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Supplementary Note 1.  V2G2P approach and design considerations 
We aimed to create an approach to identify genes and programs relevant to disease risk that 
was cell-type specific, interpretable, unbiased with respect to prior information, and generally 
applicable to many cell types and complex traits. We and others have previously shown that 
combining both “top-down” information from gene programs and “bottom-up” approaches linking 
variants to genes can achieve higher specificity than either category of information alone3,31,32. 
By combining GWAS, epigenomic, and Perturb-seq data, the variant-to-gene-to-program 
(V2G2P) approach expands upon these previous approaches by (i) generating variant-to-gene 
and gene-to-program maps in the same cell type; (ii) generating gene-to-program maps using 
Perturb-seq, providing a unbiased approach not dependent on previously known biological 
pathways or gene sets; and (iii) providing interpretable, testable hypotheses linking a specific 
variant to a gene to a program in a given cell type.  

To implement this approach, we selected a cellular model enriched for heritability for the 
disease of interest. We constructed genome-wide enhancer-to-gene maps in endothelial cells 
by applying the Activity-by-Contact (ABC) model, which we recently showed performs well at 
linking noncoding variants to target genes in specific cell types9,22. ABC outperforms other 
methods at predicting the effects of enhancers on target genes 9,22, and requires minimal data 
inputs (e.g., ATAC-seq and H3K27ac ChIP-seq), allowing us, here, to apply the approach to link 
variants to candidate target genes in multiple endothelial cell states. We next created a catalog 
of gene programs and their regulators by applying Perturb-seq to systematically study all 
expressed genes in all GWAS loci for CAD. Perturb-seq, which involves knocking down 
hundreds to thousands of genes in parallel and measuring their effects on gene expression 
using single-cell RNA-seq, has previously been shown to provide a high-content, unbiased view 
of cellular programs as represented in gene expression17–19. Finally, we developed a simple 
statistical test to determine whether candidate disease genes might converge on particular gene 
programs by integrating gene-to-program information from Perturb-seq with variant-to-gene 
linking approaches. 

Below, we describe key design criteria, features, and performance characteristics of this 
V2G2P method: 
 
Selection of a cellular model 
The cellular model should be relevant to the GWAS trait of interest. Here, we chose an 
endothelial cell model as particularly relevant to the genetics of coronary artery disease, 
because: 1) endothelial cells play several key roles that are directly relevant to coronary artery 
atherosclerosis that leads to CAD, including: control of cholesterol influx from the blood, control 
of immune cell recruitment, and regulation of smooth muscle cell functions through release of 
vasoactive molecules, such as EDN1 and nitric oxide 13,14,50, 2) previous studies have 
demonstrated strong enrichment of CAD heritability in endothelial cells (e.g. 114), and 3) detailed 
studies of individual CAD GWAS loci have identified likely causal genes that are clearly related 
to endothelial cell functions, including  NOS3115, EDN114, JCAD116, ARHGEF26117, PLPP3118, 
and AIDA119.  

 
We chose telomerase immortalized human aortic endothelial cells (teloHAEC) for these 

studies, because, while immortalized, they maintain important in vitro EC functions such as 
tubing, lipid transport and response to inflammatory stimuli 21,120. We confirmed that teloHAEC 
enhancers were enriched for heritability for CAD (Extended Data Fig. 1a, Supplementary 
Tables 2 & 27). We also compared their gene expression profiles to those of primary coronary 
artery endothelial cells in vivo 69 and found that genes near GWAS signals were similarly 
expressed (Extended Data Fig. 1b-d). We expect that similar analyses will be useful for future 
applications of the V2G2P approach. 
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Notably, although we conducted our Perturb-seq experiment in resting, unstimulated 
conditions, we identified several programs related to specific stimulus responses. These 
included non-cell type-specific programs for unfolded protein response (UPR), DNA damage, 
heat shock, and inflammation, as well as endothelial-specific programs such as flow response 
and the endothelial to mesenchymal transition (endMT). Thus, knocking down genes with 
Perturb-seq in resting cells can, nonetheless, reveal gene programs relevant to various stimuli 
that may be informative for understanding disease mechanisms.  It remains possible, however, 
that prioritization of certain disease-associated programs will require specific atherogenic stimuli 
(e.g. inflammatory cytokines or oxidized LDL), and further studies will be required to test this 
possibility. 
  
Building a gene-to-program map using Perturb-seq 
  
Our approach to building a gene-to-program map using CRISPRi-Perturb-seq involved 
particular design and analysis considerations: 
  (i) We aimed to identify cellular programs and their related genes in an unbiased 
manner, such that we could look for enrichment of candidate CAD genes across a range of 
different endothelial cell pathways. This is in contrast to the approach of selecting a particular 
cellular phenotype (such as endothelial cell adhesion) that may or may not be important for the 
genetics of disease. Accordingly, we selected Perturb-seq due to its ability to perturb many 
hundreds or thousands of genes in parallel, and its ability to read out the effects on all genes in 
the genome, thereby providing a high-throughput and high-content readout of cell states.   
  (ii) Targeting all candidate genes near GWAS signals was important for the V2G2P 
approach. Specifically, we designed our Perturb-seq study to include all expressed genes within 
500 Kb on either side of each CAD GWAS signal, as well as the two closest genes on either 
side if they were further than 500Kb, rather than selecting just a prioritized subset of genes. In 
practice, this resulted in us testing a median of 8 genes per CAD GWAS locus. This unbiased 
approach to selecting genes was essential for conducting the V2G2P enrichment test, which 
examines whether particular programs contain more genes with CAD variant-to-gene (V2G) 
links than expected by chance. This assessment would have been impossible if we had pre-
selected only genes with V2G links to include in the Perturb-seq experiment. As such, the 
V2G2P enrichment test is applicable to experiments that perturb all expressed genes in all 
GWAS loci, or all genes in the genome. 

(iii) The CRISPRi Perturb-seq approach was designed to read-out long term 
transcriptomic effects of gene knockdowns in the expected range of effect for common disease 
variants. We aimed to perturb genes in a way consistent with presumed effects of noncoding 
variants, which are thought to lead to quantitative changes in the expression of genes (rather 
than completely eliminating expression), and which might act over long periods of time to affect 
disease risk. Accordingly, we used CRISPRi to quantitatively knock down gene expression 
(average: 40% reduction). We then read out the effects after 5 days of doxycycline induction, to 
allow perturbations to propagate through the network and identify how perturbations affect 
stable gene expression programs. 

(iv) We defined gene “programs” using an unsupervised machine learning approach 
(consensus non-negative matrix factorization), allowing us to identify sets of genes with similar 
properties (here, co-expression across single cells). This approach is independent of and 
unbiased by prior knowledge about endothelial cell pathways — allowing us to avoid bias 
toward rediscovering or over-emphasizing known pathways, and identify new pathways if they 
exist. We did indeed discover gene programs that appeared to correspond to a wide range of 
biological pathways active in endothelial cells. Many of the 50 programs appeared to 
correspond to housekeeping pathways active in all cell types, because these genes/pathways 
(as well as EC-specific ones) are expressed and functional in endothelial cells.   
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Supplementary Note 2. Comparison of V2G2P to other methods and studies for 
coronary artery disease 
 
We systematically compared the predictions of the V2G2P strategy to other previous studies 
which prioritized genes in CAD GWAS loci, and to other methods to prioritize gene sets relevant 
to a given trait. In considering these comparisons, we would note that V2G2P generates 
mechanistic hypotheses linking candidate variants to target genes to molecular pathways — a 
level of specificity and detail that goes far beyond other approaches, and that can directly help 
to guide follow-up mechanistic studies. As such, the evaluations described in this section (i.e., 
accuracy at identifying genes; accuracy at identifying programs) compare V2G2P to other 
existing approaches on those specific axes, without considering whether those approaches 
provide the same level of detail linking specific variants to cell types, genes, and gene 
expression programs. 
 
Prioritizing genes: 
Two prior studies specifically prioritized CAD genes that might act in endothelial cells: 
1) Stolze et al.29 cataloged eQTLs (correlating gene expression with genetic variants) in human 
aortic endothelial cells (HAECs) isolated from deceased heart donor aortic trimmings and 
cultured +/- IL-1β (53 individuals), as well as HAECs from another set of 157 donors (cultured 
+/- oxidized1-palmitoyl2-arachidonoyl-sn-glycero-3-phosphocholine). The authors’ colocalization 
analysis of these eQTLs with CAD GWAS identified only 6 GWAS loci with a single linked eQTL 
gene.   
2) Wunnemann et al.30 performed a CRISPR perturbation screen of CAD GWAS variant-
containing regulatory elements in 83 CAD loci, to identify elements that impacted 6 pre-selected 
phenotypes (E-selectin, ICAM1, VCAM1, nitric oxide, reactive oxygen species, and intracellular 
calcium). They identified 21 cases where a single gene was predicted to be regulated by CAD 
variants in a way that impacted these phenotypes in endothelial cells.  

Between these two studies, only 7 of the 41 CAD V2G2P genes were also prioritized in 
these prior studies. 3 additional genes were known endothelial cell CAD genes 
(Supplementary Table 16). Considering these previous studies, 31 of the 41 V2G2P genes 
have not previously been nominated as influencing CAD risk through effects in endothelial cells 
(Supplementary Table 17). 
 
We also compared our V2G2P genes to previous studies that prioritized genes in CAD GWAS 
loci, using a variety of methods that were not specific to endothelial cells or any other given cell 
type: 
1) Aragam et al.12 used the Polygenic Priority Score (PoPS) method3, which prioritizes genes 
based on their enrichment in gene sets derived from a variety of sources (including Gene 
Ontology, analysis of gene expression datasets, and others, irrespective of the cell-type-
specificity of those gene sets), which were linked to CAD by enrichment of CAD GWAS variants 
in and around the genes in each set. The authors computed PoPS scores for all protein-coding 
genes within 500 kb of all GWAS signals, and prioritized the gene with the highest PoPS score 
in each locus, resulting in 221 unique genes 12.  
2) Hodonsky et al.96 performed eQTL and spliceQTL colocalization using bulk RNA-seq data 
from 138 human explanted tissue samples from left anterior descending coronary arteries, right 
coronary arteries, and left circumflex arteries. The authors prioritized 22 genes as being the 
single eQTL in a locus colocalized with a CAD GWAS signal, and 18 genes based on 
colocalization with spliceQTLs.  
3) OpenTarget L2G98 used a supervised machine-learning model to learn the weights of multiple 
evidence sources (distance, molecular QTL colocalization, chromatin interaction, and variant 
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pathogenicity) based on a gold standard of previously identified causal genes. This analysis 
prioritized 103 genes in CAD GWAS loci.  
4) Li et al.97 performed a transcriptome-wide association study (TWAS) using genotype and 
expression data from 15 tissues (7 from STARNET and 8 from GTEx). This analysis prioritized 
114 genes in CAD GWAS loci.  
5) van der Harst and Verweij10 prioritized CAD GWAS variants using a Probabilistic Annotation 
Integrator based on several features such as LD information, p-value distribution, coding genes, 
and H3K4me1 sites. This analysis identified 10 cases where a single gene was prioritized as 
being regulated by CAD risk variants.  

Together, 23 of the 41 V2G2P genes we prioritized for CAD were also prioritized in one 
or more of these studies that prioritized genes using methods not specific to endothelial cells 
(Supplementary Table 17). 
 

Altogether, our V2G2P analysis prioritizes 17 genes, including CCM2 and TLNRD1, that 
were not prioritized by any of these previous studies (Supplementary Table 17).  
 

We next benchmarked our V2G2P approach versus each of these studies using the 
eight gold standard genes, for which clear evidence exists linking their roles in endothelial cells 
to atherosclerosis (Supplementary Table 16). The 41 V2G2P genes include 4 of 8 of these 
gold standard genes (50% recall). The two prior endothelial cell studies Stolze et al. 29 and 
Wunnemann et al. 30 each prioritized only 1 of 8 of these genes (12.5% recall). Of the non-cell 
type-specific studies, Hodonsky et al. 96 prioritized none of these genes, van der Harst et al. 10 
prioritized 1, Li et al.97 prioritized 2 (between 0 and 25% recall each). Only two methods had 
recall comparable to V2G2P, OpenTarget L2G 98, which prioritized 4 (50% recall) and the PoPS 
analysis by Aragam et al. 12, which prioritized 6 (75% recall). To estimate precision, we 
considered only the subset of the 8 gold standard gene loci where a call was made by each 
approach, and calculated the fraction of the prioritized genes corresponding to the gold 
standards (Extended Data Fig. 5g). V2G2P obtained 80% precision, better than both of the 
endothelial cell-specific approaches. Notably, the one “incorrect” prediction made by V2G2P 
was for SVIL, located next to JCAD, a known gold standard gene, and it is possible given the 
known function of SVIL that in fact there are two causal genes in this locus (see 
Supplementary Note 4). PoPS was the only method that obtained higher precision, but it 
prioritizes genes without providing information on likely causal variants, cell types, or gene 
expression pathways. By contrast, the V2G2P approach achieves good recall and precision 
while also providing specific molecular hypotheses about the variants, cell types, genes, 
pathways, and their regulatory relationships that can guide further mechanistic experiments.  
 
Prioritizing gene sets & programs: 
Several previous methods have been developed to identify gene sets relevant to a GWAS trait 
of interest. Three of the most recent and widely-used approaches are S-LDSC28,71 (which 
assesses whether variants within 100 Kb of genes in a given gene set are enriched for 
heritability for disease), MAGMA2 (which assigns a weighted score to each gene in the genome 
based on GWAS signals for nearby variants, and then correlates this score with a given gene 
set), and sc-linker42 (which links variants to genes based on a union of enhancer-gene 
predictions in a given tissue, and then looks for heritability enrichment of variants linked to a 
given gene set). Of these, only sc-linker prioritizes programs in a way that considers the cell-
type specificity of variant-to-gene links. 
 We compared V2G2P to each of these methods, and found that S-LDSC prioritized 2 out 
of 5 V2G2P programs (8 and 39), and additionally prioritized one additional endothelial cell 
program (50) and one housekeeping program (36) (Extended Data Fig. 5b). MAGMA 
prioritized 13 programs, including all 5 V2G2P programs plus 8 others. 3 of the MAGMA 



 

6 
 

prioritized programs were not EC-specific, likely because MAGMA does not incorporate any 
cell-type specific information in linking variants to genes (Extended Data Fig. 5a). sc-linker did 
not identify any significant programs for CAD, although the V2G2P programs for CAD were 
highly ranked by sc-linker’s heritability enrichment calculation (Extended Data Fig. 5f).  
 Notably, beyond prioritizing programs, V2G2P also nominates specific variants and 
genes in GWAS loci linked to these programs, whereas these 3 other methods do not. 
 

These results indicate that S-LDSC and MAGMA may have lower specificity for 
detecting heritability enrichment in relevant programs, likely because these approaches do not 
consider cell type specific information about likely regulatory variants and their targets (the V2G 
component of our V2G2P enrichment test). By contrast, sc-linker does incorporate some tissue-
specific V2G information, but appears to be less sensitive for the detection of significantly 
enriched programs. These observations support that the V2G2P approach achieves a higher 
sensitivity and specificity relative to other gene set prioritization methods by incorporating both 
variant-to-gene predictions and Perturb-seq data. Interestingly, however, we found that each of 
these three other approaches still ranked the 5 V2G2P CAD programs highly, consistent with 
these programs being robustly-associated with CAD heritability.   
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Supplementary Note 3.  Assessing the contributions of each component of the 
V2G2P approach 
 
 In combining V2G and G2P maps, we made several observations that help to explain 
the ability of V2G2P to identify disease-associated programs and genes:  

(i) The intersection of V2G and G2P maps in endothelial cells was important for the 
identification of disease-associated programs related to endothelial functions. For 195 of 228 
non-lipid signals, gene-to-program links identified more than 1 nearby gene (and up to 25) 
(Extended Data Fig. 6b), spanning all 50 programs—consistent with the notion that, by chance, 
a GWAS signal will have multiple nearby genes in various housekeeping and/or EC-specific 
programs. Statistical tests for enrichment of V2G linked-genes in programs, however, identified 
only 5 V2G2P CAD-associated programs for CAD, all of which were endothelial cell-specific 
(Fig. 2a,b).  

(ii) The intersection of V2G maps with CAD-associated programs was important to 
identify CAD-associated V2G2P genes and nominate single causal genes associated with 
GWAS signals. Among the 125 signals that had at least 1 V2G link, 119 signals were linked to 
more than 1 gene (and up to 5)—in large part due to noncoding variants being predicted to 
regulate more than one gene (Extended Data Fig. 6a), consistent with previous 
observations9,33. By contrast, of the 43 signals associated with CAD-associated V2G2P genes 
(V2G-linked genes in CAD-associated programs), only 6 had more than one such gene (up to 
2). For example, the intersection of V2G links and G2P links to CAD-associated programs 
reduced the number of likely causal genes at 20p13.1, 10p24.33 & 17q21.3 GWAS signals, 
where V2G and/or G2P links, individually, predicted multiple possible genes (Extended Data 
Fig. 7). We conclude that the V2G2P approach substantially refined the list of candidate 
disease genes compared to using V2G or G2P approaches alone (Fig. 2a,c, Extended Data 
Figs. 6h, & 7). 

(iii) Including epigenetic data from multiple endothelial cell states was important for 
linking variants to genes. Here, we used ABC maps from various endothelial cell samples, 
including resting and stimulated conditions for teloHAEC, to catch many possible endothelial cell 
states where variants might act. Considering the 49 V2G links for the 41 CAD V2G2P genes: 15 
were observed only in teloHAEC enhancers (including 8 identified in the resting, unstimulated 
teloHAEC state, and 7 solely identified in one or more of the 3 stimulated teloHAEC samples); 
14 were observed in both teloHAEC and one of the other endothelial cell samples (HUVEC and 
eahy926, each resting or under various stimulation conditions); 12 were observed only in one of 
the other endothelial cell samples; and 8 were the result of coding variants (Supplementary 
Table 26). 

(iv) The cell-type specificity of V2G links appeared to be important for identifying 
disease-associated programs. When we used a cell-type agnostic V2G approach in the V2G2P 
analysis (linking risk variants to the two closest genes, coding variant-containing genes, and two 
genes with strongest ABC links to enhancers in any cell type, as opposed to just endothelial 
cells), we found enrichment for 3 additional ubiquitous or non-endothelial cell specific 
processes: Program 5 (Interferon response), 36 (Steroid hormone response), and 37 (Redox 
homeostasis) (Extended Data Fig. 6c). Similarly, when we used MAGMA, which links variants 
to genes based on a weighted function of distance, without regard to cell-type-specific 
information, we also found enrichment for additional programs corresponding to processes not 
specific to endothelial cells (Extended Data Fig. 5a). 

(v) Defining programs with Perturb-seq appeared to be important. In one baseline 
analysis, we applied cNMF to define programs based only on the unperturbed cells in the 
experiment (5,506 cells carrying negative control guides), and repeated the V2G2P analysis. 
We found none of the programs derived from unperturbed cells were significantly enriched, and 
the top program included only 10 genes with V2G links instead of 18 for the top program derived 
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from the full Perturb-seq dataset. This suggests that the scale and/or perturbations present in 
the full Perturb-seq experiment were important for discovering disease-associated programs 
and genes (Extended Data Fig. 6e, see Methods). In a second analysis, we computed the 
V2G2P enrichment using only the co-regulated genes from the Perturb-seq programs (excluding 
the regulators in each program), and found only Program 8 and 39 to be significant (FDR < 
0.05, Extended Data Fig. 6f). Furthermore, most of the regulators of these programs, including 
CCM2, were not identified as CAD-associated V2G2P genes in this co-regulated gene-only 
analysis, because they were not co-expressed in these programs. This analysis supports that 
Perturb-seq was important for discovering genes and programs associated with CAD. 

Altogether, our results indicate that cell-type specific variant-to-gene and gene-to-
program maps can be combined to effectively prioritize disease-associated programs and 
genes. 
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Supplementary Note 4.  Loci and functions of additional V2G2P genes 
Examining the CAD-associated V2G2P genes downstream of CCM2 revealed insights into 
unresolved GWAS loci beyond the TLNRD1 locus, and highlighted the utility of combining 
variant-to-gene and gene-to-program maps.  

PREX1:  At a GWAS signal at 20p13.1, V2G2P analysis identified 2 genes that were 
linked by enhancer maps to a noncoding CAD variant (rs2004772) and 2 genes that were 
members of CAD-associated programs. Only one gene, PREX1 (one of the 17 novel CAD-
associated V2G2P genes that were not prioritized in any other study of CAD GWAS loci, 
Supplemental Table 17), satisfied both criteria (Extended Data Fig. 7a). PREX1 encodes a 
Rac guanine nucleotide exchange factor known to regulate actin organization121, similar to other 
CCM pathway members, and is down-regulated upon CCM2 knockdown (Fig. 3c). Knockout of 
PREX1 has been shown to affect endothelial cell migration in vitro and increase vascular barrier 
integrity in vivo122, consistent with a potential role in atherogenesis.  

SH3PXD2A and SLK:  At a GWAS signal at 10p24.3, noncoding variants located in the 
intron of STN1 were predicted to regulate two different CAD-associated V2G2P genes, 
SH3PXD2A and SLK, which were both co-regulated genes in Program 8 (Extended Data Fig. 
7b, Fig. 2c). Interestingly, SH3PXD2A encodes an adapter protein involved in invadopodia and 
podosome formation123, and SLK (another of the 17 novel CAD-associated V2G2P genes) 
encodes a kinase that localizes to podosomes during cell migration124, suggesting that genetic 
risk variants at this locus might regulate two genes with related functions.  

GOSR2:  At 17q21.3, the noncoding variant rs17608766 has been associated with CAD 
risk and also with other cardiovascular phenotypes including congenital heart defects125 and 
cardiac structure126–128. We previously linked this variant via an endothelial cell enhancer to 
GOSR2129, which encodes a trafficking membrane protein responsible for intra-Golgi transport. 
Here we observed that CCM2 knockdown led to up-regulation of GOSR2 (+122%, P = 8.9 x 10-

7, Supplementary Table 18), and GOSR2 knockdown led to up-regulation of Program 30 (ER 
stress response; +94%, FDR = 2.47 x 10-47) and down-regulation of the CAD-associated 
Program 35 (Focal adhesions, JUN; –23%, FDR = 8.78 x 10-4, Extended Data Fig. 7c). This 
identifies a transcriptional phenotype for GOSR2 in endothelial cells and suggests that GOSR2 
expression is linked to the CCM complex and other CAD-associated V2G2P genes.  

 
Other novel CAD-associated V2G2P genes included CALCRL, EXOC3L2, PRKARIA, 

SCUBE1, SPRY4, SVIL and TFPI. Below we summarize the literature regarding their functions 
in endothelial cells and potential roles in atherosclerosis and other vascular diseases: 

CALCRL (calcitonin receptor like receptor) encodes a receptor whose ligand 
(adrenomedullin) ameliorates development of atherosclerosis in Apoe-/- mice 130. Furthermore, 
mice w/ endothelial-specific CALCRL knockout have increased atherosclerosis 131. Interestingly, 
these phenotypes appear to be related to flow responses, since flow induces adrenomedullin 
release, and mice with defects in CALCRL or adrenomedullin lose EC flow responses132. 
 EXOC3L2 (exocyst complex component 3-like 2) encodes a VEGF-upregulated protein 
that interacts with the exocyst complex (which controls spatial targeting of exocytic vesicles), 
and is required for VEGF-mediated directional migration of endothelial cells 133.  
 PRKARIA (protein kinase, cAMP-dependent, regulatory, type I, alpha) encodes a 
regulatory subunit for cAMP-dependent protein kinases (PKA). PKA activation has been shown 
to inhibit the migration of endothelial cells in culture 134. Activation of PKA by adrenomedulin-
induced cAMP is also required for flow-mediated induction of NOS3 (eNOS) which produces 
nitric oxide to induce vasorelaxation 132. Interestingly, NOS3 and the adrenomedulin receptor 
CALCRL were also members of the 41 CAD-associated V2G2P genes found in our study. 
 SCUBE1 (signal peptide, CUB domain, EGF-like 1) encodes a cell surface glycoprotein 
expressed in platelets and endothelial cells, that can also be expressed in a soluble form. It 
promotes tube formation and proliferation, and inhibits apoptosis, in pulmonary artery ECs, and 
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is important for BMPR2-mediated activation of SMAD1/5/6 135. Perhaps relatedly, SMAD3 (a 
SMAD transcription factor specialized for signaling downstream of TGF-beta receptors, rather 
than BMP receptors) was also one of the 41 CAD associated V2G2P genes. In vivo, SCUBE1 
knockout mice show vascular defects, particularly in neovascularization after ischemic injury 136. 
Furthermore, whole body knockout of the soluble form (but not membrane bound form) 
diminished arterial thrombosis in mice and protected against lethal thromboembolism induced 
by collagen-epinephrine treatment 137. 
 SPRY4 (Sprouty 4) is an inhibitor of several MAPK signaling pathways, including EGFR 
signaling. It also functions to block integrin-mediated cell spreading via inhibition of TESK1-
mediated phosphorylation of cofilin 138. In vivo, SPRY4 knockout causes accelerated 
neovascularization 139, and enhances (VEGF)-A-induced angiogenesis and vascular 
permeability 140. 
 SVIL (supervillin) is a bipartite protein that forms strong attachments to the plasma 
membrane as well as to actin filaments (interestingly, TLNRD1 is also an actin binding adaptor 
protein). In vivo, it functions to inhibit platelet adhesion and arterial thrombosis (although it is 
unclear whether this is mediated by expression in platelets, endothelial cells or both), and SVIL 
variants are associated with high-shear stress thrombus formation 141. Note that SVIL is in the 
same locus as the known gold standard gene JCAD (and this is the one gold standard locus 
where V2G2P appeared to have nominated the wrong gene). Given the known functions of 
SVIL, however, it is possible that there are actually 2 causal genes in this locus.  
 Lastly, TFPI (tissue factor pathway inhibitor), is an inhibitor of activated factor X and 
VIIa-TF proteases in the blood clotting cascade, that functions to restore hemostasis, which also 
binds lipoproteins in serum. In vivo, systematic delivery of TFPI improves atherosclerotic plaque 
stability 142. Endothelial cell-specific knockout of TFPI also increases vascular permeability 143, 
and increases Fe++Cl-induced thrombosis 144. TFPI heterozygous knockout animals show 
increased atherosclerosis 145, but this may be due to TFPI functions in smooth muscle cells, 
since SMC-specific overexpression of TFPI reduces atherosclerosis in mouse models 146.  

In summary, prior studies on members of the 41 CAD-associated V2G2P genes 
suggests the importance of several endothelial cell pathways in CAD, including 1) CCM and 
related signaling pathways, 2) flow sensing and response, 3) regulation of thrombosis & 4) 
regulation of angiogenesis. 
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Supplementary Note 5. Summary of evidence supporting the robustness, impact 
and generalizability of the V2G2P approach. 
 
We have extensively validated the V2G2P approach for variant-to-function discovery through 
benchmarks that are standard in the field (including comparisons to gold standard genes for 
CAD and to previous studies and methods), by demonstrating its generalizability to other traits 
and cell types, and by additional validation experiments. These observations are summarized 
here:  

● Our V2G2P approach applied to endothelial cells and CAD prioritizes 4 out of 8 “gold 
standard” genes which have been shown to be important for CAD through their functions 
in endothelial cells (50% recall). 

● In addition to these 4 genes, 5 more of the 41 V2G2P genes have in vivo evidence, in 
the literature, for roles in atherosclerosis and/or vascular leakiness (Fig. 3c,d).  

● The 41 V2G2P genes were highly ranked by an independent gene prioritization method, 
PoPS, compared to other nearby genes at the same GWAS signals (rank-sum test P = 
2.5 x 10-53) 

● We compared our approach to 7 other studies that prioritized genes in CAD loci, and 
found that 31 out of 41 V2G2P genes were not prioritized in the 2 studies that focused 
on endothelial cells, and that 17 V2G2P genes were not prioritized in any of those 
studies, including CCM2 and TLNRD1 (Supplementary Note 2, Supplementary Table 
17).  

● We benchmarked the V2G2P approach, relative to these 7 other studies, for the ability to 
detect the 8 gold standard genes. We found that V2G2P had higher precision and recall 
than the two prior studies that focused on endothelial cells, and performed very well 
relative to the 5 non-cell type-specific prioritization studies (Supplementary Note 2, 
Extended Data Fig. 5g).  

● Moreover, in addition to high precision and recall, V2G2P provides more detailed 
molecular information about prioritized genes, relative to other existing approaches. 
Specifically, by systematically perturbing all relevant genes in all GWAS loci, and by 
measuring the effects of each perturbation on the transcriptome, V2G2P can identify 
convergent molecular programs in a way that no other existing approach can. This same 
analysis also provides detailed information for every prioritized gene, linking variants to 
genes, and genes to convergent gene expression programs (as co-regulated genes or 
upstream regulators), in a disease-relevant cell type. This information is expected to 
establish a solid foundation to guide further studies to understand novel disease 
mechanisms. 

● We benchmarked our approach against 3 state-of-the-art methods to prioritize gene 
sets/programs (S-LDSC, MAGMA & sc-linker), and found they each had lower sensitivity 
(detecting no significant programs, for sc-linker) and/or lower specificity (detecting non-
endothelial programs, for S-LDSC and MAGMA), highlighting the power of combining 
cell type-specific variant-to-gene linking (V2G) and Perturb-seq (G2P) approaches 
(Supplementary Note 2). Nevertheless, our 5 V2G2P programs were ranked highly by 
MAGMA, S-LDSC & sc-linker, consistent with these 5 programs being robustly 
associated with CAD heritability.  

● We performed internal benchmarking studies to show that each component of the 
V2G2P approach (e.g. cell type-specific epigenomic data, Perturb-seq data versus 
simple single cell RNA-seq data) and the combinations of these components were 
necessary for the high sensitivity and specificity of the approach (Supplementary Note 
3). 

● We validated transcriptional phenotypes discovered by Perturb-seq by single guide 
knockdowns of 9 genes (including genes perturbed in the screen as well as others 



 

12 
 

predicted to have similar regulatory effects, including CCM signaling components not 
tested in the original screen, Fig. 3c, Supplementary Table 18). 

● Importantly, we showed that the V2G2P method was generally applicable to other traits 
in endothelial cells and to a completely different cellular model, K562 cells, identifying 
programs and genes relevant to each trait and distinct from CAD (Extended Data Fig. 
12). Moreover, the fact that V2G2P identifies different, relevant programs for blood 
pressure GWAS loci in TeloHAEC than it does for CAD GWAS loci, confirms that V2G2P 
is not simply finding programs associated with common, nonspecific endothelial cell 
functions. 

● Regarding biological insights, our discovery that 41 genes linked to 43 CAD GWAS 
signals converge onto 5 programs all related to CCM signaling strongly supports our 
founding hypothesis that the large number of GWAS signals will converge onto a smaller 
number of disease-relevant pathways. Moreover, the observation that 43 CAD GWAS 
signals converge onto CCM signaling in endothelial cells, considering that 78 CAD loci 
are associated by GWAS with circulating lipid levels, suggests that this is a key 
mechanism controlling risk for CAD in the human population.  

● The power of this convergence for discovery of molecular mechanisms is highlighted by 
our finding that the poorly-studied gene TLNRD1 encodes a novel member of the CCM 
signaling pathway, that directly binds to CCM2 and has highly similar transcriptional, cell 
physiological and developmental functions. Furthermore, we demonstrate the likely 
relevance of both CCM2 and TLNRD1 for atherosclerosis, by showing that knockdown of 
either gene mimics atheroprotective effects of laminar blood flow on transcription and 
barrier function. 

 
In summary, our extensive benchmarking studies demonstrate that V2G2P identifies genes 
relevant to CAD, performs well relative to 7 other methods to prioritize CAD locus genes (both in 
its ability to detect gold standard genes and to detect novel genes), and outperforms 3 state-of-
the-art approaches to prioritize gene sets/programs. The validity of our approach is also 
supported by its generalizability to other traits and cellular models, and by its support for our 
initial hypothesis: that a systematic approach should reveal a convergence of multiple GWAS 
loci onto a small number of biological pathways. Finally, our approach provides something that 
no other method does: identifying molecular connections of all prioritized genes, to risk variants, 
to each other, and to convergent pathways related to disease. 
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Supplementary Fig. 1. Full Western blot images.  
a. Full blots for Fig. 5b. Signal for the non-fluorescent molecular weight ladder (MW, Precision Plus Dual 
Color Standards, Biorad #1610374) did not show up in the ECL images (left), and molecular weight 
positions were determined by reference to a white light image (right). Numbers on the side, molecular 
weights of ladder bands in kilodaltons (kDa). Regions cropped for the final figure are indicated in blue. To 
control for variability between extracts, protein concentration was determined using the Pierce BCA Assay 
(ThermoFisher), and an equal mass of protein used for each sample. “Unstripped V5 signal”: Bands 
remaining from the initial stain after stripping and reprobing. 
b. Full blots for Extended Data Fig. 9d. As for panel (a).  
c. Full blots for Extended Data Fig. 9e. As for panel (a), except that, in this blot, signal from the marker 
(Biorad #1610374) was strong enough in the ECL image to assign molecular weight positions without 
needing a white light image. 
d. Full blots for Extended Data Fig. 9f. As for panel (c). “Unstripped FLAG signal”: Bands remaining from 
the initial stain after stripping and reprobing. 
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Supplemental Fig. 2. Power and accuracy considerations for singlet thresholds  
a. We measured the correlation between differential expression log2 fold changes resulting from 37 
perturbed gene targets shared between a pilot library and our full-scale library. Violin plots show the 
increases in correlation coefficients (R) between relaxed threshold comparisons (pilot v. full library 
3&<=3x, and pilot v. full library 2&<=2x) and the base comparison (pilot vs. full library 4&<=4x), where 
singlet thresholds are abbreviated as “[UMIs for the top guide required to assign a guide to a cell] &<= 
[fold lower number of UMIs for the 2nd to top guide, to assign a singlet]”. Boxes: center line, median; 
limits, upper and lower quartiles. N=37. Significance was assessed by two sided T-test relative to the R 
values from the base comparison. Boxplot center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5x interquartile range. 
b. Plot of the change in R for each target using the full library 2&<=2x singlet definition vs. the 4&<=4x 
singlet definition (Y axis, same as rightmost violin plot in (a)) against the R value for the base correlation 
(between the pilot and the 4&<=4x full library singlet definition, X axis). N=37. 
c. Violin plots of log2 fold changes for knock down of the target genes in (a), in the full-scale library, for 
each singlet definition. Medians: -0.53 for 4&<=4x, -0.41 for 3&<=3x and -0.42 for 2&<=2x. N=37. Boxes 
as in (a). 
d. As in (c), but for all 2885 targets of the full-scale library. Median log2fc for targets with the 4&<=4x 
singlet definition was -0.368, and with the 2&<=2x singlet definition was -0.327. N=2885. Boxes as in (a). 
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