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Supplemental  Fig 1: a,  Population doublings of indicated cell lines following continuous treatment with 
DMSO, 3 μM BRAFi (PLX4720), 3 μM  MEKi (AZD6244), or 3 μM BRAFi  + 3 μM MEKi . b, A375 and 
SKMEL28 BRAFi-resistant lines were treated with DMSO or PLX4720 for 3 days and cell cycle analysis 
was performed as described in the Material and Methods. Two-tailed unpaired t-test, p-values; * <0.05, 
****<0.0001. The percent of total cells in each phase is shown. The data represent three independent 
experiments (n =3). Data are presented as mean ± SEM. c, A375, SKMEL-5 and SKMEL-28 PLX4720-
resistant lines were plated at low density and treated with PLX4720 or DMSO the following day. After 14 
days, cells were stained for SA b-galactosidase activity as described in Materials and Methods. d, 
Continuation of western blot experiment seen in Fig. 2d. e, Western blot of indicated proteins in BRAFi-
resistant (BR) A375, HS294T, and WM793 cells treated with DMSO or 3 μM BRAFi (PLX4720) for 4 hrs. 
f, BRAFi-resistant A375 (A375-BR), HS294T (HS-BR), and WM793 (WM-BR) cells were seeded at 
10,000 cells/ml and treated with DMSO, 3 μM BRAFi (PLX4720) , or 3 μM ERKi (SCH772984). Drug was 
refreshed every 72 hrs. Crystal violet staining was performed when the DMSO treatment group reached 
confluency. c-f, The data are representative of three biologically independent experiments (n = 3)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Fig 2: a, SKMEL28 cells transduced with empty (EV) or EGFR (EGFR) expression 
constructs were treated with DMSO or 50 nM SCH772984 (ERKi) for 96 hrs before western blot analysis 
was performed for the indicated proteins. b, Cell surface expression of EGFR in parental or BRAFi-
resistant SKMEL28 cells was detected with an APC-conjugated EGFR antibody and analyzed via flow 
cytometry. c, FRA1 protein level analysis of melanocytic (n = 17) and dedifferentiated (n = 9) MAPK-mutant 
melanoma cell lines using the DepMap Proteomics dataset. Two-tailed unpaired t-test, p-values included 
in figure. d, Continuation of western blot experiment seen in Fig. 3c. e, Depmap correlation analysis of the 
JunB Target gene score and JunB mRNA for every cell line represented in the Expression dataset. f, 
SKMEL28 cells were transduced with an empty  (EV) or SOX10 (SOX10) expression vector before being 
treated with DMSO or 3 μM of the indicated MAPKi treatment for 96 hrs in the presence of 100 ng/ml 
doxycycline. Western blots were performed on the cell lysates to probe for the indicated proteins. g, 
Continuation of western blot experiment seen in Fig. 2d. a, d, f, g The data are representative of three 
biologically independent experiments (n = 3). 



 
 

 
Supplemental Fig 3: a, Benefit of applying 40 percent time in drug (Number of cells treated with no drug 
/ Number of cells treated with 40% time in drug) in the well-mixed model (blue line) compared to the spatial 
ABM (black line). The divergence between well-mixed prediction and spatial ABM simulation occurs well 
before carrying capacity effects play a role. b, Growth rate of sensitive and resistant populations in (1) 
and out (0) of drug as competition for space increases with further dosing cycles. This effect is asymmetric 
across cell lines and environments, such that the optimal dose itself changes as seen in the main text. 
Data is presented as such; mean is center solid line and the 95% confidence interval is the shaded band 
above and below the mean.  



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Fig 4. Diagram of proposed mechanism underlying ERK-JunB-p21-induced drug 
dependence



A SIMPLE MODEL OF N SUBPOPULATIONS
Consider a simple model with N di�erent cell populations. The i

th cell population
grows exponentially. The per capita growth rate of population i is given by ki ,OF F in
the absence of drug and by ki ,ON in the presence of drug, which we assume to be at a
�xed concentration when present. The entire metapopulation evolves according to

n = Gdn, (S1)

where n is a vector with components ni (t ) (the number of cells of type i at time t )
and Gd is an N -by-N square matrix whose diagonal entries are ki ,ON (or ki ,OF F ) for
i = 1, 2, ...N and whose o�-diagonal entries correspond to interconversions between
di�erent cell types. The solution to Equation S1 is given by n (t ) = A(t )n (0), where
the matrix A(t ) ⌘ e

Gd t is a time-dependent matrix and e denotes the standard matrix
exponential. In the presence of drug, we refer to the matrix A(t ) as A(tON ); in the
absence of drug, we refer to it as A(tOF F ).

If the cell population is exposed to a treatment of duration tOF F without drug fol-
lowed by a treatment of duration tON with drug (with T ⌘ tOF F + tON ), the solution is
given by

n (T ) = M (tOF F , tON )n (0), (S2)

where M (tON , tof f ) ⌘ A(tON )A(tOF F ). If we imagine repeating the periodic dosing pro-
tocol a total of q times, the solution is simply

n (qT ) = M
q
n (0), (S3)

where we’ve dropped the explicit dependence of M on tON and tOF F for economy of
notation.

Long-time solution. Weareprimarily interested in the long-timebehavior of Equa-
tion S3; that is, we are interested in solutions in the limit q >> 1 such that the periodic
dosing protocol has been applied many times. In this regime, the growth will be dom-
inated by the largest eigenvalue of M , which we denote by �max, and the population
will grow exponentially at a per-capita growth rate of g given by (77)

g =
ln�max

T
. (S4)

The long-term population will be comprised of j sub-populations when the dominant
eigenvector of M has j nonzero entries.

Wild-typeandMutants. Consider nowa casewhere population i = 1 corresponds
to a “wild-type" progenitor cell. These cells can mutate to each of the remaining N � 1

cell types (“mutants”) with some rate ✏. We consider thesemutations to be irreversible
and neglect reversion to wild-type cells or interconversion between di�erent mutant
cells. Hence, the matrix Gd is given by

(Gd )i ,j = �i j (ki ,ON � �11 (N � 2)✏) + �i1✏, (S5)

where �i j is the usual Kronecker delta. In the limit ✏ ! 0, the matrix Gd (and in turn,
the matrix M ) is diagonal with o�-diagonal terms of order ✏. If we assume ✏ ! 0, Gd

is a diagonal matrix whose (i,i)th entry is ki ,ON . In turn, the matrix M is also diagonal
with eigenvalues given by

�i = e
ki ,OF F tOF F +ki ,ON tON = e

T (ki ,OF F (1�fON )+ki ,ON fON ) , (S6)

where fON ⌘ tON /T is the fraction of time spent in drug, and eigenvectors are given
by the standard basis vectors for “N . The di�erent cell populations are uncoupled,



and the dominant population is the one with the largest value of �i . In this limit, the
temporal ordering of drug and no-drug regimens does not matter; the outcome is
determined entirely by fON , the fraction of time spent in drug.

Coexistence ofN=2 subpopulations. If we choose tOF F = 0 (drug always present)
or tON = 0 (drug never present), the population will eventually be dominated by the
cell type with the fastest per capita growth rate in the presence or absence of drug,
respectively. On the other hand, theremay be cases where allowingmultiple cell types
to co-exist decreases the total population growth. To maintain coexistence of two cell
types, i and j , one requires that �i = �j , which yields

(ki ,OF F � kj ,OF F ) (1 � fON ) + (ki ,ON � kj ,ON )fON = 0. (S7)

Solving for fON , we have

fON =
1

1 + �
, (S8)

with � ⌘
ki ,ON �kj ,ON

kj ,OF F �ki ,OF F
. Note that 0 < fON < 1 if and only if � > 0 and �nite. In other words,

one cell type must be favored in the presence of drug, while the other cell type must
be favored in the absence of drug. Choosing tON = fONT will conserve the ratio of cell
types i and j , and the long-term per capita growth of the population is

g =
ki ,OF F kj ,ON � kj ,OF F ki ,ON

(ki ,OF F � ki ,ON ) � (kj ,OF F � kj ,ON )
. (S9)

Coexistence of N>2 subpopulations. It is not possible, in general, to choose fON

such that more than two cell types coexist asymptotically. Doing so would require
�i = �j = �k , or equivalently,

K t = 0, (S10)

where t is a column vector with entries t = (tOF F , tON ) and K is a matrix of growth rate
di�erences given by

K ⌘

 
ki ,OF F � kj ,OF F ki ,ON � kj ,ON

ki ,OF F � kk ,OF F ki ,ON � kk ,ON

!
. (S11)

Equation S10 has a nontrivial solution only when detK = 0–that is, a non-trivial solu-
tion exists only when the growth rates satisfy a particular condition (speci�cally, when
the columns ofK are linearly dependent). Aside from this special case, it is not possible
to maintain co-existence between more than two cell types in the long time limit.

A brief exploration of nonzero mutation rates. Similar results also apply if we
consider cell type i = 1 (wild-type) and take N ✏ << 1 but non-zero. In that case, the
eigenvalue corresponding to wild-type cells is given by Equation S6 with ki ,OF F !

ki ,OF F � (N � 1)✏ and ki ,ON ! ki ,ON � (N � 1)✏. The other eigenvalues remain un-
changed. Similarly, the eigenvector corresponding to wild-type cells is given by v =

(1� O(✏), b1, b2, ..., bN ), where bi ⇠ O(✏). In words, this means that when fON is chosen
such that �1 dominates, the long-term population maintains a small fraction (O(✏)) of
all mutants. On the other hand, if fON is chosen such that �1 and �j dominate, the popu-
lation will consist of co-existing populations of wild-type cells and type j cells as well as
a diminishing fraction (O(✏)) of all additional mutants. Of course, as ✏ approaches the
size of the other growth rates in the problem, mutation (and cell interconversionmore
generally) can have a signi�cant e�ect on the overall dynamics (see, for example, (78)).



Optimality of coexisting subpopulations. It is possible to maintain heterogene-
ity in a population as long as � > 0. When is it optimal to adopt such a periodic dosing
strategy? That is, when does this heterogeneous population exhibit a lower average
growth rate than each of the corresponding homogeneous populations? To answer
this question, we �rst assume � > 0 such that the long-term population is heteroge-
neous. Without loss of generality, we consider a population consisting of two subpop-
ulations i and j and take ki ,OF F > kj ,OF F and kj ,ON > ki ,ON to ensure � > 0. That is,
we assume that population i grows faster than j in the absence of drug and j grows
faster than i in the presence of drug. In order for this heterogeneous population to
represent the optimal (slowest-growing) population, we require that g (given by Equa-
tion S9) is smaller than the per capita growth rate of the fastest growing population in
each condition alone. Speci�cally, we have

g < ki ,OF F and g < kj ,ON (S12)

By combining Equation S9 with Equation S12, we have

(kj ,ON � ki ,ON ) (kj ,ON � kj ,OF F )

(ki ,OF F � ki ,ON ) � (kj ,OF F � kj ,ON )
> 0,

(ki ,OF F � ki ,ON ) (ki ,OF F � kj ,OF F )

(ki ,OF F � ki ,ON ) � (kj ,OF F � kj ,ON )
> 0.

(S13)

Excluding the singular case where the denominator is zero, we are therefore led to
two optimality conditions:

kj ,ON � kj ,OF F > 0

ki ,OF F � ki ,ON > 0
(S14)

In words, cell type j must grow faster with drug than without, while the opposite must
be true for cell type i . Hence, for population heterogeneity to be optimal in the long-
time limit, wemust have one subpopulation of drug-sensitive cells and one population
of drug-addicted cells.

Exact solution for N=2. In the simple case where N = 2 and ✏ = 0, it is possible
to write down an analytic expression for the fractional time in drug (fON ) required to
minimize population size. The expression is valid for all times, not merely in the long
time limit. To do so, consider that the total population size at the end of period T is
governed by Equation S2. Because M is diagonal, one can trivially write the solution
for P = n1 + n2 as

P = n01 exp
�
T (k1,OF F (1 � fON ) + k1,ON fON )

�
+ n02 exp

�
T (k2,OF F (1 � fON ) + k2,ON fON )

�
,

(S15)
where n0i is the initial size of population i . It is straightforward to show that @2

P /@f
2
ON
<

0, so this is a convex function with a unique minimum on fON = [0, 1]. One can solve
for the minimum according to @P /@fON = 0, which gives

fON =
1

1 + �
+

1

T
log

✓
n01 (k1,OF F � k1,ON )

n02 (k2,ON � k2,OF F )

◆
(S16)

with � ⌘
k1,ON �k2,ON

k2,OF F �k1,ON
. In the long-time limit (T ! 1), Equation S16 reduces to Equa-

tion S8. However, when the addiction criteria (Equation S14) is not met, the second
term in Equation S16 is imaginary. As a result, the long-time limit (Equation S8) corre-
sponds to an optimal solution only whenT = 1; for any �nite time, the long-time limit
will, in general, not be optimal and cycling is not bene�cial, as fON is complex with a
nonzero imaginary part. On the other hand, when the addiction criteria is satis�ed,
the solution will converge continuously to the long-time limit.



Summary of Cycling, Heterogeneity, and Optimality. To maintain population
heterogeneity in the long-time limit, one must cycle between drug and no-drug condi-
tions with fON (the time spend in drug) given by Equation S8. In practice, one cell type
must be favored in the presence of drug and the other cell type must be favored in
the absence of drug. If fON does not satisfy Equation S8, the population will eventu-
ally be dominated by one population or the other. Speci�cally, it will be dominated by
the population corresponding to the largest eigenvalue �i , even if a cycling protocol is
used. It is not, in general, possible to asymptotically maintain �nite fractions of more
than 2 cell types by switching between 2 environments. The exception occurs when K

(Equation S11) has linearly dependent columns. In the limit where cells do not interact
or interconvert, the total fraction of time spent in drug (fON ) determines the outcome,
independent of the temporal ordering of the drug and no-drug regimens.

Maintaining heterogeneity through cycling is optimal onlywhenone cell type grows
faster with drug than without (“addiction”), while the other cell type grows faster with-
out drug than with drug (“drug sensitive”). It is worth noting that it is possible to main-
tain population heterogeneity but not achieve optimality. This situation occurs when
the above condition for optimality is not met, but 0 < fON < 1 is chosen according to
Equation S8. In this situation, the average growth of the heterogeneous population is
larger than the growth of the dominating population in at least one of the two condi-
tions (either with or without drug). Of course, it is also possible under some conditions
to achieve optimality without maintaining heterogeneity. This situation occurs, for ex-
ample, when � < 0, meaning that one cell type is favored in both conditions. In that
case, one simply chooses the condition in which that cell type grows most slowly. It
can also occur when � > 0 but addiction is not present (e.g. mixture of a drug sensi-
tive population and a drug-resistant, but not addicted, population with a small �tness
cost). In that case, the mutant can be favored over the sensitive cells in the presence
of drug, while the wild-type can be favored over mutant in the absence of drug. How-
ever, both cell types grow more slowly in drug. In that case, it is possible to maintain
both cell types, but the optimal solution is to apply drug always, eventually leading to
only resistant mutants.


