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Supplementary Note 1: Timeseries diel analysis

We used the R package RAIN [1] (version 1.34.0) to evaluate whether the empirical in situ timeseries

exhibited diel periodicity. RAIN uses non-parametric methods to evaluate periodicity and is optimized to

focus on evenly sampled datasets with fewer than 100 measurements. In all cases we first detrended the

timeseries. For Prochlorococcus cells, the size of data goes well above what is computationally feasible

within RAIN, and sample times are not evenly spaced. Instead, we used the Lomb-Scargle Periodogram

[2] implemented in R package lomb (version 2.1.0) to estimate the period (found to be between 0.977 and

1.023 days). Table S1 shows the results from the RAIN and Lomb-Scargle analyses. The timeseries of

Prochlorococcus and infected Prochlorococcus was statistically significantly diel (at a level of p<0.05), the

timeseries for T4- and T7-like viruses, and heterotrophic nanoflagellates was not statistically significantly

diel (at a level of p>0.05).
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Timeseries Method p-value Significantly diel?

Prochlorococcus Lomb-Scargle Periodogram 3.056296e-232 ✓

Infected cells RAIN 0.01042877 ✓

% infected cells RAIN 0.002237049 ✓

Virus RAIN 0.9064921 ×

Grazer RAIN 0.1904631 ×

Table S1: Diel timeseries analysis. Diel timeseries analysis using Lomb-Scargle Periodogram for
Prochlorococcus and RAIN for other timeseries, testing for the probability of whether timeseries are
expected to exhibit periodicity of 1 day by chance.

Supplementary Note 2: Alternative mortality estimates

Modeling encounter rates and allometry

Viral encounter rate

Both Prochlorococcus and their viruses diffuse and the rates at which they may encounter each other can

be estimated using biophysical models [3–5]. We assume the maximum encounter rate between diffusing

spherical particles of two different sizes, rvirus and rcell is given by the Smoulouski equation [6]. However,

an encounter does not always lead to adsorption [3, 7] so we subject the maximum encounter rate to an

efficiency of encounter term, ϵϕ, as:

ϕ(rvirus, rcell) = ϵϕ (4π (Dcell +Dvirus) (rvirus + rcell)) (1)

where diffusion of each spherical particle of radius r is given by the classical relation [8]:

D(rd) =
Kb · T

6π · ρ · rd
(2)

with Kb, the Boltzmann constant, T is temperature (in Kelvin) and ρ is the dynamic viscosity of the

medium. We assume T = 25◦C [9] and ρ = 9.96 × 10−10 kg µm−1 s−1 [3]. We assume that free viruses

can adsorb to both susceptible and infected Prochlorococcus cells. Both cases result in losses of free virus

particles. Susceptible cells that viruses adsorb to become infected. However, we assume that viruses

that adsorb to infected cells do not alter the physiological responses of infected cells. As radius scales

as ≈ [volume]1/3, both diffusion and encounter rate are size-dependent [3].
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Grazer encounter rate

We estimated encounter rates between grazers and prey by modeling the volume of water a swimming

grazer will encounter as:

ψ = uπR2 (3)

where u is the swimming speed and R is the perception radius of the grazer. Here, the modeled phyto-

plankton, Prochlorococcus do not swim [10, 11]. We further account for differences in predator and prey

size and encounter efficiency as:

ψ(rgrazer, rcell) =

encounter efficiency︷︸︸︷
ϵψ

swimming speed︷ ︸︸ ︷
u(rgrazer) π(

sensing radius︷ ︸︸ ︷
fdetectrgrazer + rcell)

2

 (4)

where we assume grazers swimming speed (µm d−1) scales as a function of grazer equivalent spherical

radius (µm) using the empirical relation derived by [12] as:

u(rgrazer) = 864× 10(6+u1)

(
2rgrazer
104

)u2

(5)

with coefficients u1 = 0.39 and u2 = 0.79. We assume grazers detect prey within a detection sensing

radius which is proportional to grazer radius with factor fdetect = 3 [3]. We also incorporate prey size

into the perception radius [13].

Modeling carbon allometry

Ribalet et al. [14] correlate light-scattering to cell size and cell carbon quota using Mie theory. We define

cellular elemental quotas (µg per cell) for carbon, CS as:

CS([volume]) =220[volume] · 10−9.
(6)

We assume that both infected and susceptible cells have the same elemental quotas. That is CI = CS .

For the purposes of converting consumed biomass to grazer abundance we assume grazer quotas in

µg per cell for carbon, based on the empirical relationship derived by Menden-Deuer and Lessard [15] for

dinoflagellates as:

CG(rgrazer) =10−6 · 0.76
(
4

3
πr3grazer

)0.819

.
(7)

3



Viral lysis estimates

iPolony estimates:

Estimates for viral-induced lysis based on infected cell data recorded on the cruise using the iPolony

method are 0.35-4.8% [16], assuming 1-3 infection cycles occur during the turnover time for Prochloro-

coccus cells.

Viral encounter estimates

Näıve encounter rate estimates are made using the encounter rate theory outlined in equation 1 with

baseline parameters assuming that total Prochlorococcus loss rates (ω) are between 0.3 and 1 per day.

Note that this encounter rate estimation assumes instantaneous killing of Prochlorococcus. Assuming that

the steady state abundance of T4- and T7-like cyanophages during the cruise was V ∗ = 3.5× 108 per L,

that all cyanophage are infectious and all Prochlorococcus cells are susceptible to these cyanophage, and

assuming variation in ϵϕ ∈ [10−5, 100], rvirus ∈ [20, 50] nm, rcell ∈ [0.17, 0.49]µm, we find the proportion

of Prochlorococcus losses via viral-induced lysis can be estimated as:

pvir =
ϕ(rvirus, rcell)V

∗

ω
. (8)

Grazing estimates

Grazer encounter estimates

Näıve encounter rate estimates are made using the encounter rate theory outlined in equation 4 with

baseline parameters assuming that total Prochlorococcus loss rates (ω) are between 0.3 and 1 per day.

Note that this encounter rate estimation assumes instantaneous killing of Prochlorococcus. Assuming

that the steady state abundance of heterotrophic nanoflagellates during the cruise was G∗ = 2.5 × 105

per L, and assuming parameter variation in ϵψ ∈ [10−5, 100], fdetect ∈ [0, 6], rgrazer ∈ [1, 10]µm, rcell ∈

[0.17, 0.49]µm, we estimate the proportion of Prochlorococcus losses via grazing as:

pgraz =
ψ(rgrazer, rcell)G

∗

ω
. (9)

Carbon quota and predator growth rate estimate

Following [17] we use literature values to assume that heterotrophic nanoflagellate growth rate ξ is between

0.2 and 1.4 per day [18–20]. We can write an approximation for the growth rate of the heterotrophic

nanoflagellate population, supposing that they only feed on Prochlorococcus cells, as:

ξG = ϵ
CS
CG

ψ (S + I)G (10)
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which can be rearranged to estimate the grazing clearance rate as:

ψ =
ξCG

ϵCS (S + I)
. (11)

We use a steady state approximation of P ∗ = S∗ + I∗ = 1.75 × 108 Prochlorococcus cells per L and a

steady state assumption of G∗ = 2.5×105 heterotrophic nanoflagellates per L during the cruise. Assuming

variation in ϵ ∈ [0.2, 0.6], CS and CG we calculate the proportion of losses attributed to grazing as:

pgraz =
ψG∗

ω
(12)

where ω represents total Prochlorococcus loss rates that we assume are between 0.3 and 1 per day.

FLB estimates

We used Fluorescently Labelled Bacteria (FLB) incubation experiments performed on the cruise [17] to

estimate grazing mortality. These experiments measured the proportion of heterotrophic nanoflagellates

containing FLB cells after an hour incubation. The proportion of heterotrophic nanoflagellates containing

FLB showed diel variability and varied between 1-25% [17]. In order to use these measurements as the

basis for estimating grazing mortality we propose that the population dynamics of FLB cells within

incubation experiments can be modeled as:

dF

dt
= −αFG = −AF (13)

where F is the abundance of FLB cells, α is the clearance rate of heterotrophic nanoflagellates feeding

on FLB and A represents the grazing rate by heterotrophic nanoflagellates. Assuming that heterotrophic

nanoflagellates graze on Prochlorococcus and FLB at the same rate, and assuming a constant heterotrophic

nanoflagellate population, G, of 2× 105 cells/L allows a grazing rate A to be computed as:

A = −1

τ
log

(
FE
F0

)
(14)

where τ is the experiment length (1 hour), the initial FLB abundance is F0 = 108 cells per L, and the final

FLB abundance is FE . Assuming the observed proportion (0.01-0.25) of heterotrophic nanoflagellates

containing FLB (Y ) consume X FLB on average during the incubation period, we can calculate the final

FLB abundance as:

FE = F0 −XYG. (15)

We assume that X varies between 1 and 25, but, it is unclear exactly how many FLB were eaten per

grazer during the 1 hour incubation. We assume that estimated grazing rates on FLB are equivalent
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to grazing rates on Prochlorococcus. To convert to mortality, we assume that total Prochlorococcus loss

rates, ω are between 0.3 and 1 per day and calculate proportional losses by grazing as:

pgraz =
A

ω
. (16)
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Supplementary Note 3: ECLIP model and parameter inference

For completeness, and to help the reader, we repeat our descriptions of the ECLIP model in the supple-

mentary text.

ECLIP: Ecological Community driven by Light, with Infection of Phytoplank-

ton

The ECLIP model represents Prochlorococcus division and death where division is light-driven (where

cell division is expected to occur at night [21, 22]) and death is controlled by viral lysis, grazing, and

other density-dependent factors (Figure 1a). The Prochlorococcus population is structured by two states

of infection: cells that are susceptible to viral infection (S) and cells that are infected (I) by viruses (V ).

Grazers (G) feed indiscriminately on both S and I classes. The dynamics of S, I, V and G numerical

abundances over time are described by the following system:

dS

dt
=

division︷ ︸︸ ︷
µ(t)S −

higher-order losses︷ ︸︸ ︷
mPS(S + I) −

infection︷ ︸︸ ︷
ϕSV −

grazing︷ ︸︸ ︷
ψSG

dI

dt
=

infected︷ ︸︸ ︷
ϕSV −

higher-order︷ ︸︸ ︷
mP I(S + I)−

viral-lysis︷︸︸︷
ηI −

grazing︷︸︸︷
ψIG

dV

dt
=

viral production︷︸︸︷
βηI −

adsorption︷ ︸︸ ︷
ϕ(S + I)V −

higher-order losses︷ ︸︸ ︷
mV V

2

dG

dt
=

grazing on Prochlorococcus︷ ︸︸ ︷
ϵ
NP
NG

ψ(S + I)G −
generalist grazing︷︸︸︷

γG −

higher-order losses︷ ︸︸ ︷
mGG

2 ,

(17)

where

η =
24

LP
,with LP is the latent period (in hours) (18)

µ(t) = µave ( 1 + δµ sin( 2π(t+ δt) ) ) . (19)

Prochlorococcus have a diel-driven population division rate µ(t) whose proportional amplitude and phase

are set by parameters δµ and δt, and t = 0 represents 06:00:00 local time (see Figure S1). Prochlorococcus

have a nonlinear loss rate, mP , dependent on total phytoplankton population size to implicitly represent

niche competition [23]. Viruses infect susceptible Prochlorococcus at a rate ϕ and create β new virions

that are released into the environment upon cellular lysis, which occurs after an infection latent period

of 1
η . Grazing upon Prochlorococcus is non-preferential with respect to infection status and occurs at a

rate ψ with a Gross Growth Efficiency (GGE) ϵ proportional to the fraction of nitrogen contents in a

Prochlorococcus cell (NP = 5.01 × 10−9µg N cell−1) and a grazer ( NG = 6.53 × 10−6µg N cell−1). We

introduce γ as a parameter to denote whether grazers act as specialists (γ = 0) or generalists (γ > 0),

where the term represents net additional gains to the grazer from non-Prochlorococcus prey sources
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after accounting for respiratory costs. Generalist strategies may include ingesting other phytoplankton,

heterotrophic bacteria, or other grazers through intraguild predation. Grazer and viral losses are both

characterized by a nonlinear loss term to avoid structurally biasing the model to favour one of these types

of Prochlorococcus predators [24] and to avoid competitive exclusion. A full list of parameters are shown

in Table S2.

Figure S1: Diel-driven division rate. Solid blue and dashed orange lines are example division rate
curves to graphically explain how the different parameters used in the diel-driven division rate function
in ECLIP alter the model division rate. The parameters for division rate are represented by the average
division rate over 1 day, µave, the amplitude of the sinusoidal oscillations, δµ, and the phase of the
sinusoidal signal, δt. The two curves differ in their value of δt; the orange curve has δt = 0, while δt = 0.5
days for the blue curve.

Defining the specialism-generalism gradient

We define the degree of generalism (dgeneralism) as the ratio of growth performed by grazers derived from

other sources relative to that derived from both other sources and from consuming Prochlorococcus:

dgeneralism =
γ

ϵNP

NG
ψ(S + I) + γ

. (20)

Model inferred mortality

Total Prochlorococcus loss rates are defined as:

mtotal = mlysis +mgrazing +mother (21)

where:

mlysis = ηI

mgrazing = ψ(S + I)G

mother = mP (S + I)2.

(22)
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Event Variable Units

S and I Average division rate µave d−1

Amplitude division rate δµ unitless
Phase of the division rate δt d
Higher order loss rate mP L(cell · d)−1

V Adsorption ϕ L (virus · d)−1

Latent period LP hours
Burst size β viruses cell−1

Higher order viral losses mV L(virus · d)−1

G Clearance rate ψ L(grazer · d)−1

Degree of generalism γ d−1

Higher order grazer losses mG L(grazer · d)−1

Table S2: Parameters of the the ECLIP model

We defined the proportion of each mortality processes as follows:

rlysis = mean

(
mlysis

mtotal

)
rgrazing = mean

(
mgrazing

mtotal

)
rother = mean

(
mother

mtotal

)
.

(23)

Diel adsorption rates

We incorporated a diel adsorption rate into our analyses in Figure 9 to see if this would better represent

the observed population dynamics of infected Prochlorococcus cells. We did this by modulating the

average inferred adsorption rate with a time dependent step function such that adsorption rates are

highest at dusk, and lowest at dawn - consistent with lab experiments and associated modeling between

cyanophage and Prochlorococcus [25, 26].

ϕ(t) =


0.5ϕ 12 a.m. ≤ t ≤ 12 p.m.

1.5ϕ 12 p.m. ≤ t ≤ 12 a.m.

(24)

Model-data integration

General parameter inference implementation

We determined the parameter sets for the ECLIP model that optimized the fit of the model dynamics

to field measurements by using Markov Chain Monte Carlo (MCMC) implemented in the probabilistic

inference package Turing [27] in the Julia language [28]. MCMC is a class of Bayesian inference algo-

rithms that aims to infer the probability distribution of the model parameters given the model equations,

9



environmental data and prior beliefs [29]. We used the No-U-Turn Sampler (NUTS) implemented in

Turing to sample the posterior distributions [30]. Classic Hamiltonian Monte Carlo (HMC) algorithms

are sensitive to the number of steps of the simulation reducing the performance of the algorithm in

high-dimension problems. NUTS is a performant alternative algorithm for MCMC that eliminates the

need to set the number of steps, allowing better performance for high-dimensional parameter space and

non-linear dynamical models [30].

We implemented the parameter estimation in two steps. First, we estimated the three parameter

posterior distributions (µave, δµ and δt) for the division rate function (see Supplementary Information

equation 19) using a model-inferred Prochlorococcus division rate estimated for the same oceanographic

campaign by [31]. In a second step, we used the division parameter posteriors as priors for another

parameter inference to estimate the whole set of model parameters (µave, δµ, δt, mP , mV , mG, ϕ, β, LP ,

and ψ) and the abundance measurements for total and infected Prochlorococcus cells, cyanophages and

heterotrophic grazers. We repeated this second step six times by fixing the generalism term at γ = 0,

0.01, 0.05, 0.1, 0.2 and 0.5 respectively, to account to different levels of non-Prochlorococcus contributions

to grazing.

For each implementation, we ran 4 MCMC chains for 4000 iterations with a 2000 iteration warm-up

period (total iterations = 6000) and a target acceptance ratio of 0.65, allowing the algorithm to reach a

stationary state. For the model γ = 0.5, we obtained chains with high autocorrelation. To decrease the

autocorrelation we ran 16 independent chains of 4000 iterations and combined them in four longer chains

of 16000 iterations. We then thinned these longer chains [32] by sampling every 4 iterations to obtain 4

MCMC chains of 4000 iterations with lower autocorrelation.

Chain convergence analysis

To assess the convergence of the MCMC chains, we computed different indicators for each implementation

[33]. For each parameter, the inter-variability of the chains was computed as the R̂. When the set of

chains converged to the same posterior distribution, R̂ should be centered around 1 (with upper bound of

R̂ = 1.1), suggesting good convergence (Figure S5). We computed the ratio of effective sample size (Neff )

to the total iteration size (N = 4000) to search for potential sampling issues. Low ratio
(
Neff

N < 0.1
)
,

indicates potential sampling problems with higher chain auto-correlation, suggesting divergence (Figure

S5). Additionally, we also computed auto-correlation for each parameter chains of the ECLIP model

(Figure S8).

Division function parameter inference

We fitted our division function (Supplementary Information equation 19) to the timeseries of division rates

estimated by integrating in situ flow cytometry measurements with the pmb size-structured Prochlorococ-
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cus model described in [31]. Daily division rates were estimated using a size-structured matrix population

model that mechanistically describes changes in microbial cell size distribution over the day-night cycle

[31]. In brief, the model assumes that changes of the cell size distribution is driven by three interconnected

biological processes: carbon fixation via photosynthesis, carbon loss via respiration and exudation and

cell division. We select the pmb model with a power-law size dependence on carbon fixation since there

is strong evidence of an allometric growth rate in natural populations of Prochlorococcus [34]. The model

was fit to a logarithmically spaced discrete cell size distribution of Prochlorococcus provided by SeaFlow,

using the same priors of model parameters used in [31].

This implementation helped us to refine the division priors for the whole model parameter estimation

step. We used wide uniform priors for the three parameters of the division function: µave, δµ and δt

(Figure S2, Table S3). The 4 chains converged (R̂ ≈ 1, with no auto-correlation), to narrower distributions

centered around µave = 0.48 d−1, δµ = 0.75 d−1 and δt = 0.83 d. Our division function predicted well

the division rates from [31] (Figure S3).
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Figure S2: Priors and posteriors distribution for the division function parameters. We used
wide uniform priors (orange) allowing to search a wide space for each parameter. Posteriors (blue) had
narrower distributions that helped us to reduce the parameter range for the whole parameter inference
step.

ECLIP parameters inference implementation

To estimate the whole parameter set for the ECLIP model, we used environmental abundance data from

the SCOPE HOE-Legacy 2A cruise (see Empirical data section, 2.3 in the main text, for more informa-

tion). Specifically, we used total and infected Prochlorococcus cells, free cyanophage and heterotrophic

bacteria. We inferred parameters of the ECLIP model for six levels of generalism: γ = 0, 0.01, 0.05,

0.1, 0.2, and 0.5 day−1. For each implementation, we used the same priors for model parameters and

log-likelihood (see next section for more information on the priors). Comparison between posteriors of

the 6 models and the priors is shown in Figure S4.
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Figure S3: Division function fits. Our periodic function (purple) well represented the estimated
division rate (blue dot) from [31]. Gray vertical shaded areas represent the night periods.

Figure S4: Comparison of parameter prior and posterior estimates in ECLIP. Prior distri-
butions are represented in solid black lines, while posteriors are represented in colored solid lines (from
pink γ = 0 d−1 to dark green γ = 0.5 d−1).

Priors and parameter ranges

We defined priors for both inference implementations, for each of the model parameters and the standard

deviation σ of the likelihoods (Table S3). The ECLIP model is prone to identifiability problems due to

parameter correlations, possibly leading to performance and convergence issue of the MCMC algorithm.

Therefore, we weighted higher probability space for some parameters by setting Normal or log-Normal

priors instead of Uniform priors for the majority of the parameters, while setting wide variance for each

prior, to explore the larger parameter space as possible given ecological realistic ranges. Additionally,

for the whole implementation, we fixed three parameters to reduce parameter identifiability issues: the

gross growth efficiency (ϵ = 0.3, [35]), and the fraction of Nitrogen content for Prochlorococcus (NP =

5.01× 10−9µg N cell−1) and grazers (NG = 6.53× 10−6µg N cell−1).
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Implementation Variable Bounds Priors

Division function µave 0.1 – 1.5 Uniform
δµ 0 – 1 Uniform
δt 0 – 1 Uniform
σlikelihood,div. R+ InverseGamma(3,2)

Whole model µave 0.45 – 0.6 Normal(0.475, 0.005)
δµ 0.3 – 1 Normal(0.753, 0.017)
δt 0.2 – 1 Normal(0.828, 0.003)
mP 10−12 – 10−8 LogNormal

(
log

(
1.56× 10−10

)
, 1.249

)
ϕ 10−12 – 10−9 LogNormal

(
log

(
3.2× 10−11

)
, 1.48

)
LP 3 – 12 LogNormal(log (5) , 0.2)
β 0 – 100 Uniform
mV 10−11 – 10−5 LogNormal

(
log

(
1.01× 10−8

)
, 2.45

)
ψ 10−10 – 10−4 LogNormal

(
log

(
1.55× 10−6

)
, 0.5

)
mG 10−11 – 10−5 LogNormal

(
log

(
1× 10−6

)
, 0.776

)
σloglikelihood,P R+ InverseGamma(6,1)
σloglikelihood,I R+ InverseGamma(6,1)
σloglikelihood,V R+ InverseGamma(6,1)
σloglikelihood,G R+ InverseGamma(6,1)

Table S3: ECLIP Priors and parameter ranges. Parameters and priors explored for parameter
inferences.

Adding diel-dependent adsorption rates

In Figure S11 we added step-wise diel-dependent adsorption rates to the core ECLIP models, as described

earlier in this Supplementary Note and in Supplementary Information equation 24.

.
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a

c

b

Figure S5: Assessing MCMC convergence and efficiency for ECLIP models. (a) R̂ convergence
diagnostics. (b) Ratio of effective sample size to sample size. (c) Visualizing MCMC parameter chains
for each of the ECLIP models (note density plots from chains are shown in Figure 5c). Full details of
parameter bounds are shown in Table S2.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure S6: Identified parameter correlation in ECLIP models. Pearson correlation between
parameters in MCMC chains for models with: (a) γ = 0 d−1, (b) γ = 0.01 d−1, (c) γ = 0.05 d−1,
(d) γ = 0.1 d−1, (e) γ = 0.2 d−1, (f) γ = 0.5 d−1. (g) Pearson correlation between parameters across
all MCMC chains together. (h) Average of the assessed correlations between parameters across grazer
strategy models (a-f).

.
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a b

c d

Figure S7: Examples of parameter covariance in ECLIP. Scatterplots of highly correlated eco-
logical parameters: (a) adsorption rate (ϕ) vs lysis rate (η), (b) burst size (β) vs. viral higher order loss
(mV ), (c) grazer higher order loss (mG) vs. grazing rate (ψ), (d) Prochlorococcus higher order loss (mP )
vs. grazing rate (ψ).

.
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Figure S8: Parameter autocorrelation across ECLIP models. Autocorrelation was calculated as
the cross-correlation of the chain with itself. Strong autocorrelation is leading to patterns or periodicity
in the chain and suggest bad convergence. Our 6 models have relatively low autocorrelation for each
parameter suggesting convergence.

.
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Figure S9: Negative log-likelihood for Prochlorococcus, % of infected Prochlorococcus,
cyanophage and grazer across the 6 models. The negative log-likelihood function was calculated,
for each chain step, as LL(xi) =

∑n
i −log(p(xi)), where p(xi) is the model probability density function

following a log-normal distribution and n the number of observations. The best model has the minimum
LL. LL can only be compared between models for the same observations channels (Prochlorococcus, %
of infected, Cyanophage or Grazer) and not between channels. The 6 models have the same ability to
reproduce the observations for each chanels. Boxplots show the variability of the LL across the MCMC
chain.
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Figure S10: Averaged residence time of cyanophage (upper panel) and grazer (lower panel).
Viral and grazer residence times were calculated, for each chain step, as TV = mean(1/(mV · V (t)) and
TG = mean(1/(mG ·G(t)) respectively. Median virus residence times are similar across the 6 models and
range from 1.16 to 1.22 days, whereas median grazer residence times decreased from model 16.8 days
(model γ = 0) to 1.8 days (model γ = 0.5). Boxplots show the variability of the log-likelihood across the
MCMC chain.
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a b c

d e f

Figure S11: Models with diel adsorption rates across the specialism-generalism gradient fit
empirical data. ECLIP models are compared against empirical data in black. Model lines represent the
median MCMC solution within 95% CI range found by the converged chains, shown as bands with colours
representing the choice of γ. Data signals include Prochlorococcus cell abundances (top), the percent-
age of infected Prochlorococcus cells, the abundance of free viruses and the abundance of heterotrophic
nanoflagellate grazers (bottom). The models were fitted against detrended data; for visualization we
have added these trends to the model solutions. Grey bars indicate nighttime. Model solutions with: (a)
γ = 0 (grazers act as specialists), (b) γ = 0.01, (c) γ = 0.05, (d) γ = 0.1, (e) γ = 0.2, (f) γ = 0.5 day−1.
The degree of grazer specialism (Spe.) is shown in parentheses above each subplot.

.
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Cells killed per L per day
γ = 0 Sensitivity ratio γ = 0.5 Sensitivity ratio

µave 0.352398 µave 1.4308
ψ 0.30848 mG 1.14668
mG 0.155663 ψ 0.879708
ϕ 0.0253106 ϕ 0.106688
mV 0.0131785 mV 0.0553374
β 0.0129329 β 0.0548546
mP 0.00773625 mP 0.0498879
η 0.000203441 η 0.00402116
δµ 2.44229e-5 δµ 4.18003e-5
δt 7.90161e-11 δt 8.03853e-11

Lysis:grazing losses
γ = 0 Sensitivity ratio γ = 0.5 Sensitivity ratio

ϕ 0.352165 mG 1.2543
ψ 0.352145 µave 1.14596
β 0.179552 ψ 1.00171
mV 0.176093 ϕ 0.257941
mG 0.176073 β 0.131193
η 0.0319323 mV 0.127178

µave 0.0308442 mP 0.0449321
δµ 5.37848e-5 η 0.0277362
mP 2.70933e-7 δµ 4.6763e-5
δt 1.76728e-11 δt 2.70028e-11

Table S4: Assessing parameter sensitivity to model mortality outcomes. We assess parameter
sensitivity as applied to the parameter sets inferred via MCMC from the specialist grazing model (γ = 0)
and the model in which grazers act most as generalists (γ = 0.5). Parameters are ordered from most to
least sensitive for each evaluation, where sensitivity ratios are defined for outcomes Y (either cells killed
per L per day, or the lysis:grazing ratio) and each MCMC-inferred parameter X, based on increasing

and decreasing X by 20% as: J = | log10
(
Y (1.2X)
Y (0.8X)

)
|. This function denotes symmetric differences in

magnitude (x10) between the values Y (1.2X) and Y (0.8X), such that J = 1 means that the outcome
Y (1.2X) is ten times larger than Y (0.8X), or that Y (0.8X) is ten times larger than Y (1.2X); while
J = 0 would suggest Y (0.8X) = Y (1.2X). We varied one parameter at a time, while keeping all other
parameters at their inferred values. Parameters are defined in Table S2.

Model outcomes sensitivity analysis

To assess the robustness of our findings regarding Prochlorococcus mortality we performed sensitivity

analyses. To do this we focus on two model versions across the grazer specialism-generalism gradient,

that with γ = 0 and that with γ = 0.5. We took the MCMC inferred life-history parameter sets from each

of these models and ran simulations lasting 1,000 days (to avoid transient dynamics), and used dynamics

on the final day to evaluate baseline levels of mortality (cells killed per L per day) and mortality source

(lysis:grazing loss ratio). To assess the sensitivity of the ecological life-history traits in our model we

chose to vary one parameter at a time by increasing or decreasing it by 20% and comparing changes in

cells killed per L per day and lysis:grazing ratios to compute a sensitivity ratio: J = | log10
(
Y (1.2X)
Y (0.8X)

)
|.

21



This ratio assesses the magnitudinal differences in measured outcomes (Y ) between when each parameter

(X) is increased by 20% and decreased by 20%. Rank-ordered sensitivity ratio values are shown in Table

S4. We observe that some parameters are more sensitive than others; and that mortality outcomes in

the more generalist model (γ = 0.5) are overall more sensitive than in the specialist model (γ = 0).

Supplementary Note 4: Potential mechanisms to explain other

losses of Prochlorococcus

Undercharacterized ecological interactions

Mixotrophic nanoflagellates contribute to Prochlorococcus grazing, with measurements suggesting smaller

contribution relative to the heterotrophic nanoflagellates [17, 36] – but, still likely significant [37, 38].

Evaluating in situ mixotrophy is an ongoing challenge. Unknown viruses not quantified by the iPolony

method (e.g., cyanophage without an identifiable DNA polymerase gene - see [39]), and other grazer types

including larger consumers may contribute to ‘other mortality’. Additionally, in ECLIP viral-induced

and grazing-induced losses utilise a contact-driven model, analogous to ‘Type I’ functional responses.

Mechanistic changes in functional responses and/or responses to light may drive distinct interaction rates

(and aggregate mortality) even given the same set of viruses and grazers.

Aggregation and sinking of picoplankton

Picoplankton (and their viruses) are implicated as important contributors to export in large scale analy-

ses e.g., [40, 41], though Guidi et al. [41] suggest Synechococcus rather than Prochlorococcus abundances

appear correlated to export. Less is known about microscale processes leading to picoplankton export

contributions – Prochlorococcus cells can be sustained in laboratory culture for month-long experiments,

suggesting limited cell sedimentation. Generally, conceptual models of ocean ecology don’t include sink-

ing out of picoplanktonic populations – assuming it is inconsequential [42]. However, particle aggregation

could be stimulated via sloppy feeding or viral lysate [24, 43]. As viral lysate from picocyanobacteria is

labile [44–46] aggregation and sinking could be stimulated indirectly via heterotrophic bacterial growth.

Particle attachment and aggregation could also be stimulated by TEP (Transparent exopolymer parti-

cles), produced in xenic Prochlorococcus cultures [47, 48]. TEP production can be stimulated by high

light intensity, characteristic of the surface ocean, and its production appears linked to loss rates [47].

Picoplankton export could also be attributed to mineral ballasting [42] – both Synechococcus [49, 50] and

Prochlorococcus [50, 51] have been suggested to accumulate biogenic silica.
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Physiological stress(es)

Other cyanobacterial loss mechanisms include physiological stress, induced for example, by high-level

irradiance associated with ultraviolet radiation [52, 53] and refraction of light through surface waves

that could lead to photodamage via the flashing effect [54, 55]. Other abiotic factors including nutrient

deficiency [56], metal toxicity [57–59], and thermal variations [60, 61] can also contribute to increased

stress, though we do not expect significant thermal variations in the NPSG (mean seasonal changes

are +/- 3◦C ( 23.5-26.5 ◦C)). Stressors often results in the generation of reactive oxygen species, that

cause oxidative stress and can cause DNA damage. Reactive oxygen species are also used as a signalling

pathway for programmed cell death in photosynthetic microbes [62–64], though evidence is lacking for a

programmed cell death pathway in Prochlorococcus and sympatric heterotrophic bacteria are thought to

alleviate this stress [65, 66]. We note evidence is also lacking for toxin-antitoxin systems, common across

bacteria and archaea which could lead to cell loss, in Prochlorococcus [67].

Population heterogeneity

Microbes experience senescence and aging, leading to intracellular accumulation of damage through their

life cycle [68], which may lead to asymmetric division [69]. Unlike other microorganisms, Prochlorococ-

cus has no resting stages and relies on heterotrophic bacteria to survive nutrient starvation in cultures

[70], though the heterotrophic bacteria they form associations with in situ differ from those found in

culture which tend to be copiotrophic [71]. Prochlorococcus populations are combinations of ecotypes

which respond differently to environmental stressors [72–77]. Heterogeneity within the Prochlorococcus

population, potentially via vertical displacement, may mean there are differing mortality responses at the

individual or strain-level vs. at the scale of total population. Additionally, competition between ecotypes

and with other phytoplankton in the same niche (like Synechococcus or picoeukaryotes) may also increase

stresses, especially in a nutrient limited oligotrophic environment like the NPSG.
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