.94 0.654 
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