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BHLHE40/41 regulate microglia and peripheral macrophage 

responses associated with Alzheimer’s disease and other 

disorders of lipid-rich tissues



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This manuscript by Podlesny-Drabiniok, Novikova, and colleagues leverages existing snRNAseq 

datasets from various disease states involving lipid-accumulating macrophages or microglia in order to 

identify transcriptional regulators of lipid metabolism. In addition to several othter TFs, the authors 

identify BHLHE40/41 as a primary regulator of the ‘lipid-associated macrophage’ (“LAM”) response. 

They then use gene editing in human iPSC derived microglia to knockout BHLHE40 and/or 41, as well 

as siRNA knockdown in THP-1 human macrophages, and finally acutely isolated microglia from 

knockout mice, to functionally assess the effects of 40/41 manipulation in macrophages and microglia. 

There results show that across these model systems, loss (or significant reduction) of 40/41 

expression leads to increased expression of “LAM” genes , and increase in lipid storage in the form of 

lipid droplets, an increase in lysosomal mass and decreased pH, a reduction in cytokine production, 

and an increase in cholesterol efflux. A primary weakness of the study is a lack of clarity and 

justification in how the “LAM” profile was defined based on previous studies. Nonetheless, the study 

has several strengths, including the use of multiple model systems for validation and phenotyping 

experiments, and it’s focus on a novel and little studied AD GWAS gene. Conceptually, this manuscript 

is exciting and important, as it nicely ties together several important disease-relevant themes in 

efferocytosis, GWAS risk genes, and macrophage/microglia function in disorders of lipid rich tissue, 

with a special emphasis and importance for Alzheimer’s disease. 

 

Some specific comments, concerns, and questions are listed below: 

 

The abstract and introduction conflate macrophages and microglia in several instances, several of 

which are worded in a way that is not entirely accurate. The authors should be clear and consistent in 

their phrasing (i.e. using either macrophage or microglia, or / when talking about both 

simultaneously). 

 

The text in the graphical abstract is too small in almost all areas. It also was not entirely clear how the 

“LAMs” and “sc/nRNAseq” sections were different or not. Several figures also have text that is too 

small to read – Figure 1 is a prime example, but there are many others. 

 

Previously used acronyms for microglial states, of which there are now too many to keep track of, are 

based on defined gene signatures (a list of genes). The authors refer to LAM genes or LAM signature 

genes multiple times, but unless the reviewer missed it, a list of genes that constitute LAM genes is 

never defined or provided. Selected lipid/lysosomal genes such as those in Figure 6 for example, are 

logical candidates, but with the focus of the manuscript being the LAM ‘state’, this concept must be 

defined much more clearly. 

 

Two of the three human datasets used for TF validation are mouse datasets that are simply translated 

to their respective human homologs. Thus, it doesn’t seem appropriate to refer to these as distinct 

lists or as a ‘human’ dataset per se. 

 

In figures employing the RRHO, the LAM dataset is simply the Keren-Shaul gene list. Thus, it’s the 

DAM gene list renamed LAM. Similar to the points above, the justification is unclear here as is the 

definition of ‘LAM’ in this sense. 

 

The datasets from Marschallinger (LDAM) and Claes (plaque associated LD) do not appear to be 

included in the LAM lists the authors include. These seem like highly relevant studies given the focus; 

was there a reason they were not utilized? These references (57 and 60) should also probably be 

mentioned much earlier in the manuscript given their relevance. The manuscript states that these 

microglia are “distinct from LAMs” – what does this mean exactly, and how is this concluded? 

 



What are the “technical differences” mentioned in the first section of Results? sc vs sn RNAseq? 

 

For reference, what does a “control” look like in the analysis in Supp Fig 1a-b? (i.e. non-prominent 

peaks) 

 

The last sentence of the Results section “ BHLHE41 and SPI1/PU.1 likely regulate” seems to be a 

possible overstatement. 

 

THP-1 macrophages should be defined at first mention (i.e. what is THP-1) 

 

What were the media conditions that the iMGLs were cultured in? specifically the lipid content of the 

media – FBS concentration? Lipid supplementation? How might this be affecting the results? 

 

The authors mentions “likely due to low statistical power (figure 5a, …” What is the actual n =5 here? 

It is 5 wells of the same iMGL line, not 5 distinct iMGL lines, correct? If 5 wells/samples, that would 

seem to reduce variation dramatically. 

 

What is known regarding the functional consequences of BHLHE40/41 mutations in AD? This should be 

addressed in the Discussion and perhaps introduction as well. 

 

How do the authors think APOE4 fits into their findings here? Particularly, the findings from this same 

group (and others) that show E4 expression is tied to increased lipid droplet formation, but also 

increased cytokine release and decreased efflux. 

 

References 60 and 76 appear to be the same paper 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the present manuscript Podlesny-Drabiniok, Novikova et al. postulate that the transcription factors 

BHLHE40 and BHLHE41 at least partially drive the gene expression signature of LAMs (Lipid-Associated 

Macrophages). Both TFs are helix-loop-helix proteins with repressive functions. The authors used 

publicly-available transcriptomic data from different myeloid cell types (e.g., microglia, Kupffer cells, 

macrophages from adipose tissue) in the context of different diseases (Alzheimer’s disease, Obesity, 

Atherosclerosis and Steatosis) from human and mouse tissue. The authors defined human and mouse 

LAM signature genes and based on this gene list and nominated a gene regulatory network consisting 

of 74 transcription factors as potential drivers of the LAM phenotype. Next, the authors show that 

BHLHE41 DNA-binding motif is enriched in promoters of LAM genes and AD risk SNPs. Knockout of 

BHLHE41 and the double knockout of BHLHE40/41 in human iPSC-derived microglia like cells resulted 

in a partially up-and down-regulation of genes associated with LAM gene expression signature. In 

addition, functional assays showed increased cholesterol efflux, lipid droplets and lysosomal 

acidification/proteolysis. Finally, in vivo double knockout of Bhlhe40 and Bhlhe41 resulted in an altered 

gene expression signature of mouse microglia partially recapitulating the LAM transcriptional response. 

 

Overall, the study is of interest because it nominates potential drivers of the LAM phenotype and the 

major conclusions as stated in the abstract are supported by experimental data. There are some 

points for which clarifications would strengthen the manuscript. 

 

Major points: 

• The finding that loss of function of BHLHE40/41 results in increased cholesterol efflux and lipid 

droplet formation is of interest. The increase in cholesterol efflux is consistent with the proposed role 

of BHLHE40/41 as negative regulators of LXRs. However, the increase in lipid droplets is not 

necessarily linked to increased functions of LXRs. Although not central to the major conclusions, the 



manuscript would be strengthened by lipidomic analyses to establish the lipid classes that are 

associated with these lipid droplets. This is important because lipid droplets in macrophage foam cells 

of atherosclerotic lesions are enriched in cholesterol esters, whereas those that accumulate in 

microglia in the context of aging are enriched for triglycerides, diglycerides, and phospholipids with 

very little cholesterol ester. Mechanisms underlying accumulation of these different lipid classes are 

not the same, with accumulation of TGs invoking the SREBP pathway. This could potentially involve 

LXRs via LXR activation of SREBP1c, the signal for which should be evident in the data. Thus, further 

information on lipid content and LXR/SREBP target genes would be of interest. 

• It is difficult to reconstruct how the authors arrived at the different human and mouse “LAM” marker 

genes. A list of LAM marker genes is not provided in the manuscript. The number of LAM genes in 

mouse seems to be very high with 1,453 genes as written in Figure 7B. The authors should clarify this. 

• In studies using Bhlhe40–/–Bhlhe41–/–double knockout mice, the authors should comment on the 

extent to which Bhlhe40/41 are expressed by other brain cell types. If they are expressed, the authors 

should include the possibility that some of the effects of the knockout could be non-cell autonomous in 

the limitations section. It would also be of interest to know whether lipid droplets were observed in 

microglia from these mice. 

 

Minor comment: 

• RNA-seq data is presented as RRHO heatmaps. It would be informative to present the data also a 

Volcano plots depicting fold change and adj p-value and to state, what the fold-cut off were to 

determine differentially expressed genes. This can be shown as supplementary data. 

 

 

 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

Communications – Review March 2023 

 

BHLHE40/41 regulate macrophage/microglia responses associated with Alzheimer’s disease and other 

disorders of lipid-rich tissues 

 

The manuscript by Podlesny-Drabiniok and Novikova et al. outlines the core gene-regulatory-network 

(GRN) function of the transcription factors; BHLHE40/41, in microglia and macrophages in lipid-rich 

environments in various diseases. Combining multiple publicly available single-cell and single-nucleus 

RNA-seq datasets, as well as ATAC-seq, the authors show that Bhlhe40/41 is a core transcriptional 

regulators of LAM microglia/macrophages and provide evidence of functional responses of microglia 

upon genetic perturbation of Bhlhe40/41. Overall, the manuscript provides an important insight to the 

transcriptional impact of Bhlhe40/41 on cholesterol metabolism and lysosomal activity in microglia. 

However, the initial GRN analysis leaves several questions to be addressed as indicated below: 

 

Major comments: 

1. The methods for the reconstruction of gene-regulatory-network must be described in more detail. 

Figure 1 shows the consolidated results for the GRN analysis. It is not clear whether metacells were 

constructed separately for the different expression matrix files (different datasets) or processed 

together as one merged expression matrix. If individual networkswere built for each expression 

matrix, the intermediate results should be presented. 

2. Why were all metacells created using standard parameters. The authors should provide evidence 

that standard parameters provided the most robust K-means clustering across different datasets. 

3. Most of the input datasets for GRN analysis are not associated to Alzheimer’s disease and/or 

microglia. Yet, the authors are using the consolidated results in Figure 1 to justify why BHLHE40/41 is 



studied in microglia. In silico, the authors need to provide more insight of the GRN analysis in 

microglia. 

4. The authors implement the PISCES tool to strengthen the expression profile of low expression 

genes. The tool is not yet peer-reviewed and it is not clear why the authors only used single-cell and 

single-nucleus RNA-seq although bulk RNA-seq provides much better sequencing depth. 

5. It is not clear to what extend the LAM signature is present in the datasets used. How many cells are 

positive for the LAM signature, and do they cluster separately from DAM microglia? Where only LAM 

signature microglia/macrophages implemented for the GRN analysis? 

6. The authors mention efferocytosis as common hallmark pathway for LAM microglia/macrophages, 

however, do not show any data supporting this statement. 

7. When generating the short list of candidate transition factors, the researchers require the 

transcription factor to appear in at least half the human and mouse networks and present in human 

microglia. The authors need to provide data visualization displaying which networks contain these 

transcription factors. 

8. The reason for the expression-based selection of top transcription factor markers is not clear. 

Protein levels of transcription factors should be considered. Even low expressed transcription factors 

could have biological and functional meaning. Selecting only the top 11 candidates before 

investigating AD risk allele enrichment and TF binding sites could skew the results and hide other 

potentially important transcription factors. The authors must present a less biased approach. 

9. The significance values of enrichment for BHLHE40 binding to ATAC seq peaks for LAM genes is 

missing. The authors should demonstrate more transparency and show HOMER results for Figure 3. 

10. There are several datasets on BHLHE40 ChIP-seq, which should be investigated and used to 

validate potential BHLHE40 binding site enrichment at LAM genes (Citation: 59, PMID: 31061528). 

Minor comments: 

1. It is not clear how the Human and mouse LAM TFs in Figure 1 were clustered. Were the LAM TFs 

ranked, and if so, using what method? 

2. The authors should provide all code used for the GRN analysis for more transparency. 

3. The authors should comment on the low MI scores between LAM genes and TFs in mice in Figure 1. 

4. Peak profiles of ATAC-seq for Bhlhe40 motif enrichment sites at LAM genes should be presented, as 

well as ChIP of Bhlhe40. 

5. Why did the authors choose to select LPS and IL4 treated microglia? 

6. Using stratified LD score regression to perform AD heritability analysis it is not clear if the P-values 

are adjusted for false discovery? 

 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This manuscript by Podlesny-Drabiniok, Novikova, and colleagues leverages existing
snRNAseq datasets from various disease states involving lipid-accumulating macrophages or
microglia in order to identify transcriptional regulators of lipid metabolism. In addition to several
other TFs, the authors identify BHLHE40/41 as a primary regulator of the ‘lipid-associated
macrophage’ (“LAM”) response. They then use gene editing in human iPSC derived microglia to
knockout BHLHE40 and/or 41, as well as siRNA knockdown in THP-1 human macrophages,
and finally acutely isolated microglia from knockout mice, to functionally assess the effects of
40/41 manipulation in macrophages and microglia. There results show that across these model
systems, loss (or significant reduction) of 40/41 expression leads to increased expression of
“LAM” genes , and increase in lipid storage in the form of lipid droplets, an increase in lysosomal
mass and decreased pH, a reduction in cytokine production, and an increase in cholesterol
efflux. A primary weakness of the study is a lack of clarity and justification in how the “LAM”
profile was defined based on previous studies. Nonetheless, the study has several strengths,
including the use of multiple model systems for validation and phenotyping experiments, and it’s
focus on a novel and little studied AD GWAS gene. Conceptually, this manuscript is exciting and
important, as it nicely ties together several important disease-relevant themes in efferocytosis,
GWAS risk genes, and macrophage/microglia function in disorders of lipid rich tissue, with a
special emphasis and importance for Alzheimer’s disease.

Some specific comments, concerns, and questions are listed below:

1.1. The abstract and introduction conflate macrophages and microglia in several instances,
several of which are worded in a way that is not entirely accurate. The authors should be clear
and consistent in their phrasing (i.e. using either macrophage or microglia, or / when talking
about both simultaneously).
We thank reviewers for this comment. We have revised the text accordingly.

1.2. The text in the graphical abstract is too small in almost all areas. It also was not entirely
clear how the “LAMs” and “sc/nRNAseq” sections were different or not. Several figures also
have text that is too small to read – Figure 1 is a prime example, but there are many others.
We apologize for the inconvenience. We would like to clarify that the figure miniatures at the
bottom of the submitted manuscript were placed there for convenience; high resolution images
were also uploaded separately. We made sure to provide a high resolution image to reveal the
details included in each figure for the resubmission. We have also modified the graphical
abstract and other figures to make the text more legible when printed out at the final size and
resolution.

1.3. Previously used acronyms for microglial states, of which there are now too many to keep
track of, are based on defined gene signatures (a list of genes). The authors refer to LAM genes
or LAM signature genes multiple times, but unless the reviewer missed it, a list of genes that



constitute LAM genes is never defined or provided. Selected lipid/lysosomal genes such as
those in Figure 6 for example, are logical candidates, but with the focus of the manuscript being
the LAM ‘state’, this concept must be defined much more clearly.

We would like to clarify that the term “LAM” (lipid-associated macrophages) was used to
collectively refer to specific microglial/peripheral macrophages subpopulations identified in
5xFAD mice, AD brains, adipose tissue, atherosclerotic plaques etc. It does not indicate a new
name for a new subpopulation. The reviewer is right that there are several different acronyms
for microglia/peripheral macrophage states/subpopulations such as DAM, LAM, TREM2high

among others, which share similar gene signatures and cellular responses to damage of
lipid-rich tissues. Therefore, in the previous version of this manuscript, we decided to collectively
refer to these microglial/peripheral macrophages subpopulations as LAM (for lipid associated
macrophages). However, we understand that this collective name “LAM” may cause confusions
because LAM is also a specific gene signature of adipose tissue macrophages identified by
Jaitin et al., 2019. In the revised version of the manuscript we decided to use the term DLAMs
to collectively refer to these microglial/peripheral macrophages subpopulations. This is also
explained in the Introduction: “For brevity in this manuscript, we collectively refer to these
subpopulations of microglia and peripheral macrophages as DLAMs” (page 3).
To compare gene signatures from BHLHE40 and/or BHLHE41 knockout iMGLs and THP-1
macrophages and Bhlhe40/41-DKO mice using RRHO, we used specific gene signatures. For
human data, we used LAM signature published by Jaitin et al., 2019 (Dataset S6, Adj.P-value <
0.05)(Jaitin et al. 2019), for mouse data, we used DAM signature from Keren-Shaul et al., 2017
(Table S3, Adj.P-value 0.05) (Keren-Shaul et al. 2017). We referenced each specific gene
signature in the legend, main text, and list the genes in each gene signature in the
Supplementary Table 1. Additionally, in this version of the manuscript we also included other
disease-relevant genesets to test their enrichment in human and mouse DKO transcriptome,
please see Response 1.5 below.

1.4. Two of the three human datasets used for TF validation are mouse datasets that are simply
translated to their respective human homologs. Thus, it doesn’t seem appropriate to refer to
these as distinct lists or as a ‘human’ dataset per se. In figures employing the RRHO, the LAM
dataset is simply the Keren-Shaul gene list. Thus, it’s the DAM gene list renamed LAM. Similar
to the points above, the justification is unclear here as is the definition of ‘LAM’ in this sense.
We apologize that it was unclear but in the figures showing RRHO results obtained from human
cells (iMGL in Figure 4 and THP-1 macrophages in Supplementary Figure 7) we used the
human LAM signature from (Jaitin et al. 2019) Dataset S6, Adj.P-value < 0.05. On the other
hand, in the figures showing RRHO results obtained from mouse microglia (Figure 7) we used
the mouse DAM signature from (Keren-Shaul et al. 2017) Table S3 Adj.P-value < 0.05). We
have now changed the name to “lipid-associated macrophages” and “disease-associated
microglia”, we also reference the Supplementary Table 1 in which these gene lists are included
in addition to the main text and the figure legends.

1.5. The datasets from Marschallinger (LDAM) and Claes (plaque associated LD) do not appear
to be included in the LAM lists the authors include. These seem like highly relevant studies

https://paperpile.com/c/JWYbvN/XOAJ
https://paperpile.com/c/JWYbvN/bhrj
https://paperpile.com/c/JWYbvN/XOAJ
https://paperpile.com/c/JWYbvN/bhrj


given the focus; was there a reason they were not utilized? These references (57 and 60)
should also probably be mentioned much earlier in the manuscript given their relevance. The
manuscript states that these microglia are “distinct from LAMs” – what does this mean exactly,
and how is this concluded?

We thank the reviewer for the comment.

Marschallinger et al provided an important and in-depth characterization of lipid
droplet-accumulating microglia (LDAMs) in the aging brain. However, these cells appear to be
distinct from those observed in DLAMs. More specifically, DLAMs are enriched in phagocytosis
and lipid metabolism genes, suggesting enhancement of these processes, while (Marschallinger
et al. 2020) suggest that LDAMs exhibit phagocytosis deficits. At the transcriptional level,
DLAMs express canonical markers, such as SPP1, LPL, APOE, CD9, AXL, and CLEC7A.
Marschallinger et al conducted a comparative analysis to DAM/MGnD microglia and concluded
that LDAMs are a distinct population, with some important marker genes that were
downregulated in LDAMs being upregulated in DAM/MGnD microglia (e.g., AXL, CLEC7A). The
authors conclude that LDAMs show a “unique transcriptome signature that is distinct from
previously described microglia states observed in aging and neurodegeneration.” Hence, we did
not include this gene expression signature in our analyses because a) the signature is largely
distinct from the DLAM genesets we set out to study and b) the data provided in the study are
bulk RNA-seq generated on isolated CD11b+CD45low cells, while we solely focus on single cell
and single nucleus RNA-seq data in this study. In addition, we have performed RRHO analysis
comparing the entire LDAM and mouse DKO transcriptomes and we found no significant
correlation (Supplementary Figure 9B).

(Claes et al. 2021) have reported exciting findings using xenografted iPSC-derived microglia
(xMGLs), suggesting that human microglia response to beta-amyloid plaques could be similar to
that of foam cells in atherosclerotic plaques. However, a previous study by the same group
(Hasselmann et al. 2019) showed that xMGLs demonstrate “limited overlap existing between
human xMG and mouse DAM genes”. Altogether this suggests that xMGLs acquire a foam

https://paperpile.com/c/JWYbvN/YnJl
https://paperpile.com/c/JWYbvN/YnJl
https://paperpile.com/c/JWYbvN/7OrA
https://paperpile.com/c/JWYbvN/oGDI


cell-like signature and accumulate lipid droplets but they do not closely resemble the DAM
phenotype observed in mouse 5xFAD brains.

Nevertheless, we understand the value of including additional gene signatures that may be
relevant to our study. To this end, we performed gene set enrichment analysis using the
following human genesets: DAM clusters from iMGLs exposed to CNS-relevant phagocytic
substrate (Dolan et al. 2023); amyloid plaque-associated microglia from human brains (Gerrits
et al. 2021); lipid associated macrophages from adipose tissue (Jaitin et al. 2019); human foam
cell signature (Fernandez et al. 2019); xenografted iPSC-derived human microglia from 5xFAD
mouse brains (Claes et al. 2021). We split each gene set into up– and downregulated genes
and examined their enrichment in the transcriptome of iMGLs lacking BHLHE40 and BHLHE41
(DKO) because DKO iMGLs recapitulated most of the functional aspects of DLAMs. The results
are presented in Figure 4D. Briefly, we found significant positive enrichment of genes
upregulated in DAM, LAM, and foam cell signatures and negative enrichment of genes
downregulated in DAM and LAM clusters (Page 12-13).

We observed a highly positive enrichment of DAM markers reported by (Dolan et al. 2023) in the
DKO transcriptome which prompted us to use RRHO to support GSEA analysis (similar to what
we did for lipid-associated macrophages, see Figure 4A). As expected, we found that Cluster 2
DAM markers and Cluster 8 DAM markers are highly correlated with the DKO transcriptome
suggesting that reduction of BHLHE40/41 levels facilitates transition of iMGLs toward a
DLAM-like phenotype (Supplementary Figure 9A). Of note, (Dolan et al. 2023) used highly
lipid-rich substrates such as myelin, synaptosomes and apoptotic neurons supporting our
observation that exposure to lipid overload activates the DLAM clearance program similar to the
one observed in peripheral macrophages in proximity of adipose tissue or atherosclerotic
plaques.

https://paperpile.com/c/JWYbvN/cl1L
https://paperpile.com/c/JWYbvN/TOdZ
https://paperpile.com/c/JWYbvN/TOdZ
https://paperpile.com/c/JWYbvN/XOAJ
https://paperpile.com/c/JWYbvN/sPNE
https://paperpile.com/c/JWYbvN/7OrA
https://paperpile.com/c/JWYbvN/cl1L
https://paperpile.com/c/JWYbvN/cl1L


Using GSEA we also found a negative enrichment of upregulated genes upregulated in
disease-associated xMGLs and a positive enrichment of gene downregulated in
disease-associated xMGLs suggesting the opposite regulation of xMGL DAM genes in our
BHLH40/41 DKO iMGLs. As stated above it might be due to the fact that the DAM population in
xMGL is different from the DAM reported by (Keren-Shaul et al. 2017) from 5xFAD brains. Here
we also show that xMGL DAM is different from DAM reported by (Dolan et al. 2023) We
performed RRHO and found no overlap between xMGL DAM (by (Claes et al. 2021)) and DAM
reported by (Dolan et al. 2023) (Cluster 2) supporting the statement that xMGL DAM is a distinct
population.

Next, we performed gene set enrichment analysis using the following mouse gene sets: disease
associated microglia (DAM) from 5xFAD mouse brains (Keren-Shaul et al. 2017);
CD11c-positive microglia sorted from 5xFAD mouse brains (Kamphuis et al. 2016);
activated-response microglia (ARM) and Homeostatic microglia (Sala Frigerio et al. 2019);
lipid-associated macrophages (LAM) from visceral adipose tissue of obese mice (Jaitin et al.
2019); Trem2high atherosclerotic macrophages (Cochain et al. 2018); neurodegeneration module
(Friedman et al. 2018). We found positive enrichment of upregulated genes in almost all gene

https://paperpile.com/c/JWYbvN/bhrj
https://paperpile.com/c/JWYbvN/cl1L
https://paperpile.com/c/JWYbvN/7OrA
https://paperpile.com/c/JWYbvN/cl1L
https://paperpile.com/c/JWYbvN/bhrj
https://paperpile.com/c/JWYbvN/XHVH
https://paperpile.com/c/JWYbvN/J3kn
https://paperpile.com/c/JWYbvN/XOAJ
https://paperpile.com/c/JWYbvN/XOAJ
https://paperpile.com/c/JWYbvN/aJQq
https://paperpile.com/c/JWYbvN/F9bH


sets and negative enrichment of downregulated (or Homeostatic upregulated) genes in the
transcriptome of mouse microglia lacking Bhlhe40 and Bhlhe41 (DKO) (Page 20). We included
these analyses in Figure 7D. All gene sets used to run GSEA are listed in Supplementary Table
1.

1.6. What are the “technical differences” mentioned in the first section of Results? sc vs sn
RNAseq?
Technical differences between human and mouse datasets include differences in sample
preparation such as single-cell vs single-nuclei RNAseq, differences in brain regions where
human microglia were isolated from, and overall viability of isolated microglia from the human
brain that vary across multiple experiments. Please see the revised text in the end of paragraph
titled: Geneset enrichment analysis of TF regulons nominates candidate DLAM TFs in human
and mouse macrophages/microglia (Page 7).

1.7. For reference, what does a “control” look like in the analysis in Supp Fig 1a-b? (i.e.
non-prominent peaks)

Supplementary Figure 1A-B shows that SPI1 and BHLHE41 regulons are also enriched in those
respective motifs, suggesting that the genes we identity as regulated by SPI1 and BHLHE41 are
also potentially bound by those TFs in the promoter. Below we include two negative examples.
Although JUNB and MAFB are both nominated as DLAM regulators through co-expression, their
motifs do not seem to be enriched in the promoters of DLAM genes (as DLAM genes we tested
human LAM reported by (Jaitin et al. 2019) Dataset S6, FDR < 0.05, and mouse DAM reported
by (Keren-Shaul et al. 2017) Table S2)(Figure 3A-D). Additionally, selecting TFs that are

https://paperpile.com/c/JWYbvN/XOAJ
https://paperpile.com/c/JWYbvN/bhrj


expressed highly and specifically in microglia and examining their motif instances in SPI1 and
BHLHE41 regulons also suggest that the regulons for these two TFs are enriched for their
putative direct targets.

As an example, when we look at motif instances of ATF3 in BHLHE41 and SPI1 regulons, we
do not see a peak, indicating lack of enrichment:

When we examine at CEBPB motif instances in BHLHE41 and SPI1 regulons, we see that
those motif instances are depleted:

This suggests that SPI1 and BHLHE41 regulons include putative direct targets of SPI1 and
BHLHE41 as indicated by the enrichment of their motif instances in regulon gene promoters.

1.8. The last sentence of the Results section “ BHLHE41 and SPI1/PU.1 likely regulate” seems
to be a possible overstatement.



Analysis of available ChIPseq in microglial cells (mouse) showed PU.1/SPI1 binds ~50% of
DAM genes (Keren-Shaul et al., 2017 (Keren-Shaul et al. 2017), Table S2). In addition, our
previous work on PU.1 in BV2 mouse microglia showed that reduction of PU.1 (associated with
AD protection) is positively correlated with DAM gene expression and related
pathways(Pimenova et al. 2021). Finally, we added an example of epigenomic tracks
highlighting open-chromatin regions that contain a BHLHE41 motif in DLAM gene promoters for
CD63 and CTSB loci in mouse and human macrophages and microglia (Page 9). Please see
revised Figure 3E–F.

1.9. THP-1 macrophages should be defined at first mention (i.e. what is THP-1).
We added a brief explanation that THP-1 is a monocytic leukemia line. Please see paragraph
Knockdown of BHLHE40/41 partially recapitulates the LAM…, first sentence. (Page 17)

1.10. What were the media conditions that the iMGLs were cultured in? specifically the lipid
content of the media – FBS concentration? Lipid supplementation? How might this be affecting
the results?
iPSC-derived microglia (iMGLs) were cultured without FBS or FCS. Media formulation was used
exactly as previously described by McQuade et al. (McQuade et al. 2018) THP-1 macrophages
also had a limited amount of serum. Briefly, THP-1 monocytes were cultured and differentiated
in the presence of serum (10% FBS) and then rested without serum in the presence of 1% BSA
fraction V for 24h, followed by transfection 48h. There was no additional lipid supplementation in
any cell culture at any time point therefore we think lipid abundance in both culture conditions
for iMGL and THP-1 was similar and did not affect the final results. We added this statement in
the method section describing culture conditions. (Page 31-32)

1.11. The authors mention “likely due to low statistical power (figure 5a, …” What is the actual n
=5 here? It is 5 wells of the same iMGL line, not 5 distinct iMGL lines, correct? If 5
wells/samples, that would seem to reduce variation dramatically.
The reviewer is correct, N in this figure is independent iMGL differentiations (different days of
iMGL differentiation and collection), and not independent lines (donors or clones). Although
some genes whose expression level was assessed by qPCR did not reach statistical
significance, the effect (increased expression) was present. We also calculated the effect size
for each gene/comparison and listed it in Supplementary File 1. For some genes the effect size
is small and therefore would require increased N (N > 5) to achieve sufficient statistical power.

1.12. What is known regarding the functional consequences of BHLHE40/41 mutations in AD?
This should be addressed in the Discussion and perhaps introduction as well.
As mentioned in the main text, BHLHE40 is a candidate AD risk gene by virtue of the fact it
resides in the vicinity of an AD risk locus recently identified in an African-American AD GWAS
study(Kunkle et al. 2021). Disease-associated GWAS loci are mostly non-coding common
genetic variants that modulate disease risk typically by regulating the expression of one or more
nearby genes. It took several years and research groups (including ours) to nominate, based
not only on proximity but also on the integration of functional genomic evidence, the most likely
causal genes at about half of the AD risk loci identified by much larger and older GWAS studies
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in European individuals(Novikova et al. 2021), a population for which functional genomics
datasets are already available. Unfortunately, functional follow-up of the genetic associations
identified in African-American AD GWAS studies is still lacking also because functional
genomics datasets in minority populations are very scarce. We are in the process of generating
such datasets from monocyte-derived macrophages obtained from African-American individuals,
but it is an effort that will take several years to complete. Therefore, at the present time,
proximity is the only criterion (albeit usually ~70% accurate) used to nominate BHLHE40 as a
candidate AD risk gene.

1.13. How do the authors think APOE4 fits into their findings here? Particularly, the findings from
this same group (and others) that show E4 expression is tied to increased lipid droplet
formation, but also increased cytokine release and decreased efflux.
We thank the reviewer for this comment, this is a very interesting point. Our large
RNAseq-studies of APOE44 population and isogenic iPSC-derived microglia suggested that
APOE44 iMGl showed 1) decreased LXR- and MiT/TFE-mediated responses, 2) lower
expression of core DLAM genes, 3) fewer cells in the DAM cluster in scRNAseq. Therefore, our
current efforts are to increase LXR activity using either novel pharmacological approaches or a
genetic inactivation of BHLHE40/41 which are LXR and Mit/TFE repressors. We hypothesize
that inactivation of BHLHE40/41 in APOE44 iMGL will rescue lipid accumulation and lysosomal
storage deficits as well as normalize the proportion of microglia in the DAM cluster observed in
our preliminary scRNAseq. One caveat is related to increased accumulation of lipid droplets in
the risk (APOE44 iMGL) and protective model (BHLHE40/41-DKO). We think that accumulation
of lipid droplets in APOE44 may be an adaptation to increased cholesterol biosynthesis and
decreased cholesterol efflux. In that setting, LD is one of the buffering mechanisms
sequestering the excess of toxic free cholesterol. We believe that when we facilitate lipid and
lysosomal clearance processes in APOE44 iMGL, we will be able to restore lipid droplets
phenotype or at least not increase the LD content. Future studies should also focus on profiling
LD content in BHLHE40/41 and APOE44 iMGL to understand their composition.

1.14. References 60 and 76 appear to be the same paper
We thank the reviewer for that comment, we have now corrected the reference list.

Reviewer #2 (Remarks to the Author):

In the present manuscript Podlesny-Drabiniok, Novikova et al. postulate that the transcription
factors BHLHE40 and BHLHE41 at least partially drive the gene expression signature of LAMs
(Lipid-Associated Macrophages). Both TFs are helix-loop-helix proteins with repressive
functions. The authors used publicly-available transcriptomic data from different myeloid cell
types (e.g., microglia, Kupffer cells, macrophages from adipose tissue) in the context of different
diseases (Alzheimer’s disease, Obesity, Atherosclerosis and Steatosis) from human and mouse
tissue. The authors defined human and mouse LAM signature genes and based on this gene list
and nominated a gene regulatory network consisting of 74 transcription factors as potential
drivers of the LAM phenotype. Next, the authors show that the BHLHE41 DNA-binding motif is
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enriched in promoters of LAM genes and AD risk SNPs. Knockout of BHLHE41 and the double
knockout of BHLHE40/41 in human iPSC-derived microglia like cells resulted in a partially
up-and down-regulation of genes associated with LAM gene expression signature. In addition,
functional assays showed increased cholesterol efflux, lipid droplets and lysosomal
acidification/proteolysis. Finally, in vivo double knockout of Bhlhe40 and Bhlhe41 resulted in an
altered gene expression signature of mouse microglia partially recapitulating the LAM
transcriptional response.

Overall, the study is of interest because it nominates potential drivers of the LAM phenotype and
the major conclusions as stated in the abstract are supported by experimental data. There are
some points for which clarifications would strengthen the manuscript.

Major points:
2.1. The finding that loss of function of BHLHE40/41 results in increased cholesterol efflux and
lipid droplet formation is of interest. The increase in cholesterol efflux is consistent with the
proposed role of BHLHE40/41 as negative regulators of LXRs. However, the increase in lipid
droplets is not necessarily linked to increased functions of LXRs. Although not central to the
major conclusions, the manuscript would be strengthened by lipidomic analyses to establish the
lipid classes that are associated with these lipid droplets. This is important because lipid
droplets in macrophage foam cells of atherosclerotic lesions are enriched in cholesterol esters,
whereas those that accumulate in microglia in the context of aging are enriched for triglycerides,
diglycerides, and phospholipids with very little cholesterol ester. Mechanisms underlying
accumulation of these different lipid classes are not the same, with accumulation of TGs
invoking the SREBP pathway. This could potentially involve LXRs via LXR activation of
SREBP1c, the signal for which should be evident in the data. Thus, further information on lipid
content and LXR/SREBP target genes would be of interest.
We thank the reviewer for this interesting question and we agree that lipidomic analysis would
be of interest but, at the present time, very challenging because bulk lipidomics is not very
sensitive to compositional changes in small microglial subpopulations such as the DAM-like
clusters that typically account for 5-10% of all iMGLs in vitro.

We also want to point out that we performed the experiment where we tested whether increased
lipid droplets content in BHLHE40/41-DKO and single KO is LXR-dependent. To this end, we
treated cells with an LXR antagonist (GSK2033) and we measured the level of lipid droplets by
flow cytometry using BODIPY. We found that the level of lipid droplets in KO and DKO is
decreased after inhibiting LXR with an antagonist as compared to KO and DKO treated with a
vehicle. Interestingly, the level of lipid droplets in KO and DKO treated with LXR antagonists
reached the level of lipid droplets in WT suggesting increased lipid droplets content in KO and
DKO is mediated by increased LXR (see Supplementary Figure 5 and Page 15).

Although, our BHLHE40/41-KO and DKO lines showed increased LXR activity such as elevated
levels of APOE, ABCA1, cholesterol efflux and lipid droplets content, in our RNAseq experiment
we did not observe an increased expression of genes involved in “Regulation of cholesterol
biosynthesis by SREBP SREBF” )(Normalized enrichment score, NES = 0.69 for DKO vs WT



contrast). In addition, based on our gene sets enrichment analysis, we found negative
enrichment of pathways involved in “Triglyceride metabolic process” (NES = -1.33) which may
suggest that the SREBP axis is not activated in DKO iMGLs. We also compared the induction of
lipid catabolism, sterol transport, fatty acid metabolism gene sets/pathways in DKO iMGLs with
the transcriptomic effect of synthetic LXR agonist (TO901317, 10uM, 48h, Goate lab
unpublished data). We found the LXR agonist has a stronger effect on all aforementioned
processes as compared to DKO.

2.2. It is difficult to reconstruct how the authors arrived at the different human and mouse “LAM”
marker genes. A list of LAM marker genes is not provided in the manuscript. The number of
LAM genes in mouse seems to be very high with 1,453 genes as written in Figure 7B. The
authors should clarify this.
We thank the reviewer for this clarifying question.Since the term “LAM” used in various contexts
in the previous version of the manuscript seems to be causing confusion, we have decided to
use the term DLAMs to collectively refer to subpopulations of microglia and peripheral
macrophages such as DAM, LAM, TREM2high among others, which share similar gene
expression signatures and cellular responses to damage of lipid-rich tissues. We use the term
“LAM” when using lipid-associated macrophages gene signature from Jaitin et al., (Jaitin et al.
2019) Dataset S6, FDR < 0.05. We used this signature specifically in Figure 4A, Supplementary
Figure 7a and Figure 3A,C. Which is specified in Supplementary Table 1 and listed in the main
text and each figure legend when this gene signature has been used. We use the term “DAM”
referring to the mouse DAM signature (not just the top marker genes) profiled by Keren-Shaul et
al (Keren-Shaul et al. 2017) Supplementary Table S3 (FDR <0.05). We used it in Figure 7A.
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Due to the fact that RRHO analysis requires genes to be ranked by a signed differential gene
expression statistic (for example log2FC * log10(adj.P-value)), we have used Table S3 from
(Keren-Shaul et al. 2017) listing all the DAM genes along with the two necessary parameters
(log2FC and adj.P-value) for the RRHO analysis. Table S2 from (Keren-Shaul et al.
2017)contains a list of only 500 genes (frequently referred to as “DAM genes”) but does not
include the log2FC parameter that is necessary to perform RRHO analysis. To investigate
whether the DAM genes from Table S2 from (Keren-Shaul et al. 2017)are also positively
enriched in mouse DKO transcriptome, we performed GSEA using DAM upregulated genes
and DAM downregulated genes from Table S2. We found significant positive enrichment of DAM
upregulated genes and significant negative enrichment of DAM downregulated genes in mouse
DKO transcriptome. These results are added to Figure 7D and Page 20. Please also see
section 1.5 of this document.

2.3. In studies using Bhlhe40–/–Bhlhe41–/–double knockout mice, the authors should comment
on the extent to which Bhlhe40/41 are expressed by other brain cell types. If they are
expressed, the authors should include the possibility that some of the effects of the knockout
could be non-cell autonomous in the limitations section. It would also be of interest to know
whether lipid droplets were observed in microglia from these mice.
We thank the reviewer for this comment and we have now added the following information in the
Study Limitations section: “Another limitation of the study is the mouse model with a global
knock-out of Bhlhe40 and Bhlhe41 (mouse DKO) which may affect other cell types such as
astrocytes where Bhlhe40 and Bhlhe41 are also expressed. We cannot exclude that there is a
non-cell-autonomous effect mediated possibly by astrocytes lacking Bhlhe40/41 that would
affect DKO microglia” (Page 26). Bhlhe40 expression is low in microglia/macrophages but it is
significantly induced in disease-associated microglia (DAM) (Friedman et al. 2018; Keren-Shaul
et al. 2017). Bhlhe40 is highly expressed in astrocytes and endothelial cells. Bhlhe41 is highly
expressed by myeloid cells (microglia, macrophages, neutrophils) and to a lesser extent by
astrocytes (data source: https://brainrnaseq.org/).
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Although we have not done any experiments checking the level of lipid droplets in mouse
microglia lacking Bhlhe40/41, we expect increased lipid droplets content in DKO microglia.
There are couple of reasons for that: 1) It has already been shown that alveolar macrophages
from DKO mice accumulate lipid droplets Rauschmeier et al., (Rauschmeier et al. 2019) (please
see Figure 4, also pasted below) 2) GSEA analysis of transcriptome from microglia lacking
Bhlhe40/41 (this study) showed that GOCC_LIPID_DROPLET and
GOBP_REGULATION_OF_LIPID_STORAGE are significantly and positively enriched with
Normalized Enrichment Score (NES = 1.59 NOM P value = 0.007 and NES = 1.47 NOM P value
= 0.047, respectively).

Figure 4C from (Rauschmeier et al. 2019)

GSEA (mouse microglia lacking Bhlhe40/41as compared to WT)
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Minor comment:
2.4. RNA-seq data is presented as RRHO heatmaps. It would be informative to present the data
also a Volcano plots depicting fold change and adj p-value and to state, what the fold-cut off
were to determine differentially expressed genes. This can be shown as supplementary data.

We thank the reviewer for this comment. DLAM genes did not reach statistical significance for
differential gene expression when filtered with standard RNA-seq criteria (FDR < 0.05).
Therefore, as we did previously with APOE4 microglia TCW et al., (Tcw et al. 2022), we moved
away from threshold-based methods toward ranked-based methods (RRHO and - in the revised
version - GSEA) that do not rely on arbitrary cutoffs and take full advantage of the information
contained in whole-transcriptome profiles. The reason why the effect sizes of DLAM marker
genes are small in DKO cells may be due to the fact that typically DLAMs make for only a small
proportion of microglia/macrophages both in vitro and in vivo. Therefore, scRNA-seq may be
more sensitive for the detection of gene expression changes associated with compositional
shifts in microglia/macrophage subpopulations upon genetic inactivation of BHLHE40/41. We
are currently performing such experiments in the context of follow-up studies and future
manuscripts.

Reviewer #3 (Remarks to the Author):

Communications – Review March 2023

BHLHE40/41 regulate macrophage/microglia responses associated with Alzheimer’s disease
and other disorders of lipid-rich tissues

The manuscript by Podlesny-Drabiniok and Novikova et al. outlines the core
gene-regulatory-network (GRN) function of the transcription factors; BHLHE40/41, in microglia
and macrophages in lipid-rich environments in various diseases. Combining multiple publicly
available single-cell and single-nucleus RNA-seq datasets, as well as ATAC-seq, the authors
show that Bhlhe40/41 is a core transcriptional regulators of LAM microglia/macrophages and
provide evidence of functional responses of microglia upon genetic perturbation of Bhlhe40/41.
Overall, the manuscript provides an important insight to the transcriptional impact of Bhlhe40/41
on cholesterol metabolism and lysosomal activity in microglia. However, the initial GRN analysis
leaves several questions to be addressed as indicated below:

Major comments:
3.1. The methods for the reconstruction of gene-regulatory-network must be described in more
detail. Figure 1 shows the consolidated results for the GRN analysis. It is not clear whether
metacells were constructed separately for the different expression matrix files (different
datasets) or processed together as one merged expression matrix. If individual networks were
built for each expression matrix, the intermediate results should be presented.

We thank the reviewer for this clarifying question. Metacells were generated for every dataset
separately and a network was generated for every individual dataset as well. Meta-analysis was
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done using all of the networks combined and is shown in Figure 1. We have now edited the
methods section to describe the network reconstruction procedure in more detail. We also
added intermediate results, TFs nominated by each dataset prior to meta-analysis, to
Supplementary Table 1.

3.2. Why were all metacells created using standard parameters. The authors should provide
evidence that standard parameters provided the most robust K-means clustering across
different datasets.

Parameters were k-means clustering were different for each dataset, they were chosen such as
the number of neighbors * the number of metacells was as close to the total number of cells as
possible to avoid the same cell being included in multiple metacells. In our conversations with
the authors of PISCES, they suggested selecting the number of neighbors > 10 and number of
metacells > 100 and that this selection did not dramatically affect the outcome of ARACNE. In
our own original analyses with changing the number of neighbors and number of metacells, the
list of potential regulators of the LAM signature was not dramatically affected. We now include
the parameters that were used for metacells generation for each dataset on our github page.
We edited the Methods section to address this question and it now reads:
“The pipeline for reconstruction of metacells was adopted from the PISCES tool(Obradovic,
Vlahos, et al. 2021) and can be found at our github page
https://github.com/marcoralab/bhlhe_manuscript. Briefly, this approach constructs a kNN graph
using the data, partitions the data into an appropriate number of metacells, taking into account
the desired number of neighbors. It then aggregates the counts from closest neighbors into
MetaCells. The MetaCells function was used in the following manner: MetaCells(data, dist.mat,
numNeighbors = numNeighbors, subSize = subSize). numNeighbors and subSize for each
dataset are provided on our github page.”

3.3. Most of the input datasets for GRN analysis are not associated to Alzheimer’s disease
and/or microglia. Yet, the authors are using the consolidated results in Figure 1 to justify why
BHLHE40/41 is studied in microglia. In silico, the authors need to provide more insight of the
GRN analysis in microglia.

We thank the reviewer for this suggestion. In the manuscript, we attempted to focus on both
peripheral tissue-resident macrophages and microglia, given that the lipid-associated
macrophage response occurs in various disease contexts, such as Alzheimer’s disease, fatty
liver disease, obesity, lung fibrosis and others. Hence, some of our datasets are associated with
Alzheimer's disease (e.g., human AD brains from Zhou et al and APP knockin mouse data from
Sala Frigerio et al) and others are associated with other disorders of lipid-rich tissues (e.g.,
human liver cirrhosis from Ramachandran et al and mouse induced nonalcoholic steatohepatitis
from Xiong et al). Indeed, our downstream validation focuses not only on human and mouse
microglia, but also on human macrophages shown in Supplementary Figures 6 and 7,
attempting to show that this response is present in different types of macrophages. However, we
now include all the TFs nominated by each individual dataset (Supplementary Table 1),
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including microglial datasets, so that the interested reader can further examine
microglia-specific findings if needed.

3.4. The authors implement the PISCES tool to strengthen the expression profile of low
expression genes. The tool is not yet peer-reviewed and it is not clear why the authors only
used single-cell and single-nucleus RNA-seq although bulk RNA-seq provides much better
sequencing depth.

We thank the reviewer for this thoughtful question. Unfortunately, given the small number of
microglia in the brain, ~5-10 %, bulk brain RNA-seq datasets fail to capture microglial activation
states. Indeed, there have been many studies that looked at differential expression between AD
and control brains, for example, and the findings mostly relate to the increased number of
microglia in a disease brain as opposed to capturing specific activation states. Hence, we
focused on single-cell and single-nucleus datasets to leverage a higher diversity of
transcriptional responses that are captured in those datasets, despite lower sequencing depth.
Given our collaboration with the authors, we used a small portion of the PISCES pipeline that
deals specifically with metacells reconstruction and obtained the code from the team a long time
prior to publication. We now share the code used for metacells reconstruction on our github
page https://github.com/marcoralab/bhlhe_manuscript. In addition, this pipeline has been used
and published (and some of its findings experimentally validated) in several peer-reviewed
articles (Hawley et al. 2023; Pan et al. 2020; Obradovic, Chowdhury, et al. 2021).

3.5. It is not clear to what extent the LAM signature is present in the datasets used. How many
cells are positive for the LAM signature, and do they cluster separately from DAM microglia?
Where only LAM signature microglia/macrophages implemented for the GRN analysis?

We thank the reviewer for this clarifying question. We would first like to clarify the DAM/LAM
nomenclature. In this manuscript, we attempted to communicate that several populations
carrying different names, such as disease-associated microglia (DAM) (Keren-Shaul et al.
2017), TREM2HImacrophages identified in atherosclerotic plaques (Cochain et al. 2018) and
lipid-associated macrophages (LAM) in adipose tissue(Jaitin et al. 2019) are similar to each
other in that they mount similar transcriptional and cellular response to damage of lipid-rich
tissues. Using datasets from relevant disease and control tissues, we aimed to identify
transcriptional regulators that might be shared between these populations, focusing specifically
on disease-associated microglia population (DAM) in the brain, TREM2HIpopulation in
atherosclerotic plaques, and lipid-associated macrophages (LAM) in adipose tissue. In the
revised manuscript we collectively referred to this microglia/macrophage subpopulations as
DLAMs (please see response to comment 1.3). In our computational analyses, we make sure
that the TFs we nominate exhibited enrichment of their regulons for all the three DLAM
genesets mentioned above. Our question of interest is to identify transcriptional regulators of the
DLAM response, so we focused on those signatures in our GRN analysis.
By the nature of the datasets we selected, most of them showed positive expression of DLAM
markers. Below we show the findings from original authors, when possible, or include UMAPs
that we generated ourselves. Starting with mouse datasets, adipose macrophages reported in
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Jaitin et al (Jaitin et al. 2019) express LAM markers, such as Ctsb, Gpnmb, Lgals3, Apoe and
others.

Xiong et al (Xiong et al. 2008) reported macrophages in the liver that responded to the induction
of nonalcoholic steatohepatitis that express Trem2 and Gpnmb among other DLAM markers.

Ramachandran et al (Ramachandran et al. 2019) reported scar-associated macrophages in
both mouse and humans that highly express DLAM makers, such as TREM2 and CD9, as
shown below in their cross-species integrative analysis.

Cochain et al (Cochain et al. 2018) reported macrophages in atherosclerotic aortas that again
highly express DLAM markers, such as Trem2, Cd9 and Ctsd among others.
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Lin et al (Lin et al. 2019) also identified a similar Trem2high macrophage population in their
atheroscletoric model, where these macrophages highly express Spp1, Cd9 and other DLAM
markers.

Sala Frigerio et al (Sala Frigerio et al. 2019) uses Alzhimer’s disease mouse models that have
been previously reported to show DAM activation, expressing Apoe, Spp1, Gpnmb and other
LAM markers. The authors term this population Activated response microglia or ARMs and
characterize this activation state more deeply than the original DAM study (Keren-Shaul et al.
2017).
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Given previous reports that aged mice show an activation state similar to that observed in
mouse models of neurodegeneration albeit to a much smaller extent (Keren-Shaul et al. 2017),
we included a microglial dataset from aging mouse brains. Please see microglial UMAPs below
showing LAM gene expression in Ximerakis et al dataset(Ximerakis et al. 2019); a cluster of
cells expressing markers, such as Gpnmb, Lpl and Spp1 as well as an increased expression of
Apoe can be seen.
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Given that the DLAM response is, at least in part, TREM2 dependent, we included data from a
demyelination mouse model with wild-type and knockout Trem2. Please see microglial UMAPs
below showing DLAM gene expression in Nugent et al (Nugent et al. 2020) dataset similarly
showing a cluster of cells expressing Gpnmb, Lpl and Spp1 as well as an increased expression
of Apoe.
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Human DAM and TREM2hi signatures have not been convincingly described yet. Hence, in our
analyses, we lifted 2 mouse signatures to the human genome, the DAM signature (Keren-Shaul
et al. 2017) and the TREM2HI signature ((Cochain et al. 2018), along with using a human LAM
signature that was derived from human macrophages in obese individuals (Jaitin et al. 2019).
We assume that although the mouse and human activation signatures will surely be, at least in
part, different, we decided to leverage human datasets from the same disease conditions as our
mouse data, e.g. Alzheimer’s disease, atherosclerosis and non-alcoholic steatohepatitis. We
also used a dataset with a very large number of primary human microglia from fresh resected
tissues. Assuming that at least some of the markers are conserved, we subsequently aim to use
co-expression patterns in microglial cells to identify regulators of the DLAM signature. Please
see UMAP plots showing microglial expression of select DLAM genes from human datasets
used in this study.

Mathys et al

Olah et al
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Zhou et al

Jaitin et al



Fernandez et al



MacParland et al

Ramachandran et al



3.6. The authors mention efferocytosis as a common hallmark pathway for LAM
microglia/macrophages, however, do not show any data supporting this statement.
We thank the reviewer for this comment and we apologize that it was not well explained. We
think that efferocytosis, understood as clearance of lipid-rich cellular debris (i.e. myelin
fragments, apoptotic cells and synapses, dystrophic neurites, amyloid plaques, etc.), is a main
microglial/macrophage process affected by genetic variants associated with AD risk.
Efferocytosis is a four step mechanism that includes proper Chemotaxis and Recognition of
extracellular waste (step1), Engulfment that requires actin polymerization and cytoskeleton
rearrangements to take up extracellular debris (step 2), Digestion that comprises degradation of
engulfed material in the endolysosomal system (step 3) and Adaptation that includes activation
of transcription factors that increase phagocytosis, cholesterol efflux and storage, lysosomal
biogenesis, bioenergetics and other metabolic processes (step 4). AD risk genes are enriched in
each of these steps including genes with rare coding variants such as TREM2, ABCA7, ABI3,
PLCG2, and genes implicated by common non-coding variants (e.g. ABCA1, ZYX, BIN1, RIN3,
MEF2C, SPI1). Genes identified through a variety of different approaches including coloc,
TWAS, and SMR show that candidate causal genes for AD fall into one of these four steps
supporting our hypothesis that abnormal microglial efferocytosis plays an important role in the
etiology of AD. We have presented this hypothesis with supporting genetic and experimental
evidence in three reviews (Romero-Molina et al. 2022; Andrews et al. 2023;
Podleśny-Drabiniok, Marcora, and Goate 2020). Consistent with this hypothesis is the
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observation that several DLAM genes are AD risk genes and that DLAM genes are enriched in
several pathways (for example phagocytosis and lipid metabolism) that are core components of
efferocytosis (Deczkowska et al.,(Deczkowska et al. 2018)). Interestingly, from the perspective
of AD evolution, primate microglia (compared to rodent microglia) are also enriched for AD risk
and efferocytosis genes (Geirsdottir et al., (Geirsdottir et al. 2020)).

3.7. When generating the short list of candidate transcription factors, the researchers require the
transcription factor to appear in at least half the human and mouse networks and present in
human microglia. The authors need to provide data visualization displaying which networks
contain these transcription factors.

We have now included results from individual network enrichment analyses in Supplementary
Table 1, where the reader can see which TF was nominated by which study/network.

3.8. The reason for the expression-based selection of top transcription factor markers is not
clear. Protein levels of transcription factors should be considered. Even low expressed
transcription factors could have biological and functional meaning. Selecting only the top 11
candidates before investigating AD risk allele enrichment and TF binding sites could skew the
results and hide other potentially important transcription factors. The authors must present a
less biased approach.

We absolutely agree with the reviewer that protein levels of transcription factors are important;
however, in this study we focus on single-cell and single-nucleus RNA-seq data because the
population we are most interested in (lipid-associated macrophages) was identified at the
mRNA level. The expression filter that we implemented is very relaxed; we only require a TF to
be expressed at a level >= 1 TPM in human microglia; in fact, when examining the list of TFs
pre and post-filter, all 11 TFs are expressed in human microglia >= 1 TPM. Given this
observation, we removed the description of the filter from the manuscript. The text now reads:
“High confidence TFs were selected if they were 1) enriched for all three LAM genesets in at
least half of human and mouse networks and 2) conserved between species.”

Since microglia represent a small fraction of brain-resident cells and proteins from more
abundant cells are much more likely to be captured, we avoided the use of whole brain
proteomics datasets. Hence, we used datasets, where microglia were purified prior to the
proteomics experiment. Unfortunately, although there are multiple mouse microglial proteomics
datasets published, the number of detected proteins in microglia is still quite low. For example,
we examined a dataset by Rangaraju et al (Rangaraju, Dammer, Raza, Gao, et al. 2018), where
the authors performed a TMT proteomics on isolated Cd11b+ microglial cells from wild-type,
LPS-stimulated and Alzheimer’s disease mouse models (5xFAD). The authors detected 4,133
proteins across the three experimental groups, but none of our 11 top transcriptional regulator
candidates were detected. Out of 74 mouse TFs reported in Figure 1, only 11 were detected in
the dataset. Human microglia proteomics datasets are therefore, unfortunately, limited at this
time. A recent preprint by Lloyd et al(Lloyd et al. 2022) reported more than 9,000 microglial
proteins, but the paper has not been peer reviewed and the data are not yet available. Taken
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together, given a relatively small number of proteins that are detected in current proteomics
experiments, a filter on proteomic expression is not optimal and expression of many
transcriptional regulators cannot yet be assessed.

3.9. The significance values of enrichment for BHLHE40 binding to ATAC seq peaks for LAM
genes is missing. The authors should demonstrate more transparency and show HOMER
results for Figure 3.”

We would like to clarify the data shown in Figure 3. We are not performing an enrichment
analysis in Figure 3. Instead, we are taking 11 TFs that we are nominating through
co-expression analysis and quantifying the number of LAM genes. We used LAM genes from
(Jaitin et al. 2019) Dataset S6, FDR Adj.P-value < 0.05) that contain a motif of that TF in their
promoter (Figure 3A, C) and we used DAM genes from (Keren-Shaul et al. 2017) Table S2 .
Hence, we used HOMER only to pinpoint ATAC-seq regions that are positive for the motif of
interest; we have not performed a global motif enrichment analysis because it does not address
the question we are interested in. With the analysis presented in Figure 3, we are trying to
assess which of the TFs that are nominated through co-expression could also potentially bind
LAM genes. Additionally, we are not showing a percent of LAM gene promoters that contain a
BHLHE40 motif; BHLHE41 is the TF that is nominated through the network approach.

3.10 There are several datasets on BHLHE40 ChIP-seq, which should be investigated and used
to validate potential BHLHE40 binding site enrichment at LAM genes (Citation: 59, PMID:
31061528).
We thank the review for this suggestion. We would like to highlight that our network analyses
nominate BHLHE41 in particular, not BHLHE40. Our analyses of open chromatin regions in
DLAM gene promoters presented in Figure 3 also highlights that a large proportion of LAM
genes contain a BHLHE41 motif (not BHLHE40). Although these TFs are closely related and
demonstrated a level of compensatory activity in previous studies, we show individual and
double KD/KO in our validation studies. However, our computational analyses suggest that
BHLHE41 could have different/broader binding patterns than BHLHE40. In our analyses of
human microglial open chromatin regions, we identified around 30K BHLHE41 proxy-binding
sites compared to only ~8.7K BHLHE40 proxy-binding sites. Indeed, more than 70% of LAM
genes contain a BHLHE41 motif (Figure 1), while only 28% contain a BHLHE40 motif. This
suggests that there may be fewer BHLHE40 binding sites around the genome. Unfortunately,
there are no studies to date that have profiled open chromatin regions and Bhlhe40/Bhlhe41
binding pattern, making it difficult for us to validate our proxy-binding sites for these TFs.
However, we analyzed two additional datasets in support of our observation that Bhlhe40 has
more limited binding throughout the genome than Bhlhe41. We analyzed ChIP-seq data from
large peritoneal mouse macrophages (Rauschmeier et al. 2019) and identified only 1,046
Bhlhe40 peaks with 6% of DAM genes having a Bhlhe40 binding site in their promoter (as a
DAM we used (Keren-Shaul et al. 2017), Table S2). We also analyzed ATAC-seq data from
mouse bone-marrow derived macrophages (Daniel et al. 2020), which showed a similar pattern
with only 3,854 Bhlhe40 proxy-binding sites out of ~77K open chromatin regions with 17% of
DAM genes having a Bhlhe40 binding site in their promoter (in comparison, Bhlhe41
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proxy-binding sites were present in around 40% of DAM genes in mouse BMDMs as shown in
Figure 3) (as a DAM we used (Keren-Shaul et al. 2017), Table S2). This observation could be
driven by the lower expression of BHLHE40; for example, in human microglia, BHLHE41 is
expressed almost 14 times higher than BHLHE40 (Gosselin et al. 2017). Interestingly, Bhlhe40
is upregulated in mouse DAM signature, suggesting that detecting binding patterns of Bhlhe40
might be harder in baseline tissues. Taken together, we would like to highlight that BHLHE41
has been nominated by our network analyses and its motif is contained in a large proportion of
DLAM gene promoters. Although BHLHE40 is a closely related TF, its potential binding patterns
do seem to differ from BHLHE41 and they do not suggest potential direct binding to DLAM gene
promoters. We would, however, like to highlight the limitations of using motifs as opposed to
ChIP-seq data to ascertain TF binding sites.

Minor comments:
3.11. It is not clear how the Human and mouse LAM TFs in Figure 1 were clustered. Were the
LAM TFs ranked, and if so, using what method?
Heatmap was created using the R pheatmap package with clustering_method = “complete”.
3.12. The authors should provide all code used for the GRN analysis for more transparency.
We have now created a github page https://github.com/marcoralab/bhlhe_manuscript where an
example of GRN generation is included to enhance transparency.

3.13. The authors should comment on the low MI scores between LAM genes and TFs in mice
in Figure 1.

There could be many potential reasons why some MI scores are low between a subset of DLAM
genes and TFs in mouse datasets. One could be because some of the human datasets are
quite large (Olah et al., n.d.; Mancuso et al. 2022), providing more microglial cells and allowing
for detection of weaker co-expression patterns between DLAM genes and TFs. Another reason
could be that the mouse and human DLAM signatures depicted in Figure 1, although
significantly overlapping, are distinct, which can also drive differences observed in Figure 1.

3.14. Peak profiles of ATAC-seq for Bhlhe40 motif enrichment sites at LAM genes should be
presented, as well as ChIP of Bhlhe40.

We thank the reviewer for this suggestion. We would like to highlight that our network analyses
nominate BHLHE41, not BHLHE40. Although these TFs are closely related and demonstrate a
level of compensatory mechanisms in certain contexts, our analyses nominated BHLHE41 in
particular through co-expression followed by quantification of proxy-binding at LAM gene
promoters. As described in our response to comment 3.10, BHLHE40 likely has different binding
patterns than BHLHE41 and proxy-binds a much smaller proportion of LAM gene promoters
than BHLHE41. Since BHLHE41 ChIP-seq data in human macrophages have not been
generated (likely due to the fact that a quality antibody for BHLHE41 is not commercially
available), we now include epigenomic tracks, highlighting open chromatin regions in LAM gene
promoters in human and mouse microglia and macrophages that contain a BHLHE41 motif in
Figure 3E-F.
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3.15. Why did the authors choose to select LPS and IL4 treated microglia?
We have not chosen IL4 or LPS-treated microglia but we cited one article that used 43 existing
GEO microarray transcriptomes of Cd11b+ microglia including in vivo microglia from AD mouse
models and in vitro microglia stimulated with LPS and IL4 (Rangaraju, Dammer, Raza,
Rathakrishnan, et al. 2018). Since this created an impression that we included only LPS and IL4
microglia signatures, we re-worded that sentence, please see Introduction, paragraph started
with “The DLAM response like other …” (Page 4)

3.16. Using stratified LD score regression to perform AD heritability analysis it is not clear if the
P-values are adjusted for false discovery?
The P-values shown in Figure 2 are not FDR adjusted; however, dark blue bars indicate
significant enrichments (FDR < 0.05), bars in light red indicate nominally significant enrichments
(P-value < 0.05), while gray bars indicate non-significant enrichment.
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have done a tremendous job of objectively, carefully, and exhaustively responding to this 

Reviewer's comments. They gave extensive responses to my questions/concerns, have revised the 

manuscript accordingly, and have added important new data and clarifications where needed. I 

thoroughly enjoyed reading this manuscript and would like to commend the authors on a beautiful, 

impactful study. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have satisfactorily addressed the major and minor concerns that I raised in the initial 

review. The major conclusions of the manuscript are reasonably well supported and the findings 

represent a significant contribution to defining genes and pathways regulating lipid metabolism and 

lysosomal function in microglia that are relevant to neurodegenerative diseases. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors fully addressed majority of my main critiques. There are few remaining minor comments 

to be addressed before publication as follow: 

1. Krasemann et al., (PMID: 28930663) identified and described Bhlhe40, which is regulated by APOE 

signaling, and specifically induced in plaque associated Clec7a+ microglia isolated from AD mice. 

However, Bhlhe41 was not affected. The authors used double-KO approach. This should be 

acknowledged and discussed. 

2. On P23 the authors describe: “Furthermore, a recent study showed that APOE risk-increasing (APOE 

ε4/ε4, similar to APOE, TREM2, and PLCG2 loss-of-function mutations) and risk-decreasing (APOE 

ε2/ε2) genotypes are associated with decreased and increased DAM transcriptional …[68]. The authors 

should discuss two comprehensive new studies recently published Nature Immunology, which 

employed complementary gain-of-function and loss-of-function approaches to provide critical new 

evidence that APOE4 impairs MGnD response to neurodegeneration including identification of the 

mechanism related to induction of TGFb-mediated checkpoints which block MGnD response, including 

induction of SPI1 (PMIDs: 37749326, 37857825). 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This manuscript by Podlesny-Drabiniok, Novikova, and colleagues leverages existing snRNAseq 

datasets from various disease states involving lipid-accumulating macrophages or microglia in 

order to identify transcriptional regulators of lipid metabolism. In addition to several other TFs, the 

authors identify BHLHE40/41 as a primary regulator of the ‘lipid-associated macrophage’ (“LAM”) 

response. They then use gene editing in human iPSC derived microglia to knockout BHLHE40 

and/or 41, as well as siRNA knockdown in THP-1 human macrophages, and finally acutely 

isolated microglia from knockout mice, to functionally assess the effects of 40/41 manipulation in 

macrophages and microglia. There results show that across these model systems, loss (or 

significant reduction) of 40/41 expression leads to increased expression of “LAM” genes , and 

increase in lipid storage in the form of lipid droplets, an increase in lysosomal mass and decreased 

pH, a reduction in cytokine production, and an increase in cholesterol efflux. A primary weakness 

of the study is a lack of clarity and justification in how the “LAM” profile was defined based on 

previous studies. Nonetheless, the study has several strengths, including the use of multiple 

model systems for validation and phenotyping experiments, and it’s focus on a novel and little 

studied AD GWAS gene. Conceptually, this manuscript is exciting and important, as it nicely ties 

together several important disease-relevant themes in efferocytosis, GWAS risk genes, and 

macrophage/microglia function in disorders of lipid rich tissue, with a special emphasis and 

importance for Alzheimer’s disease.  

Some specific comments, concerns, and questions are listed below: 

1.1. The abstract and introduction conflate macrophages and microglia in several instances, 

several of which are worded in a way that is not entirely accurate. The authors should be clear 

and consistent in their phrasing (i.e. using either macrophage or microglia, or / when talking about 

both simultaneously). 

We thank reviewers for this comment. We have revised the text accordingly. 

1.2. The text in the graphical abstract is too small in almost all areas. It also was not entirely clear 

how the “LAMs” and “sc/nRNAseq” sections were different or not. Several figures also have text 

that is too small to read – Figure 1 is a prime example, but there are many others. 

We apologize for the inconvenience. We would like to clarify that the figure miniatures at the 

bottom of the submitted manuscript were placed there for convenience; high resolution images 

were also uploaded separately. We made sure to provide a high resolution image to reveal the 

details included in each figure for the resubmission. We have also modified the graphical abstract 

and other figures to make the text more legible when printed out at the final size and resolution. 

1.3. Previously used acronyms for microglial states, of which there are now too many to keep 

track of, are based on defined gene signatures (a list of genes). The authors refer to LAM genes 

or LAM signature genes multiple times, but unless the reviewer missed it, a list of genes that 

constitute LAM genes is never defined or provided. Selected lipid/lysosomal genes such as those 



in Figure 6 for example, are logical candidates, but with the focus of the manuscript being the 

LAM ‘state’, this concept must be defined much more clearly. 

We would like to clarify that the term “LAM” (lipid-associated macrophages)  was used to 

collectively refer to specific microglial/peripheral macrophages subpopulations identified in 5xFAD 

mice, AD brains, adipose tissue, atherosclerotic plaques etc. It does not indicate a new name for 

a new subpopulation. The reviewer is right that there are several different acronyms for 

microglia/peripheral macrophage states/subpopulations such as DAM, LAM, TREM2high among 

others, which share similar gene signatures and cellular responses to damage of lipid-rich tissues. 

Therefore, in the previous version of this manuscript, we decided to collectively refer to these 

microglial/peripheral macrophages subpopulations as LAM (for lipid associated macrophages). 

However, we understand that this collective name “LAM” may cause confusions because LAM is 

also a specific gene signature of adipose tissue macrophages identified by Jaitin et al., 2019.  In 

the revised version of the manuscript we decided to use the term DLAMs to collectively refer to 

these microglial/peripheral macrophages subpopulations. This is also explained in the 

Introduction: “For brevity in this manuscript, we collectively refer to these subpopulations of 

microglia and peripheral macrophages as DLAMs” (page 3).  

To compare gene signatures from BHLHE40 and/or BHLHE41 knockout iMGLs and THP-1 

macrophages and Bhlhe40/41-DKO mice using RRHO, we used specific gene signatures. For 

human data, we used LAM signature published by Jaitin et al., 2019 (Dataset S6, Adj.P-value < 

0.05)(Jaitin et al. 2019), for mouse data, we used DAM signature from Keren-Shaul et al., 2017 

(Table S3, Adj.P-value 0.05)  (Keren-Shaul et al. 2017). We referenced each specific gene 

signature in the legend, main text, and list the genes in each gene signature in the Supplementary 

Table 1. Additionally, in this version of the manuscript we also included other disease-relevant 

genesets to test their enrichment in human and mouse DKO transcriptome, please see Response 

1.5 below.  

1.4. Two of the three human datasets used for TF validation are mouse datasets that are simply 

translated to their respective human homologs. Thus, it doesn’t seem appropriate to refer to these 

as distinct lists or as a ‘human’ dataset per se. In figures employing the RRHO, the LAM dataset 

is simply the Keren-Shaul gene list. Thus, it’s the DAM gene list renamed LAM. Similar to the 

points above, the justification is unclear here as is the definition of ‘LAM’ in this sense. 

We apologize that it was unclear but in the figures showing RRHO results obtained from human 

cells (iMGL in Figure 4 and THP-1 macrophages in Supplementary Figure 7) we used the human 

LAM signature from (Jaitin et al. 2019) Dataset S6, Adj.P-value < 0.05. On the other hand, in the 

figures showing RRHO results obtained from mouse microglia (Figure 7) we used the mouse DAM 

signature from (Keren-Shaul et al. 2017) Table S3 Adj.P-value < 0.05). We have now changed 

the name to “lipid-associated macrophages” and “disease-associated microglia”, we also 

reference the Supplementary Table 1 in which these gene lists are included in addition to the 

main text and the figure legends.  

1.5. The datasets from Marschallinger (LDAM) and Claes (plaque associated LD) do not appear 

to be included in the LAM lists the authors include. These seem like highly relevant studies given 

the focus; was there a reason they were not utilized? These references (57 and 60) should also 
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probably be mentioned much earlier in the manuscript given their relevance. The manuscript 

states that these microglia are “distinct from LAMs” – what does this mean exactly, and how is 

this concluded? 

We thank the reviewer for the comment.  

Marschallinger et al provided an important and in-depth characterization of lipid droplet-

accumulating microglia (LDAMs) in the aging brain. However, these cells appear to be distinct 

from those observed in DLAMs. More specifically, DLAMs are enriched in phagocytosis and lipid 

metabolism genes, suggesting enhancement of these processes, while (Marschallinger et al. 

2020) suggest that LDAMs exhibit phagocytosis deficits. At the transcriptional level, DLAMs  

express canonical markers, such as SPP1, LPL, APOE, CD9, AXL, and CLEC7A. Marschallinger 

et al conducted a comparative analysis to DAM/MGnD microglia and concluded that LDAMs are 

a distinct population, with some important marker genes that were downregulated in LDAMs being 

upregulated in DAM/MGnD microglia (e.g., AXL, CLEC7A). The authors conclude that LDAMs 

show a “unique transcriptome signature that is distinct from previously described microglia states 

observed in aging and neurodegeneration.” Hence, we did not include this gene expression 

signature in our analyses because a) the signature is largely distinct from the DLAM genesets we 

set out to study and b) the data provided in the study are bulk RNA-seq generated on isolated 

CD11b+CD45low cells, while we solely focus on single cell and single nucleus RNA-seq data in this 

study. In addition, we have performed RRHO analysis comparing the entire LDAM and mouse 

DKO transcriptomes and we found no significant correlation (Supplementary Figure 9B).  

(Claes et al. 2021) have reported exciting findings using xenografted iPSC-derived microglia 

(xMGLs), suggesting that human microglia response to beta-amyloid plaques could be similar to 

that of foam cells in atherosclerotic plaques. However, a previous study by the same group 

(Hasselmann et al. 2019) showed that xMGLs demonstrate “limited overlap existing between 

human xMG and mouse DAM genes”. Altogether this suggests that xMGLs acquire a foam cell-

like signature and accumulate lipid droplets but they do not closely resemble the DAM phenotype 

observed in mouse 5xFAD brains.   
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Nevertheless, we understand the value of including additional  gene signatures that may be 

relevant to our study. To this end, we performed gene set enrichment analysis using the following 

human genesets: DAM clusters from iMGLs exposed to CNS-relevant phagocytic substrate 

(Dolan et al. 2023); amyloid plaque-associated microglia from human brains (Gerrits et al. 2021); 

lipid associated macrophages from adipose tissue (Jaitin et al. 2019); human foam cell signature 

(Fernandez et al. 2019); xenografted iPSC-derived human microglia from 5xFAD mouse brains 

(Claes et al. 2021). We split each gene set into up– and downregulated genes and examined their 

enrichment in the transcriptome of iMGLs lacking BHLHE40 and BHLHE41 (DKO) because DKO 

iMGLs recapitulated most of the functional aspects of DLAMs. The results are presented in Figure 

4D. Briefly, we found significant positive enrichment of genes upregulated in DAM, LAM, and foam 

cell signatures and negative enrichment of genes downregulated in DAM and LAM clusters (Page 

12-13).  

We observed a highly positive enrichment of DAM markers reported by (Dolan et al. 2023) in the 

DKO transcriptome which prompted us to use RRHO to support GSEA analysis (similar to what 

we did for lipid-associated macrophages, see Figure 4A). As expected, we found that Cluster 2 

DAM markers and Cluster 8 DAM markers are highly correlated with the DKO transcriptome 

suggesting that reduction of BHLHE40/41 levels facilitates transition of iMGLs toward a DLAM-

like phenotype (Supplementary Figure 9A). Of note, (Dolan et al. 2023) used highly lipid-rich 

substrates such as myelin, synaptosomes and apoptotic neurons supporting our observation that 

exposure to lipid overload activates the DLAM clearance program similar to the one observed in 

peripheral macrophages in proximity of adipose tissue or atherosclerotic plaques. 
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Using GSEA we also found a negative enrichment of upregulated genes upregulated in disease-

associated xMGLs and a positive enrichment of gene downregulated in disease-associated 

xMGLs suggesting the opposite regulation of xMGL DAM genes in our BHLH40/41 DKO iMGLs. 

As stated above it might be due to the fact that the DAM population in xMGL is different from the 

DAM reported by (Keren-Shaul et al. 2017) from 5xFAD brains. Here we also show that xMGL 

DAM is different from DAM reported by (Dolan et al. 2023) We performed RRHO and found no 

overlap between xMGL DAM (by (Claes et al. 2021)) and DAM reported by (Dolan et al. 2023)

(Cluster 2) supporting the statement that xMGL DAM is a distinct population.  

Next, we performed gene set enrichment analysis using the following mouse gene sets: disease 

associated microglia (DAM) from 5xFAD mouse brains (Keren-Shaul et al. 2017); CD11c-positive 

microglia sorted from 5xFAD mouse brains (Kamphuis et al. 2016); activated-response microglia 

(ARM) and Homeostatic microglia (Sala Frigerio et al. 2019); lipid-associated macrophages (LAM) 

from visceral adipose tissue of obese mice (Jaitin et al. 2019); Trem2high atherosclerotic 

macrophages (Cochain et al. 2018); neurodegeneration module (Friedman et al. 2018). We found 

positive enrichment of upregulated genes in almost all gene sets and negative enrichment of 

downregulated (or Homeostatic upregulated) genes in the transcriptome of mouse microglia 
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lacking Bhlhe40 and Bhlhe41 (DKO) (Page 20). We included these analyses in Figure 7D. All 

gene sets used to run GSEA are listed in Supplementary Table 1.  

1.6. What are the “technical differences” mentioned in the first section of Results? sc vs sn 

RNAseq?  

Technical differences between human and mouse datasets include differences in sample 

preparation such as single-cell vs single-nuclei RNAseq, differences in brain regions where 

human microglia were isolated from, and overall viability of isolated microglia from the human 

brain that vary across multiple experiments. Please see the revised text in the end of paragraph 

titled: Geneset enrichment analysis of TF regulons nominates candidate DLAM TFs in human and 

mouse macrophages/microglia (Page 7).  

1.7. For reference, what does a “control” look like in the analysis in Supp Fig 1a-b? (i.e. non-

prominent peaks) 

Supplementary Figure 1A-B shows that SPI1 and BHLHE41 regulons are also enriched in those 

respective motifs, suggesting that the genes we identity as regulated by SPI1 and BHLHE41 are 

also potentially bound by those TFs in the promoter. Below we include two negative examples. 

Although JUNB and MAFB are both nominated as DLAM regulators through co-expression, their 

motifs do not seem to be enriched in the promoters of DLAM genes (as DLAM genes we tested 

human LAM reported by (Jaitin et al. 2019) Dataset S6, FDR < 0.05, and mouse DAM reported 

by (Keren-Shaul et al. 2017) Table S2)(Figure 3A-D). Additionally, selecting TFs that are 

expressed highly and specifically in microglia and examining their motif instances in SPI1 and 

https://paperpile.com/c/hG17PM/bD6qt
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BHLHE41 regulons also suggest that the regulons for these two TFs are enriched for their putative 

direct targets.  

As an example, when we look at motif instances of ATF3 in BHLHE41 and SPI1 regulons, we 

do not see a peak, indicating lack of enrichment: 

When we examine at CEBPB motif instances in BHLHE41 and SPI1 regulons, we see that those 

motif instances are depleted: 

This suggests that SPI1 and BHLHE41 regulons include putative direct targets of SPI1 and 

BHLHE41 as indicated by the enrichment of their motif instances in regulon gene promoters. 

1.8. The last sentence of the Results section “ BHLHE41 and SPI1/PU.1 likely regulate” seems 

to be a possible overstatement. 



Analysis of available ChIPseq in microglial cells (mouse) showed PU.1/SPI1 binds ~50% of DAM 

genes (Keren-Shaul et al., 2017 (Keren-Shaul et al. 2017), Table S2). In addition, our previous 

work on PU.1 in BV2 mouse microglia showed that reduction of PU.1 (associated with AD 

protection) is positively correlated with DAM gene expression and related pathways(Pimenova et 

al. 2021). Finally, we added an example of epigenomic tracks highlighting open-chromatin regions 

that contain a BHLHE41 motif in DLAM gene promoters for CD63 and CTSB loci in mouse and 

human macrophages and microglia (Page 9). Please see revised Figure 3E–F. 

1.9. THP-1 macrophages should be defined at first mention (i.e. what is THP-1).  

We added a brief explanation that THP-1 is a monocytic leukemia line. Please see paragraph 

Knockdown of BHLHE40/41 partially recapitulates the LAM…, first sentence. (Page 17) 

1.10. What were the media conditions that the iMGLs were cultured in? specifically the lipid 

content of the media – FBS concentration? Lipid supplementation? How might this be affecting 

the results?  

iPSC-derived microglia (iMGLs) were cultured without FBS or FCS. Media formulation was used 

exactly as previously described by McQuade et al. (McQuade et al. 2018) THP-1 macrophages 

also had a limited amount of serum. Briefly, THP-1 monocytes were cultured and differentiated in 

the presence of serum (10% FBS) and then rested without serum in the presence of 1% BSA 

fraction V for 24h, followed by transfection 48h. There was no additional lipid supplementation in 

any cell culture at any time point therefore we think lipid abundance in both culture conditions for 

iMGL and THP-1 was similar and did not affect the final results. We added this statement in the 

method section describing culture conditions. (Page 31-32) 

1.11. The authors mention “likely due to low statistical power (figure 5a, …” What is the actual n 

=5 here? It is 5 wells of the same iMGL line, not 5 distinct iMGL lines, correct? If 5 wells/samples, 

that would seem to reduce variation dramatically. 

The reviewer is correct, N in this figure is independent iMGL differentiations (different days of 

iMGL differentiation and collection), and not independent lines (donors or clones). Although some 

genes whose expression level was assessed by qPCR did not reach statistical significance, the 

effect (increased expression) was present. We also calculated the effect size for each 

gene/comparison and listed it in Supplementary File 1. For some genes the effect size is small 

and therefore would require increased N (N > 5) to achieve sufficient statistical power.  

1.12. What is known regarding the functional consequences of BHLHE40/41 mutations in AD? 

This should be addressed in the Discussion and perhaps introduction as well. 

As mentioned in the main text, BHLHE40 is a candidate AD risk gene by virtue of the fact it resides 

in the vicinity of an AD risk locus recently identified in an African-American AD GWAS 

study(Kunkle et al. 2021). Disease-associated GWAS loci are mostly non-coding common genetic 

variants that modulate disease risk typically by regulating the expression of one or more nearby 

genes. It took several years and research groups (including ours) to nominate, based not only on 

proximity but also on the integration of functional genomic evidence, the most likely causal genes 

at about half of the AD risk loci identified by much larger and older GWAS studies in European 

individuals(Novikova et al. 2021), a population for which functional genomics datasets are already 
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available. Unfortunately, functional follow-up of the genetic associations identified in African-

American AD GWAS studies is still lacking also because functional genomics datasets in minority 

populations are very scarce. We are in the process of generating such datasets from monocyte-

derived macrophages obtained from African-American individuals, but it is an effort that will take 

several years to complete. Therefore, at the present time, proximity is the only criterion (albeit 

usually ~70% accurate) used to nominate BHLHE40 as a candidate AD risk gene.     

1.13. How do the authors think APOE4 fits into their findings here? Particularly, the findings from 

this same group (and others) that show E4 expression is tied to increased lipid droplet formation, 

but also increased cytokine release and decreased efflux. 

We thank the reviewer for this comment, this is a very interesting point. Our large RNAseq-studies 

of APOE44 population and isogenic iPSC-derived microglia suggested that APOE44 iMGl showed 

1) decreased LXR- and MiT/TFE-mediated responses, 2) lower expression of core DLAM genes, 

3) fewer cells in the DAM cluster in scRNAseq. Therefore, our current efforts are to increase LXR 

activity using either novel pharmacological approaches or a genetic inactivation of BHLHE40/41 

which are LXR and Mit/TFE repressors. We hypothesize that inactivation of BHLHE40/41 in 

APOE44 iMGL will rescue lipid accumulation and lysosomal storage deficits as well as normalize 

the proportion of microglia in the DAM cluster observed in our preliminary scRNAseq. One caveat 

is related to increased accumulation of lipid droplets in the risk (APOE44 iMGL) and protective 

model (BHLHE40/41-DKO). We think that accumulation of lipid droplets in APOE44 may be an 

adaptation to increased cholesterol biosynthesis and decreased cholesterol efflux. In that setting, 

LD is one of the buffering mechanisms sequestering the excess of toxic free cholesterol. We 

believe that when we facilitate lipid and lysosomal clearance processes in APOE44 iMGL, we will 

be able to restore lipid droplets phenotype or at least not increase the LD content. Future studies 

should also focus on profiling LD content in BHLHE40/41 and APOE44 iMGL to understand their 

composition.  

1.14. References 60 and 76 appear to be the same paper 

We thank the reviewer for that comment, we have now corrected the reference list.  

Reviewer #2 (Remarks to the Author): 

In the present manuscript Podlesny-Drabiniok, Novikova et al. postulate that the transcription 

factors BHLHE40 and BHLHE41 at least partially drive the gene expression signature of LAMs 

(Lipid-Associated Macrophages). Both TFs are helix-loop-helix proteins with repressive functions. 

The authors used publicly-available transcriptomic data from different myeloid cell types (e.g., 

microglia, Kupffer cells, macrophages from adipose tissue) in the context of different diseases 

(Alzheimer’s disease, Obesity, Atherosclerosis and Steatosis) from human and mouse tissue. The 

authors defined human and mouse LAM signature genes and based on this gene list and 

nominated a gene regulatory network consisting of 74 transcription factors as potential drivers of 

the LAM phenotype. Next, the authors show that the BHLHE41 DNA-binding motif is enriched in 

promoters of LAM genes and AD risk SNPs. Knockout of BHLHE41 and the double knockout of 

BHLHE40/41 in human iPSC-derived microglia like cells resulted in a partially up-and down-



regulation of genes associated with LAM gene expression signature. In addition, functional assays 

showed increased cholesterol efflux, lipid droplets and lysosomal acidification/proteolysis. Finally, 

in vivo double knockout of Bhlhe40 and Bhlhe41 resulted in an altered gene expression signature 

of mouse microglia partially recapitulating the LAM transcriptional response. 

Overall, the study is of interest because it nominates potential drivers of the LAM phenotype and 

the major conclusions as stated in the abstract are supported by experimental data. There are 

some points for which clarifications would strengthen the manuscript. 

Major points: 

2.1. The finding that loss of function of BHLHE40/41 results in increased cholesterol efflux and 

lipid droplet formation is of interest. The increase in cholesterol efflux is consistent with the 

proposed role of BHLHE40/41 as negative regulators of LXRs. However, the increase in lipid 

droplets is not necessarily linked to increased functions of LXRs. Although not central to the major 

conclusions, the manuscript would be strengthened by lipidomic analyses to establish the lipid 

classes that are associated with these lipid droplets. This is important because lipid droplets in 

macrophage foam cells of atherosclerotic lesions are enriched in cholesterol esters, whereas 

those that accumulate in microglia in the context of aging are enriched for triglycerides, 

diglycerides, and phospholipids with very little cholesterol ester. Mechanisms underlying 

accumulation of these different lipid classes are not the same, with accumulation of TGs invoking 

the SREBP pathway. This could potentially involve LXRs via LXR activation of SREBP1c, the 

signal for which should be evident in the data. Thus, further information on lipid content and 

LXR/SREBP target genes would be of interest. 

We thank the reviewer for this interesting question and we agree that lipidomic analysis would be 

of interest but, at the present time, very challenging because bulk lipidomics is not very sensitive 

to compositional changes in small microglial subpopulations such as the DAM-like clusters that 

typically account  for 5-10% of all iMGLs in vitro.  

We also want to point out that we performed the experiment where we tested whether increased 

lipid droplets content in BHLHE40/41-DKO and single KO is LXR-dependent. To this end, we 

treated cells with an LXR antagonist (GSK2033) and we measured the level of lipid droplets by 

flow cytometry using BODIPY. We found that the level of lipid droplets in KO and DKO is 

decreased after inhibiting LXR with an antagonist as compared to KO and DKO treated with a 

vehicle. Interestingly, the level of lipid droplets in KO and DKO treated with LXR antagonists 

reached the level of lipid droplets in WT suggesting increased lipid droplets content in KO and 

DKO is mediated by increased LXR (see Supplementary Figure 5 and Page 15). 

Although, our BHLHE40/41-KO and DKO lines showed increased LXR activity such as elevated 

levels of APOE, ABCA1, cholesterol efflux and lipid droplets content, in our RNAseq experiment 

we did not observe an increased expression of genes involved in “Regulation of cholesterol 

biosynthesis by SREBP SREBF” )(Normalized enrichment score, NES = 0.69 for DKO vs WT 

contrast). In addition, based on our gene sets enrichment analysis, we found negative enrichment 

of pathways involved in “Triglyceride metabolic process” (NES = -1.33) which may suggest that 

the SREBP axis is not activated in DKO iMGLs. We also compared the induction of lipid 



catabolism, sterol transport, fatty acid metabolism gene sets/pathways in DKO iMGLs with the 

transcriptomic effect of synthetic LXR agonist (TO901317, 10uM, 48h, Goate lab unpublished 

data). We found the LXR agonist has a stronger effect on all aforementioned processes as 

compared to DKO.  

2.2. It is difficult to reconstruct how the authors arrived at the different human and mouse “LAM” 

marker genes. A list of LAM marker genes is not provided in the manuscript. The number of LAM 

genes in mouse seems to be very high with 1,453 genes as written in Figure 7B. The authors 

should clarify this. 

We thank the reviewer for this clarifying question.Since the term “LAM” used in various contexts 

in the previous version of the manuscript seems to be causing confusion, we have decided to use 

the term DLAMs to collectively refer to subpopulations of microglia and peripheral macrophages 

such as DAM, LAM, TREM2high among others, which share similar gene expression signatures 

and cellular responses to damage of lipid-rich tissues. We use the term “LAM” when using lipid-

associated macrophages gene signature from Jaitin et al., (Jaitin et al. 2019) Dataset S6, FDR < 

0.05. We used this signature specifically in Figure 4A, Supplementary Figure 7a and Figure 3A,C. 

Which is specified in Supplementary Table 1 and listed in the main text and each figure legend 

when this gene signature has been used. We use the term “DAM” referring to the mouse DAM 

signature (not just the top marker genes) profiled by Keren-Shaul et al (Keren-Shaul et al. 2017)

Supplementary Table S3 (FDR <0.05). We used it in Figure 7A. 

https://paperpile.com/c/hG17PM/bD6qt
https://paperpile.com/c/hG17PM/e3IyV


Due to the fact that RRHO analysis requires genes to be ranked by a signed differential gene 

expression statistic (for example log2FC * log10(adj.P-value)), we have used Table S3 from 

(Keren-Shaul et al. 2017) listing all the DAM genes along with the two necessary parameters 

(log2FC and adj.P-value) for the RRHO analysis. Table S2 from (Keren-Shaul et al. 2017)contains 

a list of only 500 genes (frequently referred to as “DAM genes”) but does not include the log2FC 

parameter that is necessary to perform RRHO analysis. To investigate whether the DAM genes 

from Table S2 from (Keren-Shaul et al. 2017)are also positively enriched in mouse DKO 

transcriptome, we performed  GSEA using DAM upregulated genes and DAM downregulated 

genes from Table S2. We found significant positive enrichment of DAM upregulated genes and 

significant negative enrichment of DAM downregulated genes in mouse DKO transcriptome. 

These results are added to Figure 7D and Page 20. Please also see section 1.5 of this document. 

2.3. In studies using Bhlhe40–/–Bhlhe41–/–double knockout mice, the authors should comment 

on the extent to which Bhlhe40/41 are expressed by other brain cell types. If they are expressed, 

the authors should include the possibility that some of the effects of the knockout could be non-

cell autonomous in the limitations section. It would also be of interest to know whether lipid 

droplets were observed in microglia from these mice. 

We thank the reviewer for this comment and we have now added the following information in the 

Study Limitations section: “Another limitation of the study is the mouse model with a global knock-

out of Bhlhe40 and Bhlhe41 (mouse DKO) which may affect other cell types such as astrocytes 

where Bhlhe40 and Bhlhe41 are also expressed. We cannot exclude that there is a non-cell-

autonomous effect mediated possibly by astrocytes lacking Bhlhe40/41 that would affect DKO 

microglia” (Page 26). Bhlhe40 expression is low in microglia/macrophages but it is significantly 

induced in disease-associated microglia (DAM) (Friedman et al. 2018; Keren-Shaul et al. 2017). 

Bhlhe40 is highly expressed in astrocytes and endothelial cells. Bhlhe41 is highly expressed by 

myeloid cells (microglia, macrophages, neutrophils) and to a lesser extent by astrocytes (data 

source: https://brainrnaseq.org/).  

https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/amozt+e3IyV


Although we have not done any experiments checking the level of lipid droplets in mouse microglia 

lacking Bhlhe40/41, we expect increased lipid droplets content in DKO microglia. There are 

couple of reasons for that: 1) It has already been shown that alveolar macrophages from DKO 

mice accumulate lipid droplets Rauschmeier et al., (Rauschmeier et al. 2019) (please see Figure 

4, also pasted below) 2) GSEA analysis of transcriptome from microglia lacking Bhlhe40/41 (this 

study) showed that GOCC_LIPID_DROPLET and GOBP_REGULATION_OF_LIPID_STORAGE 

are significantly and positively enriched with Normalized Enrichment Score (NES = 1.59 NOM P 

value = 0.007 and NES = 1.47 NOM P value = 0.047, respectively).  

Figure 4C from (Rauschmeier et al. 2019) 

   GSEA (mouse microglia lacking Bhlhe40/41as compared to WT)

Minor comment: 

https://paperpile.com/c/hG17PM/89wR
https://paperpile.com/c/hG17PM/89wR


2.4. RNA-seq data is presented as RRHO heatmaps. It would be informative to present the data 

also a Volcano plots depicting fold change and adj p-value and to state, what the fold-cut off were 

to determine differentially expressed genes. This can be shown as supplementary data. 

We thank the reviewer for this comment. DLAM genes did not reach statistical significance for 

differential gene expression when filtered with standard RNA-seq criteria (FDR < 0.05). Therefore, 

as we did previously with APOE4 microglia TCW et al., (Tcw et al. 2022), we moved away from 

threshold-based methods toward ranked-based methods (RRHO and - in the revised version - 

GSEA) that do not rely on arbitrary cutoffs and take full advantage of the information contained in 

whole-transcriptome profiles. The reason why the effect sizes of DLAM marker genes are small 

in DKO cells may be due to the fact that typically DLAMs make for only a small proportion of 

microglia/macrophages both in vitro and in vivo. Therefore, scRNA-seq may be more sensitive 

for the detection of gene expression changes associated with compositional shifts in 

microglia/macrophage subpopulations upon genetic inactivation of BHLHE40/41. We are 

currently performing such experiments in the context of follow-up studies and future manuscripts.  

Reviewer #3 (Remarks to the Author): 

Communications – Review March 2023 

BHLHE40/41 regulate macrophage/microglia responses associated with Alzheimer’s disease and 

other disorders of lipid-rich tissues 

The manuscript by Podlesny-Drabiniok and Novikova et al. outlines the core gene-regulatory-

network (GRN) function of the transcription factors; BHLHE40/41, in microglia and macrophages 

in lipid-rich environments in various diseases. Combining multiple publicly available single-cell 

and single-nucleus RNA-seq datasets, as well as ATAC-seq, the authors show that Bhlhe40/41 

is a core transcriptional regulators of LAM microglia/macrophages and provide evidence of 

functional responses of microglia upon genetic perturbation of Bhlhe40/41. Overall, the 

manuscript provides an important insight to the transcriptional impact of Bhlhe40/41 on 

cholesterol metabolism and lysosomal activity in microglia. However, the initial GRN analysis 

leaves several questions to be addressed as indicated below: 

Major comments: 

3.1. The methods for the reconstruction of gene-regulatory-network must be described in more 

detail. Figure 1 shows the consolidated results for the GRN analysis. It is not clear whether 

metacells were constructed separately for the different expression matrix files (different datasets) 

or processed together as one merged expression matrix. If individual networks were built for each 

expression matrix, the intermediate results should be presented. 

We thank the reviewer for this clarifying question. Metacells were generated for every dataset 

separately and a network was generated for every individual dataset as well. Meta-analysis was 

done using all of the networks combined and is shown in Figure 1. We have now edited the 

methods section to describe the network reconstruction procedure in more detail. We also added 

https://paperpile.com/c/hG17PM/LJ96J


intermediate results, TFs nominated by each dataset prior to meta-analysis, to Supplementary 

Table 1.  

3.2. Why were all metacells created using standard parameters. The authors should provide 

evidence that standard parameters provided the most robust K-means clustering across different 

datasets.  

Parameters were k-means clustering were different for each dataset, they were chosen such as 

the number of neighbors * the number of metacells was as close to the total number of cells as 

possible to avoid the same cell being included in multiple metacells. In our conversations with the 

authors of PISCES, they suggested selecting the number of neighbors > 10 and number of 

metacells > 100 and that this selection did not dramatically affect the outcome of ARACNE. In our 

own original analyses with changing the number of neighbors and number of metacells, the list of 

potential regulators of the LAM signature was not dramatically affected. We now include the 

parameters that were used for metacells generation for each dataset on our github page. We 

edited the Methods section to address this question and it now reads: 

“The pipeline for reconstruction of metacells was adopted from the PISCES tool(Obradovic, 

Vlahos, et al. 2021) and can be found at our github page 

https://github.com/marcoralab/bhlhe_manuscript. Briefly, this approach constructs a kNN graph 

using the data, partitions the data into an appropriate number of metacells, taking into account 

the desired number of neighbors. It then aggregates the counts from closest neighbors into 

MetaCells. The MetaCells function was used in the following manner: MetaCells(data, dist.mat, 

numNeighbors = numNeighbors, subSize = subSize). numNeighbors and subSize for each 

dataset are provided on our github page.” 

3.3. Most of the input datasets for GRN analysis are not associated to Alzheimer’s disease and/or 

microglia. Yet, the authors are using the consolidated results in Figure 1 to justify why 

BHLHE40/41 is studied in microglia. In silico, the authors need to provide more insight of the GRN 

analysis in microglia.  

We thank the reviewer for this suggestion. In the manuscript, we attempted to focus on both 

peripheral tissue-resident macrophages and microglia, given that the lipid-associated 

macrophage response occurs in various disease contexts, such as Alzheimer’s disease, fatty liver 

disease, obesity, lung fibrosis and others. Hence, some of our datasets are associated with 

Alzheimer's disease (e.g., human AD brains from Zhou et al and APP knockin mouse data from 

Sala Frigerio et al) and others are associated with other disorders of lipid-rich tissues (e.g., human 

liver cirrhosis from Ramachandran et al and mouse induced nonalcoholic steatohepatitis from 

Xiong et al). Indeed, our downstream validation focuses not only on human and mouse microglia, 

but also on human macrophages shown in Supplementary Figures 6 and 7, attempting to show 

that this response is present in different types of macrophages. However, we now  include all the 

TFs nominated by each individual dataset (Supplementary Table 1), including microglial datasets, 

so that the interested reader can further examine microglia-specific findings if needed.  

https://paperpile.com/c/hG17PM/waRG7
https://paperpile.com/c/hG17PM/waRG7


3.4. The authors implement the PISCES tool to strengthen the expression profile of low 

expression genes. The tool is not yet peer-reviewed and it is not clear why the authors only used 

single-cell and single-nucleus RNA-seq although bulk RNA-seq provides much better sequencing 

depth. 

We thank the reviewer for this thoughtful question. Unfortunately, given the small number of 

microglia in the brain, ~5-10 %, bulk brain RNA-seq datasets fail to capture microglial activation 

states. Indeed, there have been many studies that looked at differential expression between AD 

and control brains, for example, and the findings mostly relate to the increased number of 

microglia in a disease brain as opposed to capturing specific activation states. Hence, we focused 

on single-cell and single-nucleus datasets to leverage a higher diversity of transcriptional 

responses that are captured in those datasets, despite lower sequencing depth.  

Given our collaboration with the authors, we used a small portion of the PISCES pipeline that 

deals specifically with metacells reconstruction and obtained the code from the team a long time 

prior to publication. We now share the code used for metacells reconstruction on our github page 

https://github.com/marcoralab/bhlhe_manuscript. In addition, this pipeline has been used and 

published (and some of its findings experimentally validated) in several peer-reviewed articles 

(Hawley et al. 2023; Pan et al. 2020; Obradovic, Chowdhury, et al. 2021). 

3.5. It is not clear to what extent the LAM signature is present in the datasets used. How many 

cells are positive for the LAM signature, and do they cluster separately from DAM microglia? 

Where only LAM signature microglia/macrophages implemented for the GRN analysis? 

We thank the reviewer for this clarifying question. We would first like to clarify the DAM/LAM 

nomenclature. In this manuscript, we attempted to communicate that several populations carrying 

different names, such as disease-associated microglia (DAM) (Keren-Shaul et al. 2017), TREM2HI 

macrophages identified in atherosclerotic plaques (Cochain et al. 2018) and lipid-associated 

macrophages (LAM) in adipose tissue(Jaitin et al. 2019) are similar to each other in that they 

mount similar transcriptional and cellular response to damage of lipid-rich tissues. Using datasets 

from relevant disease and control tissues, we aimed to identify transcriptional regulators that 

might be shared between these populations, focusing specifically on disease-associated 

microglia population (DAM) in the brain, TREM2HI population in atherosclerotic plaques, and lipid-

associated macrophages (LAM) in adipose tissue. In the revised manuscript we collectively 

referred to this microglia/macrophage subpopulations as DLAMs (please see response to 

comment 1.3). In our computational analyses, we make sure that the TFs we nominate exhibited 

enrichment of their regulons for all the three DLAM genesets mentioned above. Our question of 

interest is to identify transcriptional regulators of the DLAM response, so we focused on those 

signatures in our GRN analysis. 

By the nature of the datasets we selected, most of them showed positive expression of DLAM 

markers. Below we show the findings from original authors, when possible, or include UMAPs 

that we generated ourselves. Starting with mouse datasets, adipose macrophages reported in 

Jaitin et al (Jaitin et al. 2019) express LAM markers, such as Ctsb, Gpnmb, Lgals3, Apoe and 

others.  

https://paperpile.com/c/hG17PM/bJUNs+oA11N+MRU7G
https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/xGkFj
https://paperpile.com/c/hG17PM/bD6qt
https://paperpile.com/c/hG17PM/bD6qt


Xiong et al (Xiong et al. 2008) reported macrophages in the liver that responded to the induction 

of nonalcoholic steatohepatitis that express Trem2 and Gpnmb among other DLAM markers. 

Ramachandran et al (Ramachandran et al. 2019) reported scar-associated macrophages in both 

mouse and humans that highly express DLAM makers, such as TREM2 and CD9, as shown 

below in their cross-species integrative analysis. 

Cochain et al (Cochain et al. 2018) reported macrophages in atherosclerotic aortas that again 

highly express DLAM markers, such as Trem2, Cd9 and Ctsd among others.  

https://paperpile.com/c/hG17PM/0qG12
https://paperpile.com/c/hG17PM/pMh0N
https://paperpile.com/c/hG17PM/xGkFj


Lin et al (Lin et al. 2019) also identified a similar Trem2high macrophage population in their 

atheroscletoric model, where these macrophages highly express Spp1, Cd9 and other DLAM 

markers. 

Sala Frigerio et al (Sala Frigerio et al. 2019) uses Alzhimer’s disease mouse models that have 

been previously reported to show DAM activation, expressing Apoe, Spp1, Gpnmb and other LAM 

markers. The authors term this population Activated response microglia or ARMs and 

characterize this activation state more deeply than the original DAM study (Keren-Shaul et al. 

2017). 

https://paperpile.com/c/hG17PM/nTsJx
https://paperpile.com/c/hG17PM/JIXcU
https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/e3IyV


Given previous reports that aged mice show an activation state similar to that observed in mouse 

models of neurodegeneration albeit to a much smaller extent (Keren-Shaul et al. 2017), we 

included a microglial dataset from aging mouse brains. Please see microglial UMAPs below 

showing LAM gene expression in Ximerakis et al dataset(Ximerakis et al. 2019); a cluster of cells 

expressing markers, such as Gpnmb, Lpl and Spp1 as well as an increased expression of Apoe

can be seen.

https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/lSd0C


Given that the DLAM response is, at least in part, TREM2 dependent, we included data from a 

demyelination mouse model with wild-type and knockout Trem2. Please see microglial UMAPs 

below showing DLAM gene expression in Nugent et al (Nugent et al. 2020) dataset similarly 

showing a cluster of cells expressing Gpnmb, Lpl and Spp1 as well as an increased expression 

of Apoe. 

https://paperpile.com/c/hG17PM/XFumN


Human DAM and TREM2hi signatures have not been convincingly described yet. Hence, in our 

analyses, we lifted 2 mouse signatures to the human genome, the DAM signature (Keren-Shaul 

et al. 2017) and the TREM2HI signature ((Cochain et al. 2018),  along with using a human LAM 

signature that was derived from human macrophages in obese individuals (Jaitin et al. 2019). We 

assume that although the mouse and human activation signatures will surely be, at least in part, 

different, we decided to leverage human datasets from the same disease conditions as our mouse 

data, e.g. Alzheimer’s disease, atherosclerosis and non-alcoholic steatohepatitis. We also used 

a dataset with a very large number of primary human microglia from fresh resected tissues. 

Assuming that at least some of the markers are conserved, we subsequently aim to use co-

expression patterns in microglial cells to identify regulators of the DLAM signature. Please see 

UMAP plots showing microglial expression of select DLAM genes from human datasets used in 

this study.  

Mathys et al 

Olah et al  

https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/e3IyV
https://paperpile.com/c/hG17PM/xGkFj
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Zhou et al 

Jaitin et al 



Fernandez et al  

MacParland et al 



Ramachandran et al  

3.6. The authors mention efferocytosis as a common hallmark pathway for LAM 

microglia/macrophages, however, do not show any data supporting this statement. 



We thank the reviewer for this comment and we apologize that it was not well explained. We think 

that efferocytosis, understood as clearance of lipid-rich cellular debris (i.e. myelin fragments, 

apoptotic cells and synapses, dystrophic neurites, amyloid plaques, etc.), is a main 

microglial/macrophage process affected by genetic variants associated with AD risk. Efferocytosis 

is a four step mechanism that includes proper Chemotaxis and Recognition of extracellular waste 

(step1), Engulfment that requires actin polymerization and cytoskeleton rearrangements to take 

up extracellular debris (step 2), Digestion that comprises degradation of engulfed material in the 

endolysosomal system (step 3) and Adaptation that includes activation of transcription factors 

that increase phagocytosis, cholesterol efflux and storage, lysosomal biogenesis, bioenergetics 

and other metabolic processes (step 4). AD risk genes are enriched in each of these steps 

including genes with rare coding variants such as TREM2, ABCA7, ABI3, PLCG2, and genes 

implicated by  common non-coding variants (e.g. ABCA1, ZYX, BIN1, RIN3, MEF2C, SPI1). 

Genes identified through a variety of different approaches including coloc, TWAS, and SMR show 

that candidate causal genes for AD fall into one of these four steps supporting our hypothesis that 

abnormal microglial efferocytosis plays an important role in the etiology of AD. We have presented 

this hypothesis with supporting genetic and experimental evidence in three reviews (Romero-

Molina et al. 2022; Andrews et al. 2023; Podleśny-Drabiniok, Marcora, and Goate 2020). 

Consistent with this hypothesis is the observation that several DLAM genes are AD risk genes 

and that DLAM genes are enriched in several pathways (for example phagocytosis and lipid 

metabolism) that are core components of efferocytosis (Deczkowska et al.,(Deczkowska et al. 

2018)). Interestingly, from the perspective of AD evolution, primate microglia (compared to rodent 

microglia) are also enriched for AD risk and efferocytosis genes (Geirsdottir et al., (Geirsdottir et 

al. 2020)). 

3.7. When generating the short list of candidate transcription factors, the researchers require the 

transcription factor to appear in at least half the human and mouse networks and present in human 

microglia. The authors need to provide data visualization displaying which networks contain these 

transcription factors. 

We have now included results from individual network enrichment analyses in Supplementary 

Table 1, where the reader can see which TF was nominated by which study/network. 

3.8. The reason for the expression-based selection of top transcription factor markers is not clear. 

Protein levels of transcription factors should be considered. Even low expressed transcription 

factors could have biological and functional meaning. Selecting only the top 11 candidates before 

investigating AD risk allele enrichment and TF binding sites could skew the results and hide other 

potentially important transcription factors. The authors must present a less biased approach. 

We absolutely agree with the reviewer that protein levels of transcription factors are important; 

however, in this study we focus on single-cell and single-nucleus RNA-seq data because the 

population we are most interested in (lipid-associated macrophages) was identified at the mRNA 

level. The expression filter that we implemented is very relaxed; we only require a TF to be 

expressed at a level >= 1 TPM in human microglia; in fact, when examining the list of TFs pre and 

https://paperpile.com/c/hG17PM/Pi3Tm+D3AYZ+xAOBg
https://paperpile.com/c/hG17PM/Pi3Tm+D3AYZ+xAOBg
https://paperpile.com/c/hG17PM/XS5t1
https://paperpile.com/c/hG17PM/XS5t1
https://paperpile.com/c/hG17PM/vJrXc
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post-filter, all 11 TFs are expressed in human microglia >= 1 TPM. Given this observation, we 

removed the description of the filter from the manuscript. The text now reads: 

“High confidence TFs were selected if they were 1) enriched for all three LAM genesets in at least 

half of human and mouse networks and 2) conserved between species.” 

Since microglia represent a small fraction of brain-resident cells and proteins from more abundant 

cells are much more likely to be captured, we avoided the use of whole brain proteomics datasets. 

Hence, we used datasets, where microglia were purified prior to the proteomics experiment. 

Unfortunately, although there are multiple mouse microglial proteomics datasets published, the 

number of detected proteins in microglia is still quite low. For example, we examined a dataset 

by Rangaraju et al (Rangaraju, Dammer, Raza, Gao, et al. 2018), where the authors performed 

a TMT proteomics on isolated Cd11b+ microglial cells from wild-type, LPS-stimulated and 

Alzheimer’s disease mouse models (5xFAD). The authors detected 4,133 proteins across the 

three experimental groups, but none of our 11 top transcriptional regulator candidates were 

detected. Out of 74 mouse TFs reported in Figure 1, only 11 were detected in the dataset. Human 

microglia proteomics datasets are therefore, unfortunately, limited at this time. A recent preprint 

by Lloyd et al(Lloyd et al. 2022) reported more than 9,000 microglial proteins, but the paper has 

not been peer reviewed and the data are not yet available. Taken together, given a relatively small 

number of proteins that are detected in current proteomics experiments, a filter on proteomic 

expression is not optimal and expression of many transcriptional regulators cannot yet be 

assessed.  

3.9. The significance values of enrichment for BHLHE40 binding to ATAC seq peaks for LAM 

genes is missing. The authors should demonstrate more transparency and show HOMER results 

for Figure 3.” 

We would like to clarify the data shown in Figure 3. We are not performing an enrichment analysis 

in Figure 3. Instead, we are taking 11 TFs that we are nominating through co-expression analysis 

and quantifying the number of LAM genes. We used LAM genes from (Jaitin et al. 2019) Dataset 

S6, FDR Adj.P-value < 0.05) that contain a motif of that TF in their promoter (Figure 3A, C) and 

we used DAM genes from (Keren-Shaul et al. 2017) Table S2 . Hence, we used HOMER only to 

pinpoint ATAC-seq regions that are positive for the motif of interest; we have not performed a 

global motif enrichment analysis because it does not address the question we are interested in. 

With the analysis presented in Figure 3, we are trying to assess which of the TFs that are 

nominated through co-expression could also potentially bind LAM genes. Additionally, we are not 

showing a percent of LAM gene promoters that contain a BHLHE40 motif; BHLHE41 is the TF 

that is nominated through the network approach.  

3.10 There are several datasets on BHLHE40 ChIP-seq, which should be investigated and used 

to validate potential BHLHE40 binding site enrichment at LAM genes (Citation: 59, PMID: 

31061528). 

We thank the review for this suggestion. We would like to highlight that our network analyses 

nominate BHLHE41 in particular, not BHLHE40. Our analyses of open chromatin regions in DLAM 

gene promoters presented in Figure 3 also highlights that a large proportion of LAM genes contain 

https://paperpile.com/c/hG17PM/rHuF5
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a BHLHE41 motif (not BHLHE40). Although these TFs are closely related and demonstrated a 

level of compensatory activity in previous studies, we show individual and double KD/KO in our 

validation studies. However, our computational analyses suggest that BHLHE41 could have 

different/broader binding patterns than BHLHE40. In our analyses of human microglial open 

chromatin regions, we identified around 30K BHLHE41 proxy-binding sites compared to only 

~8.7K BHLHE40 proxy-binding sites. Indeed, more than 70% of LAM genes contain a BHLHE41 

motif (Figure 1), while only 28% contain a BHLHE40 motif. This suggests that there may be fewer 

BHLHE40 binding sites around the genome. Unfortunately, there are no studies to date that have 

profiled open chromatin regions and Bhlhe40/Bhlhe41 binding pattern, making it difficult for us to 

validate our proxy-binding sites for these TFs. However, we analyzed two additional datasets in 

support of our observation that Bhlhe40 has more limited binding throughout the genome than 

Bhlhe41. We analyzed ChIP-seq data from large peritoneal mouse macrophages (Rauschmeier 

et al. 2019) and identified only 1,046 Bhlhe40 peaks with 6% of DAM genes having a Bhlhe40 

binding site in their promoter (as a DAM we used (Keren-Shaul et al. 2017), Table S2). We also 

analyzed ATAC-seq data from mouse bone-marrow derived macrophages (Daniel et al. 2020), 

which showed a similar pattern with only 3,854 Bhlhe40 proxy-binding sites out of ~77K open 

chromatin regions with 17% of DAM genes having a Bhlhe40 binding site in their promoter (in 

comparison, Bhlhe41 proxy-binding sites were present in around 40% of DAM genes in mouse 

BMDMs as shown in Figure 3) (as a DAM we used (Keren-Shaul et al. 2017), Table S2). This 

observation could be driven by the lower expression of BHLHE40; for example, in human 

microglia, BHLHE41 is expressed almost 14 times higher than BHLHE40 (Gosselin et al. 2017). 

Interestingly, Bhlhe40 is upregulated in mouse DAM signature, suggesting that detecting binding 

patterns of Bhlhe40 might be harder in baseline tissues. Taken together, we would like to highlight 

that BHLHE41 has been nominated by our network analyses and its motif is contained in a large 

proportion of DLAM gene promoters. Although BHLHE40 is a closely related TF, its potential 

binding patterns do seem to differ from BHLHE41 and they do not suggest potential direct binding 

to DLAM gene promoters. We would, however, like to highlight the limitations of using motifs as 

opposed to ChIP-seq data to ascertain TF binding sites. 

Minor comments: 

3.11. It is not clear how the Human and mouse LAM TFs in Figure 1 were clustered. Were the 

LAM TFs ranked, and if so, using what method? 

Heatmap was created using the R pheatmap package with clustering_method =  “complete”.  

3.12. The authors should provide all code used for the GRN analysis for more transparency. 

We have now created a github page https://github.com/marcoralab/bhlhe_manuscript where an 

example of GRN generation is included to enhance transparency.  

3.13. The authors should comment on the low MI scores between LAM genes and TFs in mice in 

Figure 1. 

There could be many potential reasons why some MI scores are low between a subset of DLAM 

genes and TFs in mouse datasets. One could be because some of the human datasets are quite 

large (Olah et al., n.d.; Mancuso et al. 2022), providing more microglial cells and allowing for 

detection of weaker co-expression patterns between DLAM genes and TFs. Another reason could 
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be that the mouse and human DLAM signatures depicted in Figure 1, although significantly 

overlapping, are distinct, which can also drive differences observed in Figure 1.  

3.14. Peak profiles of ATAC-seq for Bhlhe40 motif enrichment sites at LAM genes should be 

presented, as well as ChIP of Bhlhe40. 

We thank the reviewer for this suggestion. We would like to highlight that our network analyses 

nominate BHLHE41, not BHLHE40. Although these TFs are closely related and demonstrate a 

level of compensatory mechanisms in certain contexts, our analyses nominated BHLHE41 in 

particular through co-expression followed by quantification of proxy-binding at LAM gene 

promoters. As described in our response to comment 3.10, BHLHE40 likely has different binding 

patterns than BHLHE41 and proxy-binds a much smaller proportion of LAM gene promoters than 

BHLHE41. Since BHLHE41 ChIP-seq data in human macrophages have not been generated 

(likely due to the fact that a quality antibody for BHLHE41 is not commercially available), we now 

include epigenomic tracks, highlighting open chromatin regions in LAM gene promoters in human 

and mouse microglia and macrophages that contain a BHLHE41 motif in Figure 3E-F.  

3.15. Why did the authors choose to select LPS and IL4 treated microglia?  

We have not chosen IL4 or LPS-treated microglia but we cited one article that used 43 existing 

GEO microarray transcriptomes of Cd11b+ microglia including in vivo microglia from AD mouse 

models and in vitro microglia stimulated with LPS and IL4 (Rangaraju, Dammer, Raza, 

Rathakrishnan, et al. 2018). Since this created an impression that we included only LPS and IL4 

microglia signatures, we re-worded that sentence, please see Introduction, paragraph started with 

“The DLAM response like other …”  (Page 4) 

3.16. Using stratified LD score regression to perform AD heritability analysis it is not clear if the 

P-values are adjusted for false discovery? 

The P-values shown in Figure 2 are not FDR adjusted; however, dark blue bars indicate significant 

enrichments (FDR < 0.05), bars in light red indicate nominally significant enrichments (P-value < 

0.05), while gray bars indicate non-significant enrichment.  

Second revision 

Reviewer #1 (Remarks to the Author): 

The authors have done a tremendous job of objectively, carefully, and exhaustively responding 

to this Reviewer's comments. They gave extensive responses to my questions/concerns, have 

revised the manuscript accordingly, and have added important new data and clarifications where 

needed. I thoroughly enjoyed reading this manuscript and would like to commend the authors on 

a beautiful, impactful study. 

We thank the reviewer for the comments that helped to improve the final version of the manuscript 

Reviewer #2 (Remarks to the Author): 

https://paperpile.com/c/hG17PM/P3XUq
https://paperpile.com/c/hG17PM/P3XUq


The authors have satisfactorily addressed the major and minor concerns that I raised in the initial 

review. The major conclusions of the manuscript are reasonably well supported and the findings 

represent a significant contribution to defining genes and pathways regulating lipid metabolism 

and lysosomal function in microglia that are relevant to neurodegenerative diseases. 

We thank the reviewer for the comments that helped to improve the final version of the manuscript 

Reviewer #3 (Remarks to the Author): 

The authors fully addressed majority of my main critiques. There are few remaining minor 

comments to be addressed before publication as follow: 

1. Krasemann et al., (PMID: 28930663) identified and described Bhlhe40, which is regulated by 

APOE signaling, and specifically induced in plaque associated Clec7a+ microglia isolated from 

AD mice. However, Bhlhe41 was not affected. The authors used double-KO approach. This 

should be acknowledged and discussed. 

2. On P23 the authors describe: “Furthermore, a recent study showed that APOE risk-increasing 

(APOE ε4/ε4, similar to APOE, TREM2, and PLCG2 loss-of-function mutations) and risk-

decreasing (APOE ε2/ε2) genotypes are associated with decreased and increased DAM 

transcriptional …[68]. The authors should discuss two comprehensive new studies recently 

published Nature Immunology, which employed complementary gain-of-function and loss-of-

function approaches to provide critical new evidence that APOE4 impairs MGnD response to 

neurodegeneration including identification of the mechanism related to induction of TGFb-

mediated checkpoints which block MGnD response, including induction of SPI1 (PMIDs: 

37749326, 37857825). 

We thank the reviewer for the comments that helped to improve the final version of the manuscript.  

In mouse studies, we have used the DKO approach because both Bhlhe40 and Bhlhe41 were 

nominated through our GRN as candidate regulators of mouse DLAM responses. Additionally, 

analysis of global transcriptomic changes in alveolar macrophages isolated from Bhlhe40/41-

DKO mice showed an induction of several DLAM genes including Apoe, Trem2, and 

Lpl(Rauschmeier et al. 2019). Finally, our human iMGL and MAC data showed that genetic 

inactivation or reduction of both BHLHE40/41 recapitulate an induction of DLAM responses both 

transcriptionally and functionally as compared to single KO. We think the effect of Bhlhe40 and 

Bhlhe41 may be additive and therefore we decided to use the DKO approach. This is also clarified 

in the paragraph titled: Knockout of Bhlhe40/41 partially recapitulates DLAM transcriptional 

responses in mouse microglia 

We thank the reviewer for highlighting the two recently published articles that shed a light on the 

role of APOE44 in microglia in the context of AD pathology. We have mentioned these two studies 

in the discussion.  
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