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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): Expert in cancer genomics and evolution, and mathematical 

modelling 

 

Wang and colleagues develop a method called “Butte” to estimate the timing (initiation and arrival) of 

somatic copy number gains from whole genome sequencing data. Their approach advances the current 

state of the field on SCNA timing by being able to time high copy number gains (CN > 4), up to a copy 

number of 8. Multiple trajectories are possible to generate some CN states, and their linear 

programming approach accounts for this by giving the upper bound on the timing of events. They 

perform extensive validation on simulated datasets, and then apply Butte to eight publicly available 

datasets. They also employ a branching process model to investigate late gains. 

 

I believe this work provides a valuable contribution to the field. In my assessment, the methods and 

models used are sound, and I appreciate the significant validation performed and reported in the 

supplemental figures. They demonstrate the general utility of their method by applying it to multiple 

cancer types spanning 8 different datasets, and provide meaningful analyses of these tumors. One of my 

main concerns relates to the bias in the estimates, especially when drawing conclusions about late 

events from the timing estimates that are overestimated. I would like to see some additional validation 

performed about the early and late classifications. Some revision of the logic flow and precision of 

terminology would improve the readability and presentation of results. Lastly, I have some concerns 

about the conclusion from the mathematical modeling work that late gains may contain rate-limiting 

drivers. I have listed my specific comments below, separated into major and minor issues. 

 

Major 

 

1. Because the estimates are upper bounds for some CN profiles and tK estimates are often 

overestimated, I’m concerned about overinterpreting the significance of “late” gains, which are defined 

based on these biased estimates. Figures S1-S3 show tK estimates are usually overestimated--

significantly so for smaller true values of tK. Can the authors comment on how often it will be possible to 

accurately identify early events? I think a similar validation analysis to Figures S2-S5 assessing the true 

positive rate of early predictions and false positive rate of late gains would clarify how much can be 

interpreted from the assignment of late and early gains. 

 



2. Why does Butte underestimate t0, even though the estimate is an upper bound? Does Butte 

overestimate tK, even when the estimate is not an upper bound (exact solved timing)? What is causing 

these biases? 

 

3. What about other possible trajectories to the observed CN profile, involving more complicated 

structural variants/SCNAs? How will it affect timing estimates? For example, within a region of elevated 

CN, is CN always constant? If not, how are different possible trajectories to that CN profile accounted 

for? E.g. What if there’s a continuous region with copy number 3-4-3? 

 

4. Overall clarity of terminology and results. Clarity of the manuscript could be improved, especially with 

regards to usage of the terms “early” and “late” gains, as well as differentiating between GD and pre- 

and post-GD gains. Some specifics: 

 

a. Once methodology is introduced (in the results), can you more explicitly define early and late gains? In 

the introduction it says late gains are those occurring in last 20% of evolution time and early as occurring 

in the first 20%. It is unclear how these definitions are applied in practice in the results section. Can the 

definition be related to the t0 and tK estimates, since it presumably depends on them? 

 

b. Figure 4 is unclear about when the GD events are occurring. In the corresponding parts of the text, the 

time of GD events in Figure 4 are mentioned. But as far as I can tell, Figure 4 shows all SCNA gains, 

including non-GD ones (since pre- and post-GD gains are discussed). Could annotations to the figure or 

clarifications to the text be provided? This is especially important to understanding the results, since 

there is much discussion about gains that occurred before and after GD. For example, could vertical lines 

indicate the times for GD and early and late cutoffs, similar to how GD time is shown in Fig S21. 

 

5. Other Figure 4 issues. 

a. It’s difficult to see the difference between initiation and arrival in plots like 4A. With the number of 

events plotted, it is difficult to see which events are connected by the dotted lines that link initiation and 

arrival. Currently they look like two separate events. 

 

b. Fig 4A left panel for CN is ambiguous with current color choices. I believe right ~1/3 of this panel is 

showing any LOH, but this color is similar to CN = 0. Can LOH color be more obvious difference from 

those used to indicate CN = 0? Or LOH can be indicated in a different way from CN (e.g. box around 

affected region). 

 



6. I am not convinced by the conclusion that late gains may contain rate-limiting drivers based on the 

modeling work. In particular, the mathematical modeling section concludes with the strong statements 

in lines 301-304, which are not adequately supported by the modeling results. I think there is too much 

causation implied in these statements, and the logic doesn’t flow. This conclusion is restated throughout 

(e.g., discussion, abstract, etc.). Even if I’m misunderstanding this conclusion, I think it should at least be 

rephrased or explained further. 

 

7. Some confidence intervals for timing estimates are very large. Can the authors comment on the 

magnitude of the uncertainty for the timing estimates? For the tumors analyzed, can they provide 

summary statistics for the size of the confidence intervals (in units of evolution time spanned). 

 

Minor 

 

1. Running title has hyperlink to unrelated website. 

2. Define SRE in the introduction at its first mention. 

3. Line 543. When it is stated in the Methods how to determine GD, it is unclear to me why after 

clustering inferred times, GD would correspond to the cluster containing 40% of segments. Is this a 

standard way of identifying GD? If not, how does this compare to other methods for identifying GD? 

4. What is the “evolution time” mentioned in the intro? This term should be defined. 

5. Why do estimates sometimes have increasing error with increasing read depth (e.g. Fig S3)? 

6. Is there not difficulty in resolving number of SSNVs at j/N frequencies as copy number N increases? 

7. Top left panel on Fig 2 could use more annotation or explanation. 

8. I think the recent Nature Genetics paper by Körber et al (https://doi.org/10.1038/s41588-023-01332-

y) is relevant to the conclusions and methods discussed. 

9. Line 193: Clarify that “the existing method” is from Cross et al. 2018. 

10. Line 235: “The earlier the timing of GD, the more post-GD CN gains (Fig. 4A).” Fig 4A shows 3 

example tumors, so this statement should either be revised to reflect this fact, or reference a figure more 

appropriate for the generality of this statement. 

11. Can equation 2 at line 287 (or equivalently in Methods, Equation 11 (line 613)) be explained and/or 

derived? 

12. Line 273: “Moreover, numerical simulations show that the number of dominant post-GD gains 

continues to follow a geometrical-like distribution with the mode at zero.” Can the authors support this 

statement with a reference to a figure? 



13. Can the authors include citation(s) for the strong and general opening sentence of the discussion 

(line 350)? 

14. Lines 399-401: “Specialized pre-selection of SSNVs that faithfully possess a clock-like behavior 

(Gerstung et al.) is necessary for tumors whose mutagenic processes varies drastically within the studied 

timeline.” Is that not the case for the tumors studied? 

15. Line 48: “The inextricable relation of SCNAs to cancer initiation (Nowak et al. ; Davoli, Xu, et al) and 

progression (Lukow et al. ) has become a consensus in cancer genomics.” I’d be hesitant to use the word 

“consensus” here, even though it is a well-observed relation. It implies complete agreement in the 

literature about the primacy of SCNAs in cancer initiation and progression, excluding other important 

factors like microenvironment, smaller genetic alterations, epigenetics, etc. I don’t think there is much 

doubt that SCNAs play an important role, but I think this phrasing might imply more than is intended. 

16. The timing ranks in Fig. 6A needs more explanation or visual cues. 

 

 

 

 

Reviewer #2 (Remarks to the Author): Expert in cancer genomics and evolution, mathematical modelling, 

and bioinformatics 

 

In this paper, the authors present an extension of an existing algorithm by Purdom et al. (2013) to 

predict the timing of copy number gains in cancer tumors, including repeated events at the same locus 

up to a copy number of 6. This algorithm is applied to several cancer DNA sequencing datasets. For each 

genomic locus affected by SCNAs, the timings of the first gain and the last gain before population 

expansion of the sample are estimated. The derived results can provide insight into the dynamics of CN 

gains in human cancers. However, the progress over existing approaches and findings as well as the 

validity of the interpretations of the main results remain somewhat uncertain. 

 

Major comments 

 

1. First, the authors should choose what they mean by "arrival time" and maintain this throughout the 

manuscript. In some places, it is the duration t_K of the interval after the last CN gain before expansion 

(e.g. caption of Fig. 1), whereas in others it is the time at which the last CN gain takes place, measured 

relative to birth (e.g. Fig. 1A, Fig. 4), i.e. 1-t_K. 

 



2. The estimation of t_K is based on the VAF spectum. In general, the VAF spectrum contains a number 

of low-frequency variants that occur in the subclonal phase of tumor growth. If present, these could 

inflate the estimates of t_K. According to the Methods, these variants are filtered out by restricting to 

clonal variants. However, since the definition of clonal vs subclonal already relies on knowledge of copy 

number status and sequence of mutational events (to calculate the CCF, l. 466), how could clonality 

status in the single-sample tumors be reliably inferred? 

 

3. Another putative confounding factor for the proposed inference is sample purity. Since variants with 

an alternate read count of less than 3 are usually filtered out of the sequencing data, low purity of a 

sample means that certain variants will never be seen, even after correcting for purity by dividing the 

VAF. This would result in a downward bias of t_K. The authors evaluated the effects of purity on the 

estimation of t_K (Fig. S2,3). In these simulations, was realistic filtering of variants with low alternate 

read count applied? Do the authors find a correlation between the estimated t_K and purity in the real 

data? And with the read depth and the number of SNVs? 

 

4. One of the main results is the shift toward small t_K of some putative late driver events such as MYC 

for osteosarcoma in Fig. 4C, placing them close in time to the MRCA of the sample. However, are the 

small t_Ks observed for such events not a necessary consequence of the high CN? In other words, the 

more events that must take place (i.e. the higher K), the smaller the fraction of time available (t_i) for 

each of them, since \sum_i t_i = 1. This would naturally decrease t_0 and increase 1-t_K. I do not think 

that the differences in 1-t_K (and t_0) between regions, as shown in Fig. 4C, can be meaningfully 

interpreted without taking this intrinsic property of the data into account. Similarly, the results shown in 

Fig. S12 seem expected, since, for example, the 3:1 condition involves one fewer SCNA event than 3:0. 

 

5. Regarding the analysis in Fig. 5, I am not sure I follow the conclusion from the mathematical model 

that late advantageous gains become a rate-limiting event (l. 304). First, it is not clear why Fig. 5A would 

not be consistent with neutral evolution, since the number of post-GD gains should be linearly 

proportional to the mutation rate and the time available for their occurrence, which the figure does 

show. In truncal evolution, neutral passenger SCNAs, like selected SCNAs, are dominant as soon as they 

occur. Finally, it appears that neutral evolution is rejected by assuming that u_0 and lambda_0 are 

comparable (l. 272). It is unclear why this is assumed, given how little is known about cancer cell growth 

and mutation rates. The statement is weaker in the caption of Fig. 5 ("modeling suggests that 

advantageous CN gains can occur late") and in l. 356, but then it is tautological. 

 

6. As I understand, each history matrix gives an estimate for each t_i. If a matrix is not invertible, the 

estimate of t_i is replaced by an upper bound for t_i (only applied to i=0 and i=K). How are these two 

qualitatively different quantities (i.e., exact estimates vs upper bounds) combined in diagrams such as 

Fig. 4B,C? 

 



7. To benchmark the method, I would recommend comparing it to existing methods such as that of 

Greenman et al. (2011) by applying it to the data in that paper and that of Nik-Zainal (2012), which used 

the same algorithm, to compare the event time predictions. 

 

8. In addition to applying the method to datasets with existing predictions of CN gain timings, the most 

compelling benchmark with the available data would be to apply the algorithm to subclones identified in 

the phylogenetic reconstructions of the multi-region sequencing datasets that carry private SNCAs (Fig. 

3). Fig. S8 nicely shows that subclone-private gains in the COAD cohort are indeed predicted to occur 

later than shared gains on average. Why did the authors not perform the same analysis for all other 

cohorts? 

 

9. As another way to show the added value of the method, compare the GSEA predictions from Fig. 6A 

with the ranking of genes simply by their average CN (as opposed to average 1-t_K). If the enrichment 

scores are worse, this would be a nice demonstration of the utility of the method. Are p-values or 

adjusted p-values shown in Fig. 6A? Since several gene sets were tested, a correction for multiple testing 

needs to be applied. 

 

Minor comments 

 

10. The derivations of the relationship between SSNV frequencies and CN gains on which the algorithm is 

based assume that all gains are truncal, resulting in integer N_t values. However, SCNAs that arise 

(shortly) after expansion would be subclonal in the sample, but could produce similar patterns. In this 

case, the true history would not match any of the history matrices used. Since the algorithm assumes a 

fixed set of history matrices and integer N_t values, how will the results be affected if such subclonal 

gains are present at an SCNA site? For example, in the VAF spectrum shown in Fig. 2, the t_0 state is not 

at the expected frequency of 5/6=0.83, but rather at 0.75. 

 

11. In the lower panel of Fig. S2, a non-invertible history matrix is shown, but distributions of exact 

derived t_K values are given, although in this case only upper bounds can be derived. How can this be? 

 

12. It is not quite clear to me what the authors want to say with Fig. 7. Since the mutation target 

increases with increasing CN, it is expected that the number of SSNVs correlates with CN. That these 

SSNVs may be subject to selection is also quite expected. 

 

13. The use of the term genome doubling (GD) is confusing. First, there is no definition in the main text 

of what is the difference between GD and other CN gains. In the Methods, it appears that GD was 

derived from density-based temporal clustering of SCNAs, and whenever more than 40% were found in 



one cluster, these SCNAs were considered part of a GD event. The goal of calculating GD appears to be to 

allow comparison with previous studies that have already assessed the relative rate of SCNA gains and 

losses before and after whole-GD (WGD). However, in these studies, GD is usually associated with a 

global, i.e. whole-genome, doubling of ploidy. Why was this definition of GD used rather than a more 

standard derivation of WGD? 

 

14. The definition of A_jk (l. 153) seems unnecessarily complicated. It is the number of segment copies in 

stage k that produce the final allele state (i.e. frequency) a_j=j/N_t. 

 

 



Authors’ Response to Reviews of 

Evolving copy number gains promote tumor expan- 
sion and bolster mutational diversification 
Zicheng Wang, Yunong Xia, Lauren Mills, Athanasios N. Nikolakopoulos, Nicole Maeser, 
Scott M. Dehm, Jason M. Sheltzer and Ruping Sun 
 

RC: Reviewers’ Comment, AR: Authors’ Response, □ Manuscript Text

General Comments

1

Note: Line numbers and Figure indexes refer to the revised manuscript version with changes
being highlighted in blue. The figures shown in this response are indicated in black font 
color and include hyperlinks. 



1. Response to Reviewer #1

1.1. General comment

RC: Wang and colleagues develop a method called “Butte” to estimate the timing (initiation
and arrival) of somatic copy number gains from whole genome sequencing data. Their
approach advances the current state of the field on SCNA timing by being able to time
high copy number gains (CN > 4), up to a copy number of 8. Multiple trajectories are
possible to generate some CN states, and their linear programming approach accounts
for this by giving the upper bound on the timing of events. They perform extensive
validation on simulated datasets, and then apply Butte to eight publicly available datasets.
They also employ a branching process model to investigate late gains.

RC: I believe this work provides a valuable contribution to the field. In my assessment,
the methods and models used are sound, and I appreciate the significant validation
performed and reported in the supplemental figures. They demonstrate the general utility
of their method by applying it to multiple cancer types spanning 8 different datasets, and
provide meaningful analyses of these tumors. One of my main concerns relates to the
bias in the estimates, especially when drawing conclusions about late events from the
timing estimates that are overestimated. I would like to see some additional validation
performed about the early and late classifications. Some revision of the logic flow and
precision of terminology would improve the readability and presentation of results. Lastly,
I have some concerns about the conclusion from the mathematical modeling work that
late gains may contain rate-limiting drivers. I have listed my specific comments below,
separated into major and minor issues.

AR: We appreciate your positive feedback on the paper and thank you for highlighting concerns
related to bias in estimates, logic flow, precise terminology, and the clarity of mathematical
model interpretations. In this revised version, we have made efforts to address all the points
you raised.

Specifically, we have conducted a performance evaluation by assessing the precision,
true and false positive rates for calling both early and late gains. Relevant sections have
been expanded accordingly. To enhance precision, we have introduced the term ’lead
time’ to represent the period from a region’s last gain to the time of the Most Recent
Common Ancestor (MRCA). Moreover, we have replaced the term ’rate-limiting driver’
with ’final-expansion driver’ to emphasize the role in the tumor’s ultimate expansion. The
Mathematical Modeling section has been expanded and restructured for better clarity,
emphasizing our conclusion that the ’final-expansion driver’ likely occurs close to the
MRCA. Additionally, we have included simulations to discuss the role of early gains.

2



Please consult our detailed responses to your specific comments for a comprehensive
understanding of the revisions made.

1.2. Major concern

RC: 1. Because the estimates are upper bounds for some CN profiles and tK estimates are often
overestimated, I’m concerned about overinterpreting the significance of “late” gains,
which are defined based on these biased estimates. Figures S1-S3 show tK estimates
are usually overestimated–significantly so for smaller true values of tK. Can the authors
comment on how often it will be possible to accurately identify early events? I think
a similar validation analysis to Figures S2-S5 assessing the true positive rate of early
predictions and false positive rate of late gains would clarify how much can be interpreted
from the assignment of late and early gains.

AR: Thank you for your valuable comments and suggestions. We would like to clarify that tK
represents the duration from the establishment of the observed copy number state (the last
gain) to the onset of population expansion (the MRCA), and in the revised manuscript, we
have defined it as the lead time. This is distinct from the arrival time, which signifies the
duration from germline to the occurrence of the last gain. Overestimation of tK results in the
underestimation (or omission) of late gains, rather than an overcalling of them. Furthermore,
the overestimation of tK is noticeable only for specific copy number configurations, such
as 6:2. Consequently, for these SCNA states, there is a risk of missing some late gains.

Per your suggestion, we investigated precision, true positive rate (TPR), and false positive
rate (FPR) of both early and late events detection, where

precision =
true positive

true positive + false positive

true positive rate =
true positive

true positive + false negative

false positive rate =
false positive

false positive + true negative
.

To accomplish this, we established a predefined threshold (T ) for timing. Regarding early
gains, if the predicted t0 is less than T , we classify true positives as cases with actual t′0 < T
and false positives as cases with actual t′0 > T . Conversely, if the predicted t0 exceeds T ,
we categorize true negatives as cases with t′0 > T and false negatives as cases with t′0 < T .
These definitions are similarly applied to late gains by comparing T with the predicted tK
and actual t′K . Performance is then evaluated with different T .
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In a manner similar to our approach with Supplemental Figs. S2-S5, we conducted
simulations for copy number configurations 6:2 and 6:1, each with two different history
matrices. The results are illustrated in Supplemental Figs. S12-S13. Generally, the
three metrics (Precision, TRP, and FPR) used to determine early or late gains exhibit an
increase with T . Specifically, for T = 0.2 in configuration 6:2, the precision values are
approximately 0.75-0.8 for tK and 0.65-0.75 for t0. The FPR is less than 0.1 for tK and
below 0.2 for t0. The TPR is above 0.8 for t0 but can be less than 0.5 for tK . This aligns
with our reasoning; the overestimation of tK itself could result in the omission of late gains.
In other words, it is a bit conservative in calling late gains for 6:2. The observed trends for
these metrics in the case of 6:1 configurations are similar to those seen in 6:2 configurations.
At the threshold T = 0.2, the false positive rate for tK remains below 0.2, and the true
positive rate for t0 consistently exceeds 0.8 in our simulations.

RC: 2. Why does Butte underestimate t0, even though the estimate is an upper bound?
Does Butte overestimate tK, even when the estimate is not an upper bound (exact solved
timing)? What is causing these biases?

AR: We value the reviewer’s feedback and concerns. The underestimation of t0 is primarily
noticeable in specific copy number states, such as 6:2, as opposed to 6:1. Furthermore,
this underestimation is more pronounced when the actual t0 is relatively large (≥ 0.5),
allowing limited time for intermediate stages (see Supplementary Fig. S5). We attribute
this underestimation to (1) the penalty for infeasibility in our linear programming approach;
and (2) the characteristics of the history matrices for the 6:2 copy number configuration is
more sensitive to the estimated allele state distribution (q vector). See an example history
matrix for 6:2,


0 0 2 4 6

1 3 2 1 0

0 0 0 0 0

1 0 0 0 0

 .

The accuracy of timing estimates is closely linked to the estimated q vector, representing
the proportion of SSNVs at each allele state. In the scenario of 6:2, t0 contributes to SSNVs
with allele states 4/6 and 2/6. Estimation errors on the q vector is likely to make the true
history infeasible and this effect is more pronounced when the fraction of intermediate
stages is small (i.e., t0 is relatively large). This is because the errors in the estimates of
SSNVs at 4/6 and 2/6 often occur in opposite directions. Since Butte currently places a
large penalty on infeasibility, the estimation of t0 from the true history (which is indeed
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an upper bound of t0 for the given q vector) might not be selected (i.e., Butte prioritizes
solutions from the history matrix that result in feasible models over those leading to
infeasible models, although the true history might be among the latter ones) and t0 can be
underestimated. We now noted this point in Lines 194-195.

Furthermore, we conducted a benchmark of tK estimation for the copy number configuration
4:1 and did not observe the issue of overestimation (Figure 1).

Figure 1: The performance of Butte on estimating tK for SCNA state 4:1 with simulated
history and SSNV data. We simulated SSNV data for the SCNA state 4:1 for the history
shown on the left panel, with varying tK (0.1, 0.3, 0.5, 0.7) for two pre-defined t0 (0.1
and 0.3). For a given history, we simulated SSNV data with varying depth of coverage
(D), number of available mutations (M ) and tumor purity (P ). The inferred tK by Butte
are shown as standard box plots (each with 100 simulations) where the box refers to the
interquartile range, and the true tK are indicated by blue lines.

RC: 3. What about other possible trajectories to the observed CN profile, involving more
complicated structural variants/SCNAs? How will it affect timing estimates? For example,
within a region of elevated CN, is CN always constant? If not, how are different possible
trajectories to that CN profile accounted for? E.g. What if there’s a continuous region
with copy number 3-4-3?
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AR: We are grateful for the reviewer’s feedback. In our timing analysis, we employed the
copy number segmentation results obtained by TitanCNA. We focused on segments with
consistent copy number states as predicted by TitanCNA. Timing estimations for gains were
conducted independently for each segment, and we did not investigate the interdependence
of evolution in distinct genome regions. For instance, in a continuous genomic region
with predicted copy number states of 3-4-3, TitanCNA would divide this region into three
segments and we would conduct separate timing estimations for each of these segments.
Therefore, our method remains ‘blind’ to the rearrangement structural trajectories of a
genomic region, offering timing information solely for the initial and final gains for a
segment of interest.

The approach mentioned above might result in very short segments. However, in certain
cases, users of our tool, if they strongly believe that two segments with 3 copies, as in the
example of 3-4-3, stem from a single gain, have the option to merge the SSNV data for
these regions and utilize Butte. This strategy proves valuable for timing synchronized
gains, such as those observed in chromothripsis events. We have mentioned this aspect in
the Discussion section (Lines 438-440).

Finally, even though our method does not explore rearrangement trajectories, in this revised
version, we discovered that our timing predictions for complex gains align with the tool
( [1]) which employs a graph theory model to reconstruct structural trajectories of specific
events (where both SSNV, copy number, and sequence breakpoint data are available). These
findings are illustrated in Supplementary Fig. S8.

RC: 4a. Overall clarity of terminology and results. Clarity of the manuscript could be
improved, especially with regards to usage of the terms “early” and “late” gains, as well
as differentiating between GD and pre- and post-GD gains. Some specifics:
a. Once methodology is introduced (in the results), can you more explicitly define early
and late gains? In the introduction it says late gains are those occurring in last 20% of
evolution time and early as occurring in the first 20%. It is unclear how these definitions
are applied in practice in the results section. Can the definition be related to the t0 and
tK estimates, since it presumably depends on them?

AR: In the result section of the revised version, we have defined the threshold for determining
early and late gains at 0.2 or 20%, as explained in Lines 218-220. This selection is sub-
stantiated by our assessment of precision, true positive, and false positive rates, as detailed
in our response to your first comment. We selected this threshold by carefully balancing
precision and false positive rates, ensuring a judicious approach to avoid overcalling both
early and late events.

RC: 4b. Figure 4 is unclear about when the GD events are occurring. In the corresponding
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parts of the text, the time of GD events in Figure 4 are mentioned. But as far as I can tell,
Figure 4 shows all SCNA gains, including non-GD ones (since pre- and post-GD gains
are discussed). Could annotations to the figure or clarifications to the text be provided?
This is especially important to understanding the results, since there is much discussion
about gains that occurred before and after GD. For example, could vertical lines indicate
the times for GD and early and late cutoffs, similar to how GD time is shown in Fig S21.

AR: We now added red arrows to indicate GD in Fig. 4a.

RC: 5. Other Figure 4 issues.
a. It’s difficult to see the difference between initiation and arrival in plots like 4A. With
the number of events plotted, it is difficult to see which events are connected by the dotted
lines that link initiation and arrival. Currently they look like two separate events.

AR: We appreciate the reviewer’s feedback. In response, we have made changes by replacing
the dashed lines with colored rectangles to connect the initiation and arrival time for
an SCNA. This modification enhances the visibility of larger SCNAs or those with a
longer evolutionary timeline. We have applied these updates to all figures, including the
Supplemental ones, aligning the timing plots with the format seen in the updated Figure 4a.

RC: 5b. Fig 4A left panel for CN is ambiguous with current color choices. I believe right 1/3
of this panel is showing any LOH, but this color is similar to CN = 0. Can LOH color be
more obvious difference from those used to indicate CN = 0? Or LOH can be indicated
in a different way from CN (e.g. box around affected region).

AR: We have revised the color scheme for LOH, changing it to gray instead of light blue, and
subsequently updated all the affected figures accordingly.

RC: 6. I am not convinced by the conclusion that late gains may contain rate-limiting drivers
based on the modeling work. In particular, the mathematical modeling section concludes
with the strong statements in lines 301-304, which are not adequately supported by the
modeling results. I think there is too much causation implied in these statements, and the
logic dose not flow. This conclusion is restated throughout (e.g., discussion, abstract, etc.).
Even if I’m misunderstanding this conclusion, I think it should at least be rephrased or
explained further.

AR: Thank you for bringing up this concern. We acknowledge that the logical flow in the
modeling section of the previous version of the paper did not align well with the conclusion.
To address this, we have made the following revisions.

To prevent potential misinterpretation that we asserted all rate-limiting drivers occur late, we
have replaced the term rate-limiting drivers with final-expansion drivers. Our intention
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in the modeling section is to demonstrate that alterations appearing late (close to MRCA)
might include crucial driver events essential for the tumor’s ultimate expansion. This
finding highlights the significance of our methodology in identifying late gains, in addition
to early gains.

In response to your feedback on the logical flow, we have restructured the mathematical
modeling section (refer to pages 14-18). To accurately convey the purpose of the modeling
section, its title has been revised to Mathematical modeling suggests the role of late
truncal gains in promoting final expansion. We have also revised the opening paragraph
of this section to succinctly capture the main idea and key insight of the modeling part,
which is reproduced below for your reference:

While early genomic alterations garner significant attention for their functional impli-
cations, our understanding of the significance of late truncal alterations that emerge
in proximity to the MRCA remains limited. Employing mathematical models, we
constructed a rationale mentioned in the Introduction: a truncal alteration leading to
the final expansion might be situated near the MRCA if the progenitor cell undergoes
rapid proliferation upon acquiring this specific alteration. Using GD as an example,
as it can occur early or late, we reason that early GD and prior alterations alone are
insufficient to drive the final tumor expansion. However, if GD occurs closer to the
MRCA, it, along with other late aberrations, can propel the tumor’s ultimate growth.

Subsequently, we present two contrasting models: a base model where GD drives the final
expansion (indicating that all post-GD gains are neutral), and an alternative model where
cells with GD can acquire an additional beneficial post-GD gain. Our analysis reveals that,
in the base model, the number of post-GD gains is limited (implying a short time between
GD and the MRCA) and follows a distribution centered around zero (indicating GD occurs
among the last few somatic copy number alterations close to the MRCA). In contrast, the
alternative model predicts a higher abundance of post-GD gains (suggesting a longer period
between GD and the MRCA). This finding supports our assertion, reiterated in the second
last paragraph of the modeling section, as reproduced below for your reference:

If the identified SCNAs in patient data represent the dominant clone of the entire
tumor (a scenario more likely in multi-sampling than single-sampling), our model
implies that late clonal gains may harbor drivers for final expansion. The presence
of early GD in many patient tumors suggests that post-GD gains might offer added
advantages for promoting the final expansion. It’s worth noting that our mathematical
model doesn’t rule out the possibility of late somatic alterations of other types, beyond
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copy number gains, driving the final expansion. Thus, investigating late alterations in
various forms of somatic changes is an area of interest.

Finally, for a comprehensive perspective, we conducted a brief exploration of the impact
of alterations that occur early in truncal evolution, highlighting their role in the tumor’s
initiation. Specifically, if multiple drivers occur at random, those conferring higher fitness
advantages are more likely to occur early. These underscore the value of Butte in
identifying complex SCNAs with early initiation and late arrival. We have included this
discussion below for your reference:

In the context of multiple drivers, previous research (Paterson et al., 2020) indicates
that in the random occurrence of multiple drivers, the one enhancing fitness the most is
likely to appear early. Our simulations, shown in Supplemental Fig. S30, support this
idea. When two drivers occur at equal rates, the one with the greater fitness increase
is more likely to emerge first in the initial cell acquiring both drivers. Additionally,
the probability of this early appearance increases with the magnitude of the fitness
advantage provided by the more beneficial driver. This implies that early gains may
involve drivers with significant fitness effects, whereas late truncal gains near the
MRCA are particularly relevant for the fitness increase driving the final expansion.

We hope that the revised version adequately addresses your concerns regarding the clarity
of the mathematical model interpretations.

RC: 7. Some confidence intervals for timing estimates are very large. Can the authors
comment on the magnitude of the uncertainty for the timing estimates? For the tumors
analyzed, can they provide summary statistics for the size of the confidence intervals (in
units of evolution time spanned).

AR: We appreciate the reviewer’s attention to this issue. Our analysis indicates that a higher
number of SSNVs reduces the confidence interval and enhances estimation precision,
as illustrated in Supplementary Fig. S10. We suggest employing more than 20 SSNVs
for accurate timing estimation of SCNAs, although this might be challenging for small
segments or tumors with lower mutation rates. We have addressed these findings in Lines
198-200 and Lines 442-444 in the updated manuscript.

1.3. Minor concern

RC: 1. Running title has hyperlink to unrelated website.

AR: We express our gratitude to the reviewer for diligently reviewing these points. As a result,
we have appropriately addressed the concern by removing the hyperlink.
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RC: 2. Define SRE in the introduction at its first mention.

AR: As there are many abbreviations, we now provided a summary of terminology in Supple-
mental Table 1. We have also emphasized the abbreviation of sampling relevant expansion
(SRE) in lines 76-77.

RC: 3. Line 543. When it is stated in the Methods how to determine GD, it is unclear to me
why after clustering inferred times, GD would correspond to the cluster containing 40%
of segments. Is this a standard way of identifying GD? If not, how does this compare to
other methods for identifying GD?

AR: It should be noted that multiple clusters of gains can be present during the somatic evolution.
We clustered the timing results and used 40% as the cutoff for the dominant punctuated
burst of gains (Figure 2A). We regard the averaged timing of all the segments in the
corresponding cluster as the timing of GD. We note that this threshold works well for
cases with sporadic gains or a secondary burst of gains (Figure 2B). We have expanded the
definition of GD and its detection in Lines 243-245 and 619-622, as well as Supplemental
Fig. S27. When comparing with Nik-Zainal’s work ( [2]), we found that our GD timing
aligns well with their GD predictions (Supplemental Fig. S8).

RC: 4. What is the “evolution time” mentioned in the intro? This term should be defined.

AR: Thank you for this comment. We now revised it to be "truncal evolution time measured by
truncal/clonal SSNVs".

RC: 5. Why do estimates sometimes have increasing error with increasing read depth (e.g.
Fig S3)?

AR: Thank you for bringing up this insightful observation. Our simulation results indicate
that the main approach for enhancing accuracy is to augment the number of SSNVs, as
demonstrated in the revised Supplementary Figs. S2-S5. In each simulation iteration, we
generate a fresh set of SSNVs according to a multinomial distribution based on the actual
allele state distribution (emphasized in Method section Line 594). The discrepancies in
allele states resulting from randomly generated mutations contribute to variances in the
estimated timing. Notably, when simulations are conducted with a fixed set of mutations
(allele states), the variance in timing estimates does decrease as the sequencing depth
increases (Figure 3). Please note that the discrepancies observed in the timing estimates
from the true values primarily stem from the errors in the allele states.

RC: 6. Is there not difficulty in resolving number of SSNVs at j/N frequencies as copy number
N increases?

AR: We concur with the reviewer that estimating allele state distribution becomes more challeng-
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Figure 2: (A) The histogram displays the proportion of segments in timing clusters. (B)
Two sample tumors where GD is identified as the timing cluster encompassing over 40% of
SCNA segments.

ing with an increase in copy number, given a fixed number of SSNVs. Currently, Butte is
designed to handle SCNAs up to a total copy number of 7. To ensure accurate performance
for copy numbers 6 and 7, we examined the precision of estimating the proportions of
SSNVs corresponding to each j/N frequency category (represented by the q vector) in the
context of copy number configurations 6:1, 6:2, 7:1, and 7:2, respectively.

11



Figure 3: To investigate the source of variance in timing estimates, we simulated SSNV
data with fixed allele states and manipulated the depth of coverage (D). The plots show the
performance of Butte in estimating tK for SCNA state 6:1 with history shown in the left
panel. We explored different values of tK (0.1, 0.3, 0.5, 0.7) with two pre-defined t0 values
(0.1 and 0.3), and the intermediate time stages between t0 and tK were evenly distributed.
The inferred tK values obtained by Butte are presented in standard box plots, each based
on 100 simulations. True tK values are indicated by blue lines.

Similar to our benchmarking simulations, we generated the true q vector for each copy
number configuration based on a known copy number history matrix and specific timing for
each stage. Mathematically, this q vector can be computed by the dot product between the
history matrix and the time fraction vector. We subsequently simulated SSNV read count
data according to the true q, considering a total of 100 SSNVs and an average depth of 150.
In each of 200 iterations, we estimate the q vector using the EM algorithm implemented in
Butte, comparing the estimated q vector to the original one. The performance metrics we
employed for this comparison include Cosine similarity and Euclidean distance.

The density plots depicting these two statistics can be observed in Figure 4. Both the
Euclidean distance and Cosine similarity density plots indicate that the estimation of the
q vector exhibits sufficiently accurate results for copy numbers 6 and 7, given sufficient
number of SSNVs and read depth.

RC: 7. Top left panel on Fig 2 could use more annotation or explanation.

AR: We have modified Fig. 2 (the top left panel) and its respective figure captions.

RC: 8. I think the recent Nature Genetics paper by Körber et al (https://doi.org/10.1038/s41588-
023-01332-y) is relevant to the conclusions and methods discussed.

AR: We found the mentioned paper highly intriguing, as it aligns with some of the patterns we
observed in osteosarcoma. In our revised manuscript, we leverage this paper to explore
the potential significance of prolonged evolution after genomic doubling (GD) in Lines
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Figure 4: Evaluation of performance in estimating mutation proportions at j/N frequencies
for Copy Numbers 6 and 7. The left panel shows cosine similarity, while the right panel
displays Euclidean distance, used to compare the estimated q vector with the true one.

429-431.

RC: 9. Line 193: Clarify that “the existing method” is from Cross et al. 2018.

AR: We referenced Cross et al. 2018 in this context to clarify that their method, which focuses
on maximizing the joint likelihood of copy number timing, was the one we compared our
approach to.

RC: 10. Line 235: “The earlier the timing of GD, the more post-GD CN gains (Fig. 4A).” Fig
4A shows 3 example tumors, so this statement should either be revised to reflect this fact,
or reference a figure more appropriate for the generality of this statement.

AR: We should have referred to Fig. 5A in this context. This has been rectified, and we apologize
for any confusion caused.

RC: 11. Can equation 2 at line 287 (or equivalently in Methods, Equation 11 (line 613)) be
explained and/or derived?

AR: Thank you for your feedback. We have incorporated an explanation elucidating the deriva-
tion of Equation 2 (Lines 321-323), which is provided below for your reference:
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S̄ is thus

S̄ =

∫ ∞

0

P (σ1 > t | Ω∞)u0dt,

where we utilized the formula (see Section V.6 of [3]) to calculate the expected
birth time of the first non-extinct type 1 cell. This calculation involved utilizing
the tail probability (P (σ1 > t | Ω∞)) and multiplying the expected birth time by the
passenger mutation rate µ0.

RC: 12. Line 273: “Moreover, numerical simulations show that the number of dominant
post-GD gains continues to follow a geometrical-like distribution with the mode at zero.”
Can the authors support this statement with a reference to a figure?

AR: We have included a plot (refer to Figure 5 below) in the appendix (Supplemental Fig. S29)
to substantiate the mentioned statement.

Figure 5: Histogram of number of dominant post_GD gains. Histogram is based on 103

simulations and all simulations used the model parameters: a0 = 1, b0 = 0.5, and µ0 = 0.5.

RC: 13. Can the authors include citation(s) for the strong and general opening sentence of
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the discussion (line 350)?

AR: We have modified the opening sentence of the Discussion section as follows:

Despite the well-established link between a chaotic genome in tumors with the
CIN phenotype and poor clinical outcomes [4], the mechanisms by which specific
aberrations contribute to tumor growth remains poorly understood [5].

RC: 14. Lines 399-401: “Specialized pre-selection of SSNVs that faithfully possess a clock-
like behavior (Gerstung et al.) is necessary for tumors whose mutagenic processes varies
drastically within the studied timeline.” Is that not the case for the tumors studied?

AR: We appreciate the reviewer’s question, and our considerations are as follows: Tumors
undergo multiple mutagenic processes during their development. Our framework operates
under the assumption that the relative contribution of different mutational processes remains
relatively stable over time within a genomic region, thereby maintaining a consistent
mutation rate per base. Specifically, we assume that the mutation rate per base remains
constant during the timeline of copy number evolution. If this assumption is violated, the
accuracy of SCNA timing derived from mutation data could be compromised.

Research has demonstrated variations in mutagenic signatures between clonal and subclonal
lineages, such as the signature of AID/APOBEC cytidine deaminases [6]. However, this
concern does not apply to our study because we specifically focused on clonal mutations
occurring prior to the establishment of the founder cell lineage. Additionally, a recent
analysis by the Quaid Morris group indicated that changes in mutation signatures across
the genome are unlikely to be solely attributed to copy number alterations [7]. This finding
suggests that copy number changes are unlikely to cause significant shifts in mutagenic
processes, thereby validating the assumptions made in our study.

We acknowledge the potential of incorporating mutagenic signatures to select a subset
of mutations that accurately reflect the chronological order of events. However, careful
method design is essential, as this approach may reduce the pool of available mutations for
inference. Therefore, we consider this as a potential enhancement for our timing framework
in the future.

RC: 15. Line 48: “The inextricable relation of SCNAs to cancer initiation (Nowak et al. ;
Davoli, Xu, et al) and progression (Lukow et al. ) has become a consensus in cancer
genomics.” I’d be hesitant to use the word “consensus” here, even though it is a well-
observed relation. It implies complete agreement in the literature about the primacy
of SCNAs in cancer initiation and progression, excluding other important factors like
microenvironment, smaller genetic alterations, epigenetics, etc. I don’t think there is
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much doubt that SCNAs play an important role, but I think this phrasing might imply
more than is intended.

AR: We appreciate the reviewers’ feedback regarding the use of the term "consensus" in relation
to the inextricable relation of SCNAs to cancer initiation and progression. We acknowledge
that the term "consensus" may imply complete agreement and could potentially overlook
other important factors that also contribute to cancer initiation and progression.

Upon careful consideration, we revised the sentence as "The inextricable relation of SCNAs
to cancer initiation and progression has become widely recognized in cancer genomics".

RC: 16. The timing ranks in Fig. 6A needs more explanation or visual cues.

AR: We have incorporated arrows in Fig. 6A to indicate that gene ranking is determined by their
timing.
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2. Response to Reviewer #2

2.1. General

RC: In this paper, the authors present an extension of an existing algorithm by Purdom
et al. (2013) to predict the timing of copy number gains in cancer tumors, including
repeated events at the same locus up to a copy number of 6. This algorithm is applied to
several cancer DNA sequencing datasets. For each genomic locus affected by SCNAs,
the timings of the first gain and the last gain before population expansion of the sample
are estimated. The derived results can provide insight into the dynamics of CN gains in
human cancers. However, the progress over existing approaches and findings as well as
the validity of the interpretations of the main results remain somewhat uncertain.

AR: We are pleased that the reviewer acknowledged the insightful nature of our results concern-
ing copy number gains in cancer dynamics. In this revised version, we have emphasized
the added value of timing results over copy number alone, assessed the performance in
detecting gains with early initiation and/or late arrival, provided detailed interpretations of
the mathematical modeling section, and addressed your thoughtful concerns.

2.2. Major Comments

RC: 1. First, the authors should choose what they mean by "arrival time" and maintain this
throughout the manuscript. In some places, it is the duration tK of the interval after the
last CN gain before expansion (e.g. caption of Fig. 1), whereas in others it is the time at
which the last CN gain takes place, measured relative to birth (e.g. Fig. 1A, Fig. 4), i.e.
1-tK .

AR: Thank you for your suggestion. In the revised version, we have introduced the term lead
time to represent the period from the last gain to the MRCA (tK), while we have redefined
arrival time as the time fraction from time zero to the time of the last gain of a clonal
SCNA (i.e., 1-tK , as explained in Lines 95-98, updated Fig. 1, and Supplemental Table 1).
We have ensured that these terms are consistently used throughout the revised manuscript.

RC: 2. The estimation of tK is based on the VAF spectum. In general, the VAF spectrum
contains a number of low-frequency variants that occur in the subclonal phase of tumor
growth. If present, these could inflate the estimates of tK . According to the Methods,
these variants are filtered out by restricting to clonal variants. However, since the
definition of clonal vs subclonal already relies on knowledge of copy number status and
sequence of mutational events (to calculate the CCF, l. 466), how could clonality status
in the single-sample tumors be reliably inferred?
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AR: To identify clonal SSNVs within a single sample, we utilized a previously published
strategy [8]. It is important to note that the detectability of subclonal variants significantly
decreases as copy numbers rise, as illustrated in Figure 6, at a constant sequencing depth.
For instance, in the scenario where copy number is 5 and tumor purity is 0.6, an SSNV
with fewer than 6 mutant reads (out of a total read depth of 50) has a probability of
0.17 of being clonal to the respective sample. This probability increases to 0.3 for copy
number 6. Consequently, in cases of high copy number gains and moderate tumor purity,
SSNVs identified with a frequency of 0.1 or higher are highly likely to be clonal to the
corresponding sample. As a result, this bias naturally limits the inclusion of subclonal
variants and ensures a meaningful timing analysis.

Figure 6: The probability of SSNVs being clonal is depicted based on variant allele
frequency (VAF) thresholds as total copy number increases. The chart illustrates binomial
probabilities, indicating the chance of observing fewer or equal mutant allele reads (up
to VAF*depth) out of a total of 50 reads. These probabilities are calculated considering
a lower bound (1 out of total copies) of expected allele frequency if the SSNV is clonal,
assuming a tumor purity of 0.6 at the investigated total copy number.

We acknowledge that identifying clonal variants across the entire tumor poses a challenge
when only one sample is available. In our analysis, we incorporated cases with multiple
tumor samples. Public SSNVs, which are high-frequency variants shared among multiple
samples, were utilized as input for the timing analysis. These aspects have been noted in
Lines 521-522 of the Methods section.
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RC: 3. Another putative confounding factor for the proposed inference is sample purity.
Since variants with an alternate read count of less than 3 are usually filtered out of the
sequencing data, low purity of a sample means that certain variants will never be seen,
even after correcting for purity by dividing the VAF. This would result in a downward
bias of tK . The authors evaluated the effects of purity on the estimation of tK (Fig. S2,3).
In these simulations, was realistic filtering of variants with low alternate read count
applied? Do the authors find a correlation between the estimated tK and purity in the
real data? And with the read depth and the number of SNVs?

AR: We appreciate the valuable suggestion provided by the reviewer. In response, we have
incorporated the impact of variant filtration due to low depth into our simulation. The
updated results are presented in Supplementary Figs. S2-S5. It is important to note that
the depth filter influences the outcomes primarily in cases of extremely low depth or purity.
In addition, tK is not correlated with sample purity, read depth or number of SSNVs (see
Figure 7).

Figure 7: The averaged tK is plotted against sample purity, median depth and number of
SSNVs, respectively. P values from Spearman correlation tests are shown.

RC: 4. One of the main results is the shift toward small tK of some putative late driver events
such as MYC for osteosarcoma in Fig. 4C, placing them close in time to the MRCA of the
sample. However, are the small tKs observed for such events not a necessary consequence
of the high CN? In other words, the more events that must take place (i.e. the higher
K), the smaller the fraction of time available (ti) for each of them, since

∑
i ti = 1. This

would naturally decrease t0 and increase 1-tK . I do not think that the differences in 1-tK
(and t0) between regions, as shown in Fig. 4C, can be meaningfully interpreted without
taking this intrinsic property of the data into account. Similarly, the results shown in Fig.
S12 seem expected, since, for example, the 3:1 condition involves one fewer SCNA event
than 3:0.
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AR: We appreciate the reviewer for this insightful observation. We acknowledge the possibility
that higher copy number (CN) states might necessitate a longer duration to establish. This
hypothesis, although intriguing, has not been explored in previous research to the best of
our knowledge. The lack of appropriate methodologies for measuring the evolution of
complex gains has been a significant challenge, which our study aims to improve upon.

To assess whether the estimated timing offers additional insights compared to copy number
(CN) data alone, we sought to determine if regions displayed frequent high copy numbers
across patients exhibit recurrent early or late gains. To achieve this, we conducted an
additional analysis utilizing rank sums, incorporating both timing and copy number data.
The raw timing and copy number data were transformed into ranks, and a normalized rank
sum was calculated to enable a comparison between these two (detailed in Methods, Lines
627-641).

We observed that the most prevalent SCNAs tended to emerge earlier or establish later
during tumor development compared to less common SCNAs, supporting the hypothesis
that recurrent SCNAs are likely to be pivotal events driving tumor fitness. However, it
is important to note that the correlation between copy number frequency and timing was
not consistent across all genomic regions. For instance, in breast cancer, both gains on
chromosome 8q and gains on chromosome 1q were equally frequent. Surprisingly, despite
their similar frequencies, gains on 1q consistently occurred at earlier stages during tumor
development in comparison to 8q gains (Supplementary Figure S7). Recent experiments
have demonstrated a substantial fitness advantage associated with 1q gains [5]. Similarly,
in osteosarcoma (OS), regions on chromosome 1q and chromosome 7q exhibited gains
at a comparable late stage to chromosome 8q, even though they were less frequent in
patients. These findings imply that incorporating timing information provides valuable
insights beyond what can be gleaned from copy number (CN) data alone.

It is crucial to recognize that although we structured our model to represent copy number
gains in discrete steps, real-world scenarios may involve the skipping of certain intermediate
steps due to processes such as genome doubling or other mechanisms. Consequently, it is
not necessarily accurate to assume that copy number states modeled with more steps take
longer to establish than those with fewer steps. Similarly, the timing for copy number states
with the same number of steps can vary. For instance, the establishment of the 4:0 state
was observed to occur later than that of the 5:1 state (Figure 8). In the revised manuscript,
we have emphasized that our comparison between amplified LOH and allele-specific
amplifications is confined to cases with the same total copy number.

RC: 5. Regarding the analysis in Fig. 5, I am not sure I follow the conclusion from the
mathematical model that late advantageous gains become a rate-limiting event (l. 304).
First, it is not clear why Fig. 5A would not be consistent with neutral evolution, since
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Figure 8: Comparisons of the arrival time between SCNA state 4:0 and 5:1. The density
curves represent the distribution of arrival time for copy number configuration 4:1 and 5:1
(red) across the analyzed tumors, respectively. 4:0 established significantly later than 5:1
(as indicated by the p value, Wilcoxon rank sum test). Also shown is the Cohen’s d as an
estimate of the effect size. Vertical red and blue lines indicates the mean values for the two
types of SCNAs, respectively. N: number of segments for the corresponding SCNA state.

the number of post-GD gains should be linearly proportional to the mutation rate and
the time available for their occurrence, which the figure does show. In truncal evolution,
neutral passenger SCNAs, like selected SCNAs, are dominant as soon as they occur.
Finally, it appears that neutral evolution is rejected by assuming that u0 and lambda0 are
comparable (l. 272). It is unclear why this is assumed, given how little is known about
cancer cell growth and mutation rates. The statement is weaker in the caption of Fig. 5
("modeling suggests that advantageous CN gains can occur late") and in l. 356, but then
it is tautological.

AR: Thank you for bringing up this concern. We agree that the logical flow in the modeling
section of the previous version of the paper did not align well with the conclusion. Regarding
Fig. 5A, we would like to clarify that in both the neutral and selection models, the number
of post-GD gains is directly proportional to the mutation rate and the available time for
their occurrence, assuming a constant mutation rate. However, in the neutral model, the
time between GD and MRCA is considerably shorter compared to the selection model,
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as per our analysis. Consequently, in the neutral model, the number of post-GD gains is
limited and follows a distribution with a mode at zero (indicating GD is among the last few
somatic copy number alterations close to the MRCA), whereas the selection model predicts
a higher abundance of post-GD gains. We have emphasized this point clearly in the revised
version of the paper. Specifically, we explicitly state that our mathematical modeling of the
mutation mechanism finds partial support from Fig. 5A, which is reproduced below for
your reference.

Notably, in both models, post-GD gains are proportional to the mutation rate and time
between GD and MRCA, validated partially in Fig. 5A.

We have also revised the opening paragraph of the math modeling section to encapsulate
the main idea and key insight of the modeling part, reproduced below for your convenience:

While early genomic alterations garner significant attention for their functional impli-
cations, our understanding of the significance of late truncal alterations that emerge
in proximity to the MRCA remains limited. Employing mathematical models, we
constructed a rationale mentioned in the Introduction: a truncal alteration leading to
the final expansion might be situated near the MRCA if the progenitor cell undergoes
rapid proliferation upon acquiring this specific alteration. Using GD as an example,
as it can occur early or late, we reason that early GD and prior alterations alone are
insufficient to drive the final tumor expansion. However, if GD occurs closer to the
MRCA, it, along with other late aberrations, can propel the tumor’s ultimate growth

About our assumption that u0 and λ0 are comparable, we concur that there is limited
understanding of the growth and mutation rates in cancer cells. Relying on the limited
literature at hand, we cautiously posit that our assumption is reasonable and discussed in
Lines 314-315. Specifically, [9] provided an estimation for breast tumors, suggesting a
de novo CNA rate of 0.242 per cell division. This implies that provided the death rate of
the tumor cells does not significantly approach their birth rate (which is likely to be true
when the tumor is under expansion), u0 and λ0 can be considered comparable. According
to [10], an estimation was made for the ratio of µ0

λ0
for chronic lymphocytic leukemia, which

falls within the range of 0.22 to 1.29. It should be noted that the exome mutation rate,
not the CNV rate, was estimated by the authors in [10]. Lastly, it is worth noting that our
findings demonstrate that the selection model yields a greater abundance of post-GD gains
compared to the neutral model, irrespective of the specific values of µ0 and λ0. However,
we acknowledge that if µ0 is an order of magnitude larger than λ0, it becomes considerably
more difficult to reject the neutral model in the absence of any information regarding the
values of µ0 and λ0.
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We hope you find that the revised version adequately addresses your concerns about the
clarity of the mathematical model interpretations.

RC: 6. As I understand, each history matrix gives an estimate for each ti. If a matrix is not
invertible, the estimate of ti is replaced by an upper bound for ti (only applied to i=0 and
i=K). How are these two qualitatively different quantities (i.e., exact estimates vs upper
bounds) combined in diagrams such as Fig. 4B,C?

AR: In situations where an exact solution is unattainable, we resort to upper bounds as our
estimated timing. While these two values are inherently different in nature, employing
upper bounds serves the purpose of bridging the knowledge gap regarding the timing
of complex gains. By utilizing these mixed timing estimates, we successfully pinpoint
punctuated genome doubling (GD) events in the majority of samples. In several instances,
the upper bounds of complex gains closely align with the exact timing solutions (of low CN
gains) for the GD event. Furthermore, according to our performance evaluations (refer to
Supplementary Figs. S2-S5), the median predicted upper bounds for both t0 and tK in the
high copy number state 6:1 exhibit strong alignment with the actual timing. These justifies
the integrated analysis presented in Figure 4B.

Moreover, in the updated Fig. 4C, our objective is to pinpoint recurring early gains
(characterized by small t0) and late gains (indicated by small tK). Utilizing the upper
bounds of these metrics is a conservative approach that can reduce the likelihood of
overcalling these events.

RC: 7. To benchmark the method, I would recommend comparing it to existing methods such
as that of Greenman et al. (2011) by applying it to the data in that paper and that of
Nik-Zainal (2012), which used the same algorithm, to compare the event time predictions.

AR: We appreciate the reviewer’s valuable suggestion. The groundbreaking work of [1] served
as inspiration for the development of Butte. We agree that the dataset presented in [2] is
suitable for evaluating our method. Accordingly, we obtained the corresponding SSNV and
SCNA data from the ICGC data portal and applied Butte to these datasets. Our analysis
revealed strong alignment between the event timing predicted by Butte and the findings
published in [2]. These results are illustrated in Supplementary Fig. S8 and Lines 203-205
in the revised manuscript.

RC: 8. In addition to applying the method to datasets with existing predictions of CN gain
timings, the most compelling benchmark with the available data would be to apply the
algorithm to subclones identified in the phylogenetic reconstructions of the multi-region
sequencing datasets that carry private SNCAs (Fig. 3). Fig. S8 nicely shows that
subclone-private gains in the COAD cohort are indeed predicted to occur later than
shared gains on average. Why did the authors not perform the same analysis for all other
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cohorts?

AR: We appreciate the reviewer for bringing up this concern, and we apologize for any confusion
caused. In the analysis presented in Supplemental Fig. S11 (original Fig. S8), we conducted
assessments for all available tumor types with multi-sampling, not limited to COAD alone.
This clarification has been incorporated into the caption of Fig. S9 and highlighted in Line
210 of the main manuscript. We are pleased to confirm that our tool successfully predicted
the timing of these subclonal somatic copy number alterations, which were detected later
than public SCNAs.

RC: 9. As another way to show the added value of the method, compare the GSEA predictions
from Fig. 6A with the ranking of genes simply by their average CN (as opposed to
average 1-tK). If the enrichment scores are worse, this would be a nice demonstration
of the utility of the method. Are p-values or adjusted p-values shown in Fig. 6A? Since
several gene sets were tested, a correction for multiple testing needs to be applied.

AR: We appreciate the thoughtful comment and suggestion. We performed additional GSEA
analysis by ranking the genes according to their CN (or segment log2 copy number ratio)
instead of the estimated timing in the OS cohort. The enrichment score in the proliferative
signaling pathway turned to be smaller than what we observed from the timing (1.28 vs
1.56). The adjusted p values (Benjamini-Hochberg procedure) are 0.3 and 0.15, respectively.
We included this result in Supplementary Fig. S19. We now have noted the adjusted p value
in the captions of Fig. 6A.

2.3. Minor comments

RC: 10. The derivations of the relationship between SSNV frequencies and CN gains on
which the algorithm is based assume that all gains are truncal, resulting in integer Nt

values. However, SCNAs that arise (shortly) after expansion would be subclonal in the
sample, but could produce similar patterns. In this case, the true history would not match
any of the history matrices used. Since the algorithm assumes a fixed set of history
matrices and integer Nt values, how will the results be affected if such subclonal gains
are present at an SCNA site? For example, in the VAF spectrum shown in Fig. 2, the t0
state is not at the expected frequency of 5/6=0.83, but rather at 0.75.

AR: We appreciate the reviewer’s insightful comment. Firstly, we want to highlight that in Fig.
2, the observed allele frequency, which may appear lower than the theoretical fraction, is
influenced by tumor purity. We have now emphasized this in the figure caption.

To investigate how the presence of a subclonal SCNA impacts the timing results, we
considered a scenario where a subclone acquired an extra copy (with a copy number setting
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of 6:1) compared to its parental genome (which is MRCA, 5:1) for a specific genomic region
(Figure 9). In this case, the actual copy number profile observed is a mixture between 5:1
and 6:1. For the purpose of this illustration, let’s assume that TitanCNA determined the
copy number as 6:1 at a single clone solution. For the evolution of the 5:1 state, we set
both t0 and tK at 0.3 and evenly distributed the time for intermediate stages. For simplicity,
we assumed that the additional gain occurred shortly after the MRCA, and the subclone
expanded upon the gain, resulting in no new mutations being detected as clonal in the
subclone.

For mutations shared between the two clones but with different allele states, we calculated
the new expected variant allele frequencies by considering the mixture of the two clones.
The expected VAF values deviated slightly from those calculated for the 6:1 state alone.
Using mutations simulated from these expected VAF values, we inferred that the SCNA 6:1
established late (see Figure 9), and the initiation time was slightly underestimated.

In our analysis of multi-region samples, we observed a delayed emergence of sample-
specific somatic copy number alterations (SCNAs) compared to shared SCNAs (Lines
208-213). It is plausible that these sample-specific SCNAs belong to a subclone within
the respective sample, which may be substantial in size, leading to its detection as clonal.
Consequently, we have incorporated these findings into the Discussion section, highlighting
the possibility that certain late gains could stem from rapidly expanding large subclones
shortly after the emergence of the MRCA (Lines 460-463).

RC: 11. In the lower panel of Fig. S2, a non-invertible history matrix is shown, but distribu-
tions of exact derived tK values are given, although in this case only upper bounds can
be derived. How can this be?

AR: We have clarified in Supplemental Figs. S2-S5 that the box plots represent the inferred
upper bounds of t0 and tK , respectively.

RC: 12. It is not quite clear to me what the authors want to say with Fig. 7. Since the mutation
target increases with increasing CN, it is expected that the number of SSNVs correlates
with CN. That these SSNVs may be subject to selection is also quite expected.

AR: Fig. 7 serves two main purposes. Firstly, it confirms the expectation that point mutations
accumulate at a rate proportional to their copy number, providing the basis for our method-
ology. We have included this point in the caption of Fig. 7. Secondly, it communicates a
crucial message to the cancer research community, emphasizing the necessity for caution
in quantifying evolutionary parameters for subclonal expansion. This caution is essential
because SCNA accelerates the accumulation of heterogeneity in point mutations. This point
has been discussed in Lines 465-470 of the revised manuscript.
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Figure 9: We considered a scenario where the MRCA evolved to a copy number state of
5:1 at fixed time points (t0 = 0.3; tK = 0.3), and an additional gain occurred shortly after
the MRCA. We computed mixture allele frequencies and simulated mutation read counts
for varying subclonal fractions, allowing us to infer the upper bounds of t0 and tK for the
6:1 copy number alteration. The results are presented as boxplots.

RC: 13. The use of the term genome doubling (GD) is confusing. First, there is no definition
in the main text of what is the difference between GD and other CN gains. In the Methods,
it appears that GD was derived from density-based temporal clustering of SCNAs, and
whenever more than 40% were found in one cluster, these SCNAs were considered part of
a GD event. The goal of calculating GD appears to be to allow comparison with previous
studies that have already assessed the relative rate of SCNA gains and losses before and
after whole-GD (WGD). However, in these studies, GD is usually associated with a global,
i.e. whole-genome, doubling of ploidy. Why was this definition of GD used rather than a
more standard derivation of WGD?

AR: We do not assume that duplications always cover the entire genome during GD events.
Instead, we define GD as a distinct and concentrated burst of gains, encompassing more
than 40% of all timed SCNA segments. We have clarified this definition in Lines 618-622
and 243-245. Somatic evolution can involve multiple clusters of gains. To identify the
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prominent burst of gains, we clustered the timing results, using 40% as the cutoff (Figure
2A). The averaged timing of segments within the cluster represents the timing of GD.
It is noteworthy that this threshold performs well in cases with sporadic or secondary
burst of gains (Figure 2B). Furthermore, although we do not assume strict whole genome
doubling, the inferred GD timing aligns closely with predictions based on Nik-Zainal’s
study (Supplemental Fig. S8).

RC: 14. The definition of Ajk (l. 153) seems unnecessarily complicated. It is the number of
segment copies in stage k that produce the final allele state (i.e. frequency) aj = j/Nt.

AR: We appreciate the reviewer’s valuable feedback and their suggestion to provide a simplified
definition of the items within the history matrix. We acknowledge that when presented in
conjunction with the context preceding the introduction of the history matrix, the definition
can indeed be simplified as proposed. As a result, we have revised our original sentence
accordingly.
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors provided a detailed response to each of my concerns, which were satisfactorily addressed. 

In particular, they performed significant additional validation to address my concerns about bias in the 

estimates and classifying early versus late gains. Their revisions to the manuscript improve its clarity and 

soundness. I have no further major comments. 

 

I have several minor comments below that I request the authors fix before publication, but pending 

these minor corrections, I find the revised paper suitable for publication. 

Minor: 

1. Mistake in column label for top table in Fig S18. “Death rate of GD (d0)” should be “Death rate of GD 

(b0)” 

2. Typo “bounnding” in Figs S12, S13 

3. Most of the main text uses u for passenger mutation rate but the supplementary table uses mu, as 

well as line 323 of the main text. 

4. What does the vertical height mean in the timing rank plot in figure 6A? Can a label be given? 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

I would like to start by commending the authors for their efforts to address the reviewer comments 

(including from reviewer 1). They have executed the additional analyses with great care and creativity 

and truly tried to re-evaluate their manuscript based on the feedback they had received. Nice work! 

 

Accordingly, all my comments have been addressed, without raising new concerns. I would just like to 

add remarks regarding my point 4 about the relationship between CN and t_k. First, I am glad that the 

authors “acknowledge the possibility that higher copy number (CN) states might necessitate a longer 

duration to establish”, as I would have been very worried if they had claimed that time-dependent 

processes do not scale with time. The expected distribution of CN states should be roughly following a 

power law (although it is appreciated that large single jumps in CN can occur at times). 



 

“To assess whether the estimated timing offers additional insights compared to copy number (CN) data 

alone, we sought to determine if regions displayed frequent high copy numbers across patients exhibit 

recurrent early or late gains. To achieve this, we conducted an additional analysis utilizing rank sums, 

incorporating both timing and copy number data. The raw timing and copy number data were 

transformed into ranks, and a normalized rank sum was calculated to enable a comparison between 

these two (detailed in Methods, Lines 627-641).” 

 

I think this idea was clever and aimed exactly at describing the intrinsic, i.e. unavoidable, relationship 

between CN and timing, as higher CN necessitates lower t_0 and t_k (higher 1-t_k). The description in 

the Methods section (l. 629-) could be made a bit less ambiguous. 

 

The most important part of this analysis is the new Fig. S7, which shows the relationship between the 

timing and CN ranks and is highly informative. (The x-axis label is a bit misleading since, if I understood 

correctly, what is measured is the “CN gain”, not the “frequency of a CN gain”.) Due to the intrinsic 

correlation between CN and timing, the null expectation for the distribution in the left panel would be a 

bivariate normal with a positive correlation, while in the right panel we would expect a negative 

correlation. This is very compatible with what is being observed (more so on the right), which is very 

good. Without a proper null model of CNVs (which is hard to build, as the authors also noted), we cannot 

know whether the outlier bins (Z>3 or Z<-3) are driven by neutral outlier CN events or by selection. 

However, the timing analysis now actually gives a clue, since any deviation on the timing axis away from 

the main bivariate normal distribution on the diagonal is unexpected. In the left panel, this argument 

clearly applies to the dots belonging to chr1 and chr7, as the authors also pointed out. In the right panel, 

changes on chr1 and chr8 are compatible with the extreme CNs, which means both measures are equally 

compatible with either selection or an outlier mutation event, while chr2 is again a more interesting 

case, since the CN signal is weak, but conditional on CN the timing is unusually early. 

 

 

 

 



Authors’ Response to Reviews of 

Evolving copy number gains promote tumor expan- 
sion and bolster mutational diversification 
Zicheng Wang, Yunong Xia, Lauren Mills, Athanasios N. Nikolakopoulos, Nicole Maeser, 
Scott M. Dehm, Jason M. Sheltzer and Ruping Sun 
 

RC: Reviewers’ Comment, AR: Authors’ Response, □ Manuscript Text

General Comments

We express our gratitude once more to both reviewers for thoroughly reviewing the revised
manuscript. We are pleased that our revisions have successfully addressed the concerns
raised by the reviewers.

1. Response to Reviewer #1

1.1. General comment

RC: The authors provided a detailed response to each of my concerns, which were satisfacto-
rily addressed. In particular, they performed significant additional validation to address
my concerns about bias in the estimates and classifying early versus late gains. Their
revisions to the manuscript improve its clarity and soundness. I have no further major
comments. I have several minor comments below that I request the authors fix before
publication, but pending these minor corrections, I find the revised paper suitable for
publication.

AR: We sincerely appreciate your thorough review of our revised manuscript. Your positive
acknowledgment of the significant additional validation work and improvements in clarity
and soundness is truly encouraging.

1.2. Minor concern

RC: 1. Mistake in column label for top table in Fig S18. “Death rate of GD (d0)” should be
“Death rate of GD (b0)”
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AR: Thank you for pointing this out. We have corrected this typo.

RC: 2. Typo “bounnding” in Figs S12, S13

AR: The identified typo has been rectified. We appreciate you pointing it out.

RC: 3. Most of the main text uses u for passenger mutation rate but the supplementary table
uses mu, as well as line 323 of the main text.

AR: Appreciate your input! The mentioned typo has been rectified, and we have consistently
employed u to represent the mutation rate throughout the paper.

RC: 4. What does the vertical height mean in the timing rank plot in figure 6A? Can a label
be given?

AR: In the legend of Figure 6A, we have added a note specifying that "The height of each bar
corresponds to the arrival time."

2. Response to Reviewer #2

2.1. General

RC: I would like to start by commending the authors for their efforts to address the reviewer
comments (including from reviewer 1). They have executed the additional analyses with
great care and creativity and truly tried to re-evaluate their manuscript based on the
feedback they had received. Nice work!

Accordingly, all my comments have been addressed, without raising new concerns.
I would just like to add remarks regarding my point 4 about the relationship between CN
and tk. First, I am glad that the authors “acknowledge the possibility that higher copy
number (CN) states might necessitate a longer duration to establish”, as I would have
been very worried if they had claimed that time-dependent processes do not scale with
time. The expected distribution of CN states should be roughly following a power law
(although it is appreciated that large single jumps in CN can occur at times).

“To assess whether the estimated timing offers additional insights compared to copy
number (CN) data alone, we sought to determine if regions displayed frequent high
copy numbers across patients exhibit recurrent early or late gains. To achieve this, we
conducted an additional analysis utilizing rank sums, incorporating both timing and
copy number data. The raw timing and copy number data were transformed into ranks,
and a normalized rank sum was calculated to enable a comparison between these two
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(detailed in Methods, Lines 627-641)."

I think this idea was clever and aimed exactly at describing the intrinsic, i.e. unavoidable,
relationship between CN and timing, as higher CN necessitates lower t0 and tk (higher
1− tk). The description in the Methods section (l. 629-) could be made a bit less ambigu-
ous.

The most important part of this analysis is the new Fig. S7, which shows the rela-
tionship between the timing and CN ranks and is highly informative. (The x-axis label is
a bit misleading since, if I understood correctly, what is measured is the “CN gain”, not
the “frequency of a CN gain”.) Due to the intrinsic correlation between CN and timing,
the null expectation for the distribution in the left panel would be a bivariate normal with
a positive correlation, while in the right panel we would expect a negative correlation.
This is very compatible with what is being observed (more so on the right), which is very
good. Without a proper null model of CNVs (which is hard to build, as the authors also
noted), we cannot know whether the outlier bins (Z>3 or Z<-3) are driven by neutral
outlier CN events or by selection. However, the timing analysis now actually gives a clue,
since any deviation on the timing axis away from the main bivariate normal distribution
on the diagonal is unexpected. In the left panel, this argument clearly applies to the dots
belonging to chr1 and chr7, as the authors also pointed out. In the right panel, changes
on chr1 and chr8 are compatible with the extreme CNs, which means both measures are
equally compatible with either selection or an outlier mutation event, while chr2 is again
a more interesting case, since the CN signal is weak, but conditional on CN the timing is
unusually early.

AR: We appreciate the feedback concerning Supplementary Figure S7 (now indexed as Supple-
mentary Figure S14), specifically the representation of the x-axis, which denotes the CN
gain for each genomic bin. In response to this observation, we have revised the axis label to
accurately reflect this clarification.

We express our gratitude to the reviewer for acknowledging the potential of the timing
axis in facilitating the identification of oncogenic SCNAs. We concur with the reviewer’s
observation that genomic regions, exemplified by Chr2, exhibiting the pattern of ’once it
gains, it gains early’ are promising candidates. A more in-depth analysis of the deviation
from the null distribution on the timing axis could prove valuable in exploring these aspects
further. These insights suggest potential directions for future follow-up investigations
stemming from the current study.
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