Statistics and Reproducibility

This file contains detailed information on the number of biological repeats, the counts of animal/cell lines used in each indicated figure panel as well as the statistical methods and the exact p value whenever possible. Note: when the $p < 1.00 \times 10^{-10}$, the GraphPad Prism software does not provide the exact p value.

Figure 1.

a, $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ (n=20), $DNA-PKcs^{KD/KD}$; $Tp53^{+/-}$ (n=38), $DNA-PKcs^{-/-}$; $Tp53^{-/-}$ (n=31), $Xrcc4^{-/-}$; $Tp53^{-/-}$ (n=21) and $Tp53^{-/-}$ (n=56). Two-sided Mantel-Cox Log-rank test p=1.00x10^{-10} between $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ and $DNA-PKcs^{KD/KD}$; $Tp53^{+/-}$; p=5.58 x10⁻⁴ between $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ and $DNA-PKcs^{-/-}$; $Tp53^{-/-}$ and $DNA-PKcs^{-/-}$; $Tp53^{-/-}$ and $DNA-PKcs^{-/-}$; $Tp53^{-/-}$ and $Tp53^{-/-}$ and $Tp53^{-/-}$ and $Tp53^{-/-}$ and finally the p< 1.00x10^{-10} when the survival curves of $DNA-PKcs^{-/-}$; $Tp53^{-/-}$, $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ mice or $Xrcc4^{-/-}$; $Tp53^{-/-}$ groups were complared with the $Tp53^{-/-}$ group.

c. $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ (n=8 myeloid, n=4 pro-B); $DNA-PKcs^{-/-}$; $Tp53^{-/-}$ (n=14 pro-B); $Xrcc4^{-/-}$; $Tp53^{-/-}$ (n=7 pro-B), $DNA-PKcs^{KD/KD}$; $Tp53^{+/-}$ (n=6 Thymic lymphoma, n=4 sarcoma). The p value was calculated using a two-sided unpaired Student's *t*-test. When the survival (days) were compared with the $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ myeloid group, p=4.15x10⁻⁸ for $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ pro-B cell lymphoma, p=0.07x10⁻⁸ for $DNA-PKcs^{-/-}$; $Tp53^{-/-}$ pro-B cell lymphoma, and p=0.02x10⁻⁸ for $Xrcc4^{-/-}$; $Tp53^{-/-}$ pro-B cell lymphoma. In comparison to the survival (days) of $DNA-PKcs^{KD/KD}$; $Tp53^{-/-}$ pro-B, the p-value for $DNA-PKcs^{-/-}$; $Tp53^{-/-}$ pro-B cell lymphoma is 9.85x10⁻² (n.s.), for $Xrcc4^{-/-}$; $Tp53^{-/-}$ pro-B and $Xrcc4^{-/-}$; $Tp53^{-/-}$ pro-B cell lymphoma is 0.14 (n.s.).

d, Histological analyses were performed independently on 3 mice for each genotype with similar results to the reached conclusion.

e, Histological analyses were independently repeated on n=9 *DNA-PKcs*^{+/+}, n=9 *DNA-PKcs*^{5A/5A}, n=4 DNA-*PKcs*^{5A/5A}; *Tp53*^{+/-}, and n=3 *PKcs*^{5A/5A}; *Tp53*^{-/-} mice with similar results.

Figure 2.

a. $DNA-PKcs^{5A/5A}$ (n=21), $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$ (n=34), $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$ (n=11), $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ (n=9) and $Ku70^{-/-}$ (n=7). The p-value was obtained via a two-sided Mantel-Cox log-rank test. In comparison to the $DNA-PKcs^{5A/5A}$ group, p-value is <0.01x10⁻⁸ for $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, 9.08x10⁻⁷ for $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$, 9.46x10⁻⁶ for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$, and 1.33x10⁻⁵ for $Ku70^{-/-}$.

b and e. $DNA-PKcs^{+/+}$ (n=22), $DNA-PKcs^{5A/5A}$ (n=11), $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ (n=3), $Ku70^{-/-}$ (n=3), and $DNA-PKcs^{-/-}$ (n=5). The p-value was obtained using a two-sided unpaired Student's *t*-test. For red blood cell counts (**panel b**) - in comparison to the $DNA-PKcs^{+/+}$ group, p<<0.01x10⁻⁸ for the $DNA-PKcs^{5A/5A}$, p=0.18 (n.s.) for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$, p=0.16 (n.s.) for $Ku70^{-/-}$, and p=0.32 (n.s.) for $DNA-PKcs^{-/-}$ groups The p-value between the $DNA-PKcs^{5A/5A}$ group and the $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ group is 3.04x10⁻⁵. For MCV (panel e)- in comparison to the $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ group, p=0.32x10⁻⁹ for the $DNA-PKcs^{5A/5A}$ group, p=0.27(n.s.) for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ group, p=0.42 (n.s.) for $Ku70^{-/-}$, and p=5.68x10⁻² for $DNA-PKcs^{-/-}$.

c and d. The FACS plot and the dot plot represent the collective results from $DNA-PKcs^{+/+}$ (n=9), $DNA-PKcs^{5A/5A}$ (n=9), $PKcs^{5A/5A}$; $Ku70^{-/-}$ (n=4), and $Ku70^{-/-}$ (n=5) mice. The p-value was calculated using a two-sided unpaired Student's *t*-test. In comparison to the $DNA-PKcs^{5A/5A}$ group, the p= 4.53×10^{-5} for $DNA-PKcs^{+/+}$ and p=0.03 for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$. In comparison to the $Ku70^{-/-}$, the p= 0.36 (n.s.) for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ and p= 0.10 (n.s.) for $DNA-PKcs^{+/+}$.

f and g. $DNA-PKcs^{+/+}$ (n=10), $DNA-PKcs^{5A/5A}$ (n=9), $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ (n=3), $Ku70^{-/-}$ (n=3) and $DNA-PKcs^{-/-}$ (n=5). The p-value was calculated using a two-sided unpaired Student's *t*-test. **For S2%**: in comparison to $DNA-PKcs^{+/+}$ group, p= 6.05×10^{-4} for $DNA-PKcs^{5A/5A}$, p= 0.69×10^{-2} for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$, p=0.49 (n.s.) for $Ku70^{-/-}$, and p= 0.60(n.s.) for $DNA-PKcs^{-/-}$. **For S3%**: in comparison to $DNA-PKcs^{+/+}$ group, p= 6.87×10^{-8} for $DNA-PKcs^{5A/5A}$, p= 0.21(n.s.) for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$, p=0.93(n.s.) for $Ku70^{-/-}$, and p= 0.08 (n.s.) for $DNA-PKcs^{-/-}$. **For S4%**: in comparison to $DNA-PKcs^{+/+}$ group, p= 9.08×10^{-6} for $DNA-PKcs^{5A/5A}$, p= 0.43 (n.s.) for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$, p=0.13 (n.s.) for $Ku70^{-/-}$, and p= 0.77 (n.s.) for $DNA-PKcs^{-/-}$. There were no adjustments for multiple comparisons. Each group was analyzed independently, without assuming a consistent standard deviation (SD).

h and i, $DNA-PKcs^{+/+}$ (n=6) or $DNA-PKcs^{+/-}$ (n=5), $DNA-PKcs^{5A/5A}$ (n=8), $Ku70^{-/-}$ (n=3), and $DNA-PKcs^{-/-}$ (n=5). The p-values were calculated using a two-sided unpaired Student's *t*-test. For S1-**OP-Puro low%**: in comparison to $DNA-PKcs^{+/+}$ or $DNA-PKcs^{+/-}$ Ctrl group, p= 0.43x10⁻² for $DNA-PKcs^{5A/5A}$, p= 0.06 for $Ku70^{-/-}$, and p= 0.73 for $DNA-PKcs^{-/-}$. For S2-OP-Puro low%: in comparison to $DNA-PKcs^{+/-}$ Ctrl group, p= 0.60x10⁻³ for $DNA-PKcs^{5A/5A}$, p= 0.42 for $Ku70^{-/-}$, and p= 0.79 for $DNA-PKcs^{-/-}$. For S3-OP-Puro low%: in comparison to $DNA-PKcs^{+/+}$ Ctrl group, p= 0.60x10⁻³ for $DNA-PKcs^{5A/5A}$, p= 0.42 for $Ku70^{-/-}$, and p= 0.79 for $DNA-PKcs^{-/-}$. For S3-OP-Puro low%: in comparison to $DNA-PKcs^{+/+}$ Ctrl group, p= 0.56 for $Ku70^{-/-}$, p= 0.53 for $DNA-PKcs^{-/-}$. There were no adjustments for multiple comparisons. Each group was analyzed independently, without assuming a consistent SD.

j. The data represents 3 biologically independent samples for each genotype. The p-values were calculated using a two-sided paired Student's *t*-test. The p-value is 1.54×10^{-7} between *DNA-PKcs*^{+/+} with or without OP-Puro. The p-value is 0.90×10^{-2} between *DNA-PKcs*^{+/+} +/- NU7441 (DNA-PK inhibitor), is 0.89 (n.s.) between *DNA-PKcs*^{-/-} +/- NU7441, and p= 0.02 between *Ku70*^{-/-} +/- NU7441. Finally, the p-value is 0.03 between *DNA-PKcs*^{+/+} and *DNA-PKcs*^{-/-}, and is 0.02 between *DNA-PKcs*^{+/+} and *Ku70*^{-/-}.

Figure 3.

c, The experiments were independently repeated 4 times. One additional repeat was shown in Extended Data Figure 8f.

d, The experiments were independently repeated 3 times.

Ext. Data Figure 1.

a, All the *DNA-PKcs^{KD/KD}*; $Tp53^{-/-}$ mice (n=4 at the time of the first submission) that succumbed to pro-B cell lymphomas show similar accumulation of B220⁺IgM⁻ proB cells in both bone marrow and spleen. One representative flow cytometry plot is shown.

b, Experiments were repeated on 3 mice for each genotype. The p-value for two-sided unpaired Student's *t*-test is 0.17×10^{-2} for the number of megakaryocytes per field, and 0.74×10^{-3} for the number of megakaryocytes with hyperchromatic/pyknotic nuclei per field in spleen between *DNA*-*PKcs*^{*KD/KD*};*Tp53*^{-/-} and *DNA*-*PKcs*^{+/+};*Tp53*^{-/-} mice.

c, A subset of *DNA-PKcs^{KD/KD}*; $Tp53^{-/-}$ mice (3 out of the 8 at the time of the first submission) succumbed to myeloid disease have an accumulation of cKit⁺CD11b⁺GR1⁺ cells in the bone marrow. The frequency of cKit⁺ fraction among CD11b⁺GR1⁺ cells varies from 10-20%. One representative plot was shown.

Ext. Data Figure 2.

d, Over 5 correctly targeted clones were identified by Southern Blotting wit ah 5' probe, and subsequently confirmed with a 3' probe and Sanger sequencing. One representative Southern blot of a positive clone is shown.

e and f, $DNA-PKcs^{+/+}$ (n=5) and $DNA-PKcs^{PQR/PQR}$ (n=4). A two-sided unpaired Student's *t*-test was used to calculate the p-value. The p=0.27 for RBC counts (**e**) and p= 0.99 for PLT counts (**f**) between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{PQR/PQR}$ mice.

g, DNA- $PKcs^{+/+}$ (n=22), DNA- $PKcs^{5A/5A}$ (n=11) and DNA- $PKcs^{-/-}$ (n=5). A two-sided unpaired Student's *t*-test was used to calculate the p-value. In comparison to the DNA- $PKcs^{+/+}$ group, the p-value is 2.72x10⁻⁷ for DNA- $PKcs^{5A/5A}$, p=0.06 for DNA- $PKcs^{-/-}$.

h and **i**, The pale kidney and liver were observed in every DNA- $PKcs^{5A/5A}$ mice (n=11 or more) analyzed. One representative picture is shown.

Ext. Data Figure 3.

a and b, Representative flow cytometry panels and statistic summary from independent analyses performed on n=9 DNA-*PKcs*^{+/+}, n=9 *DNA*-*PKcs*^{5A/5A}, n=4 *DNA*-*PKcs*^{5A/5A};*Ku70*^{-/-}, and n=5 *Ku70*^{-/-} mice. A two-sided unpaired Student's *t*-test was used to calculate the p-value. When compared to the Lin-Scal-cKit⁺ cells frequency in the *DNA*-*PKcs*^{+/+} group, the p-value is 1.67x10⁻⁵ for *DNA*-*PKcs*^{5A/5A}; *Ku70*^{-/-}, and 0.04 for *Ku70*^{-/-}.

c and d, The representative flow cytometry analyses and the summary were collected from n=3 DNA-*PKcs*^{+/+}, n=6 *DNA-PKcs*^{+/5A}. n=4 *DNA-PKcs*^{5A/5A}, and n=4 *DNA-PKcs*^{KD/KD} embryos. A two-sided unpaired Student's *t*-test was used to compare the frequency of Lin⁻Scal⁺cKit⁺ cells in the fetal liver. In comparison to the *DNA-PKcs*^{+/+} controls, the p-value is 0.19 for *DNA-PKcs*^{+/5A}, 6.72x10⁻⁵ for *DNA-PKcs*^{5A/5A}, and 6.43x10⁻⁶ for *DNA-PKcs*^{KD/KD}.

e, This gating strategy was used in all experiments, including the OP-Puro data shown in Extended Data Figure 7d.

Ext. Data Figure 4.

a and b, The flow cytometry plots (a) and the summary (b) were collected from n=4 mice for each genotype. A two-sided unpaired Student's *t*-test was used to calculate the p-value. In comparison to DNA- $PKcs^{+/+}$, the p= 3.80×10^{-6} for DNA- $PKcs^{5A/5A}$, p= 0.33 for DNA- $PKcs^{5A/5A}$; $Tp53^{-/-}$, and p= 1.28×10^{-6} for DNA- $PKcs^{-/-}$; $Tp53^{-/-}$. In addition, p= 7.85×10^{-6} between DNA- $PKcs^{5A/5A}$ and DNA- $PKcs^{5A/5A}$; $Tp53^{-/-}$ groups

c, $DNA-PKcs^{+/+}$ (n=22), $DNA-PKcs^{5A/5A}$ (n=11), $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$ (n= 4), $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$ (n= 3), $Tp53^{-/-}$ (n= 3), and $DNA-PKcs^{-/-}$ (n=5). A two-sided unpaired Student's *t*-test was used to calculate the p-value. The p<0.01x10⁻⁸ between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{5A/5A}$, p= 0.01 between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, p= 0.65 between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{+/-}$.

d, **e**, $DNA-PKcs^{+/+}$ (n=22), $DNA-PKcs^{5A/5A}$ (n=6), $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$ (n= 3), $DNA-PKcs^{-/-}$ (n= 5), $Ku70^{-/-}$ (n= 3), $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$ (n= 4), $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$ (n= 3), and $Tp53^{+/-}$ (n=3). A two-sided unpaired Student's *t*-test was used to calculate the p-value. For lymphocyte counts (d), in comparison to the $DNA-PKcs^{+/+}$ group, the p-values are 2.15×10^{-5} for $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, 0.08×10^{-2} for $DNA-PKcs^{5A/5A}$; $Ku70^{-/-}$, 0.12×10^{-2} for $Ku70^{-/-}$, 0.14×10^{-2} for $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, 0.096 for $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$, 0.88 for $Tp53^{+/-}$, and finally 2.05×10^{-4} for $DNA-PKcs^{-/-}$. For neutrophil counts (e), in comparison to the $DNA-PKcs^{+/+}$ group, the p-values are 1.20×10^{-3} for $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$, 0.85 for $Ku70^{-/-}$, p= 0.055 for $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, p= 0.73 for $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$, p= 0.82 for $Tp53^{+/-}$, and p= 0.55 for $DNA-PKcs^{-/-}$.

g and **h**, Four independent v-abl transformed cell lines with single integration of pMX-INV V(D)J recombination substrates were generated and analyzed. The results were all consistent. A representative result from a DNA- $PKcs^{5A/5A}$ and a DNA- $PKcs^{+/+}$ lines are shown.

i, $DNA-PKcs^{+/+}$ (n=5), $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$ (n=3) and $DNA-PKcs^{-/-}$; $Tp53^{+/-}$ (n=3) Left: A twosided unpaired Student's *t*-test was used to calculate the p-value. The p= 0.56 (n.s.) between DNA- $PKcs^{+/+}$ and $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, and p= 4.29x10⁻³ between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{-/-}$; $Tp53^{+/-}$, right: p= 0.09 between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, and p= 2.43x10⁻³ between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{+/+}$ and $DNA-PKcs^{-/-}$; $Tp53^{+/-}$.

Ext. Data Figure 5.

a,b. The experiments were repeated 4 times with independently derived MEFs (2 *DNA-PKcs*^{5A/5A} MEFs line for each repeat). Each experiment was plated in triplicates or quadruplicates for each treatment.

c, **d**. The experiments were independently repeated 2 times in triplicates for each line and two independent DNA- $PKcs^{5A/5A}$ lines per experiment were used. The representative results and quantification for one experiment (n=3 for DNA- $PKcs^{+/+}$ and n=6 for DNA- $PKcs^{5A/5A}$) are shown. A two-sided unpaired Student's *t*-test was used to calculate p-value. p= 0.17 (n.s., 250nM), p= 0.27 (n.s., 500nM) and p= 0.69 (n.s., 1000nM) between DNA- $PKcs^{+/+}$ and DNA- $PKcs^{5A/5A}$.

e, The experiments were independently repeated 2 times with duplication for each line and two independently derived DNA- $PKcs^{+/+}$ and DNA- $PKcs^{5A/5A}$ ESCs per experiment, which made n=4

biologically independent experiments. A two-sided unpaired Student's *t*-test was used to calculate the p-value at each IR dose independently from each other. No technical replicates were included.

f, The experiments were independently repeated 2 times in triplicates for each line. The specific experiments shown include independently derived primary MEFs from *DNA-PKcs*^{+/+} (n=2), *DNA-PKcs*^{-/-} (n=1), and *DNA-PKcs*^{5A/5A} (n=3).

g, The experiments were independently repeated 3 times using independently derived primary MEFs. One representative FACS from each type is shown. Experiments were repeated n=3 times for DNA- $PKcs^{+/+}$, n=4 times for DNA- $PKcs^{5A/5A}$, n=2 times for DNA- $PKcs^{5A/5A}$; $Tp53^{-/-}$ and n=2 times for DNA- $PKcs^{-/-}$ yielding similar results.

Ext. Data Figure 6.

a, **b** The experiments were independently repeated 3 times with two independently derived ESC for each genotype and plated in triplicates. Similar results were obtained. Randomly selected colonies were measured $DNA-PKcs^{+/+}$ (n=9), $DNA-PKcs^{5A/5A}$ (n=11) and $DNA-PKcs^{5A/5A}$; $Ku80^{-/-}$ (n=15) A two-sided unpaired Student's *t*-test was used to calculate p-value. The p= 0.02 between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{5A/5A}$ and p= 0.01 between $DNA-PKcs^{5A/5A}$ and $DNA-PKcs^{5A/5A}$; $Ku80^{-/-}$.

 \mathbf{c} , A total of n=4 independently derive ESCs of each genotype were analyzed. The representative panel shows two independently derived ESCs for each genotype.

d, e, and f, Telomere instability was measured in n=4 independent derived MEF lines for each genotype. A two-sided unpaired Student's *t*-test was used: p=0.04 between *DNA-PKcs*^{+/+} and *DNA-PKcs*^{5A/5A}, $p=2.20x10^{-3}$ between *DNA-PKcs*^{+/+} and *DNA-PKcs*^{-/-}, and p=0.28 (n.s.) between *DNA-PKcs*^{5A/5A} and *DNA-PKcs*^{-/-}. The raw data were included in panel f.

g, The RBC size were independently measured in $n=10 DNA-PKcs^{+/+}$ and $n=5 DNA-PKcs^{-/-}$ mice. Similar results were obstained.

h, The OP-Puro levels in erythroblasts were measured in n=6 DNA- $PKcs^{+/+}$, n=3 $Ku70^{-/-}$ and n=5 DNA- $PKcs^{-/-}$ mice with similar results obtained in each experiment. One representative set is shown.

Ext. Data Figure 7.

a, $DNA-PKcs^{+/+}$ (n=22), $DNA-PKcs^{5A/5A}$ (n=11), $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$ (n= 4), $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$ (n= 3) and $Tp53^{-/-}$ (n= 3). A two-sided unpaired Student's *t*-test was used to calculate the p value. The p= $1.32x10^{-8}$ between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{5A/5A}$, p= 0.10 between $DNA-PKcs^{5A/5A}$ and $DNA-PKcs^{5A/5A}$; $Tp53^{+/-}$, and p= 0.003 between $DNA-PKcs^{5A/5A}$ and $DNA-PKcs^{5A/5A}$; $Tp53^{-/-}$.

b, DNA- $PKcs^{+/+}$ (n=5) and DNA- $PKcs^{5A/5A}$ (n=4) fetal livers. A two-sided unpaired Student's *t*-test calculated p-value between DNA- $PKcs^{+/+}$ and DNA- $PKcs^{5A/5A}$ is 0.71x10⁻² for S1, 0.02 for S2 and 0.01 for S3.

c, n=8 mice for each genotype. A two-sided unpaired multi Student's *t*-test calculated p= 7.02×10^{-5} between *DNA-PKcs*^{+/+} and *DNA-PKcs*^{5A/5A}.

d, Data collected from n=4 independent DNA- $PKcs^{+/+}$ mice were used to generate the plot. The high OP-puro levels in the erythroblast lineage were consistent in all animal tested. The means and standard errors were marked on the plot.

e, f, DNA- $PKcs^{+/+}$ (n=6) and DNA- $PKcs^{5A/5A}$ (n=8) fetal livers. A two-sided unpaired Student's *t*-test was used to calculate the p-values between DNA- $PKcs^{+/+}$ and DNA- $PKcs^{5A/5A}$ is 2.68x10⁻² for S1, 5.63x10⁻³ for S2 and 6.20 x10⁻³ for S3.

g, Control (*DNA-PKcs*^{+/+} or *DNA-PKcs*^{+/5A}, n=5) and *DNA-PKcs*^{5A/5A};*Tp53*^{+/-} (n=3). A two-sided unpaired Student's *t*-test was used to calculate the p-values between *DNA-PKcs*^{+/+} and *DNA-PKcs*^{5A/5A} are 7.26x10⁻³ for S1 and 2.18x10⁻⁴ for S2.

h, The experiments were performed n=4 times independently. The relative OP-Puro levels of each line were normalized to the OP-Puro levels of the WT ($DNA-PKcs^{+/+}$) controls measured at the same time. The results from all four experiments were plotted together. A two-sided unpaired Student's *t*-test was used to calculate the p-values: p=6.76x10⁻⁷ between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{3A/3A}$ and p= 2.84 x10⁻² between $DNA-PKcs^{+/+}$ and $DNA-PKcs^{KD/KD}$.

i, The experiments were performed 3 times independently and plotted together. The relative OP-Puro levels of ATM inhibitor treated lines were presented as a fraction of the OP-Puro levels in the DMSO treated sample measured at the same time. The results from the n=3 independent experiments were plotted together. A two-sided unpaired Student's *t*-test was used to calculate the p-value: p=0.38 (n.s.) between DMSO and ATMi.