Programmable late-stage functionalization of bridgesubstituted BCP bis-boronates

Yangyang Yang,^{1†} Jet Tsien,^{1†} Ryan Dykstra,² Sijie Chen,³ James B. Wang,¹ Rohan R. Merchant,³

Jonathan M. E. Hughes,⁴ Byron K. Peters,⁴ Osvaldo Gutierrez,^{2,5} & Tian Qin¹

¹Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States.

² Department of Chemistry and Biochemistry, University of Maryland, College Park, Texas 77843, United States.

³ Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States.

⁴ Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

⁵ Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

[†]These authors contributed equally to this work.

Table of Contents

General Experimental16
Multi-gram Scale Preparation of BCP BisBoronates (13, 23-27) 17
Decagram-scale synthesis of BCP BisBoronates 23 ($R^1 = CO_2^i Pr$)
Gram-scale synthesis of BCP BisBoronates 24 (R ¹ = NBnBoc)
Gram-scale synthesis of BCP BisBoronates 25 (R ¹ = CH ₂ OBn)
Gram-scale synthesis of BCP BisBoronates 13 (R ¹ = Me)
Gram-scale synthesis of BCP BisBoronates 26 (R ¹ = CF ₃)
Gram-scale synthesis of BCP BisBoronates 27 (R ¹ = 4-MeOPh)
Optimization of Synthesis & Functionalizations of BCP Bisboronates
C2 control of Selective C3-Functionalization of BCP Boronates
Troubleshooting:
For Synthesis and Chemistry of BCP Bisboronates:
For Synthesis and Chemistry of BCP Bisboronates:
For 1 st functionalization of BCP Bisboronates:
For 1 st functionalization of BCP Bisboronates:
For 1 st functionalization of BCP Bisboronates:
For 1 st functionalization of BCP Bisboronates:
For 1st functionalization of BCP Bisboronates:61For 2nd functionalization of BCP Bisboronates:63General Experimental Procedures and Characterization Data of substrates in Selective C3-Bpin Functionalization of BCP BisBoronates65General Procedure A for Hydrazone Coupling of BCP BisBoronates66
For 1st functionalization of BCP Bisboronates:61For 2nd functionalization of BCP Bisboronates:63General Experimental Procedures and Characterization Data of substrates in Selective C3-Bpin Functionalization of BCP BisBoronates65General Procedure A for Hydrazone Coupling of BCP BisBoronates66Characterization of Substrates in Hydrazone Coupling (18, 32-35)68
For 1st functionalization of BCP Bisboronates:61For 2nd functionalization of BCP Bisboronates:63General Experimental Procedures and Characterization Data of substrates in Selective C3-Bpin Functionalization of BCP BisBoronates65General Procedure A for Hydrazone Coupling of BCP BisBoronates66Characterization of Substrates in Hydrazone Coupling (18, 32-35)68General Procedure B for Deborylation of BCP Bisboronates72

General Procedures D for C-S & C-N Formation of BCP Bisboronates
Characterization of Substrates in C-S & C-N Formation (44-47)
General Procedure E for Giese-type reaction of BCP Bisboronates
Characterization of Substrates in Giese reaction (48-54)
General Procedure F for Cross-Coupling of BCP Bisboronates
Characterization of Substrates in Cross-Coupling (55-69)
General Procedure G for Minisci reaction of BCP Bisboronates
Characterization of Substrates in Hydrazone Coupling (70-79) 107
Experimental Procedures and Characterization Data of substrates in Late-
stage Functionalization of BCP C2-Boronates115
Experimental Procedures and Characterization of C1, C2-disubstituted BCPs (80-94) 115
Experimental Procedures and Characterization of C1, C2, C3-trisubstituted BCPs (96-
105)
Reverse Reactivity of BCP Bis-boronates142
Experimental Procedures and Characterization Data of BCP Analogue 115
and Bioactive Arene 116147
Current Methods and Substrates Limitation of BCP Bisboronates Functionali-
zations
Differential Scanning Calorimetry (DSC) Experiments of Compound 13, 23-
26, SI-5, SI-7 & SI-16161
X-ray Crystallographic Data for BCP Compounds167
Computational Investigation on BCP BisBoronates
Procedure for Compound Enumeration218
Enumeration of tri-substituted BCP and arenes

Enumeration of 1,2- and 1,3-disubstituted BCP and arenes	
Calculation of Principal Moments of Inertia (PMI) and 3D Scores	
Reference	
NMR Spectra	223
Compound 29 ¹ H NMR	224
Compound 29 ¹³ C NMR	225
Compound 30 ¹ H NMR	226
Compound 30 ¹³ C NMR	227
Compound 31 ¹ H NMR	228
Compound 31 ¹³ C NMR	229
Compound 31 ¹¹ B NMR	230
Compound 23 ¹ H NMR	
Compound 23 ¹³ C NMR	
Compound 23 ¹¹ B NMR	
Compound SI-2 ¹ H NMR	
Compound SI-3 ¹ H NMR	
Compound SI-4 ¹ H NMR	
Compound SI-4 ¹³ C NMR	
Compound SI-5 ¹ H NMR	
Compound SI-5 ¹³ C NMR	
Compound SI-5 ¹¹ B NMR	
Compound 24 ¹ H NMR	
Compound 24 ¹³ C NMR	
Compound 24 ¹¹ B NMR	
Compound SI-6 ¹ H NMR	
Compound SI-7 ¹ H NMR	
Compound SI-7 ¹³ C NMR	
Compound SI-7 ¹¹ B NMR	
Compound 25 ¹ H NMR	
Compound 25 ¹³ C NMR	

Compound 25 ¹¹ B NMR
Compound SI-9 ¹ H NMR
Compound SI-9 ¹³ C NMR
Compound SI-10 ¹ H NMR
Compound SI-10 ¹³ C NMR
Compound SI-10 ¹¹ B NMR255
Compound 13 ¹ H NMR
Compound 13 ¹³ C NMR
Compound 13 ¹¹ B NMR
Compound SI-12 ¹ H NMR
Compound SI-12 ¹³ C NMR 260
Compound SI-13 ¹ H NMR 261
Compound SI-13 ¹³ C NMR
Compound SI-13 ¹⁹ F NMR
Compound SI-14 ¹ H NMR
Compound SI-14 ¹³ C NMR
Compound SI-14 ¹⁹ F NMR
Compound SI-15 ¹ H NMR
Compound SI-15 ¹³ C NMR
Compound SI-15 ¹⁹ F NMR
Compound SI-15 ¹¹ B NMR270
Compound SI-16 ¹ H NMR 271
Compound SI-16 ¹³ C NMR
Compound SI-16 ¹¹ B NMR
Compound SI-16 ¹⁹ F NMR274
Compound 26 ¹ H NMR
Compound 26 ¹³ C NMR
Compound 26 ¹¹ B NMR
Compound 26 ¹⁹ F NMR
Compound SI-18 ¹ H NMR 279
Compound SI-18 ¹³ C NMR

Compound SI-19 ¹ H NMR	1
Compound SI-19 ¹³ C NMR	2
Compound SI-20 ¹ H NMR 28	3
Compound SI-20 ¹³ C NMR	4
Compound SI-20 ¹¹ B NMR	5
Compound 27 ¹ H NMR	6
Compound 27 ¹³ C NMR	7
Compound 27 ¹¹ B NMR	8
Compound 15 ¹ H NMR	9
Compound 15 ¹³ C NMR	0
Compound 15 ¹¹ B NMR	1
Compound 17 ¹ H NMR	2
Compound 17 ¹³ C NMR	3
Compound SI-22 ¹ H NMR	4
Compound SI-22 ¹³ C NMR	5
Compound SI-23 ¹ H NMR	6
Compound SI-23 ¹³ C NMR	7
Compound 18 ¹ H NMR	8
Compound 18 ¹³ C NMR 29	9
Compound 18 ¹¹ B NMR	0
Compound 32 ¹ H NMR	1
Compound 32 ¹³ C NMR	2
Compound 32 ¹¹ B NMR	3
Compound 33 ¹ H NMR	4
Compound 33 ¹³ C NMR	5
Compound 33 ¹¹ B NMR	6
Compound 34 ¹ H NMR	7
Compound 34 ¹³ C NMR	8
Compound 34 ¹¹ B NMR	9
Compound 35 ¹ H NMR	0
Compound 35 ¹³ C NMR	1

Compound 35 ¹¹ B NMR
Compound 36 ¹ H NMR
Compound 36 ¹³ C NMR
Compound 36 ¹¹ B NMR
Compound 37 ¹ H NMR
Compound 37 ¹³ C NMR
Compound 37 ¹¹ B NMR
Compound 38 ¹ H NMR
Compound 38 ¹³ C NMR
Compound 38 ¹¹ B NMR
Compound 39 ¹ H NMR
Compound 39 ¹³ C NMR
Compound 39 ¹¹ B NMR
Compound 40 ¹ H NMR
Compound 40 ¹³ C NMR
Compound 40 ¹¹ B NMR
Compound 40 ¹⁹ F NMR
Compound 41 ¹ H NMR
Compound 41 ¹³ C NMR
Compound 41 ¹¹ B NMR
Compound 42 ¹ H NMR
Compound 42 ¹³ C NMR
Compound 42 ¹¹ B NMR
Compound 43 ¹ H NMR
Compound 43 ¹³ C NMR
Compound 43 HSQC
Compound 43 ¹¹ B NMR
Compound 44 ¹ H NMR
Compound 44 ¹³ C NMR
Compound 44 ¹¹ B NMR
Compound 45 ¹ H NMR

Compound 45 ¹³ C NMR	3
Compound 45 ¹¹ B NMR	4
Compound 46 ¹ H NMR	5
Compound 46 ¹³ C NMR	6
Compound 46 ¹¹ B NMR	7
Compound 47 ¹ H NMR	8
Compound 47 ¹³ C NMR	9
Compound 47 ¹¹ B NMR	0
Compound 48 ¹ H NMR	1
Compound 48 ¹³ C NMR	2
Compound 48 ¹¹ B NMR	3
Compound 49 ¹ H NMR	4
Compound 49 ¹³ C NMR	5
Compound 49 ¹¹ B NMR	6
Compound 50 ¹ H NMR	7
Compound 50 ¹³ C NMR	8
Compound 50 ¹¹ B NMR	9
Compound 51 ¹ H NMR	0
Compound 51 ¹³ C NMR	1
Compound 51 ¹¹ B NMR	2
Compound 52 ¹ H NMR	3
Compound 52 ¹³ C NMR	4
Compound 52 ¹¹ B NMR	5
Compound 53 ¹ H NMR	6
Compound 53 ¹³ C NMR	7
Compound 53 ¹¹ B NMR	8
Compound 54 ¹ H NMR	9
Compound 54 ¹³ C NMR	
Compound 54 ¹¹ B NMR	
Compound 55 ¹ H NMR	
Compound 55 ¹³ C NMR	

Compound 55 ¹¹ B NMR	4
Compound 56 ¹ H NMR	5
Compound 56 ¹³ C NMR	6
Compound 56 ¹¹ B NMR	7
Compound 57 ¹ H NMR	8
Compound 57 ¹³ C NMR	9
Compound 57 ¹¹ B NMR	0
Compound 58 ¹ H NMR	1
Compound 58 ¹³ C NMR	2
Compound 58 ¹¹ B NMR	3
Compound 59 ¹ H NMR	4
Compound 59 ¹³ C NMR	5
Compound 59 ¹¹ B NMR	6
Compound 59 ¹⁹ F NMR	7
Compound 60 ¹ H NMR	8
Compound 60 ¹³ C NMR	9
Compound 60 ¹¹ B NMR	0
Compound 61 ¹ H NMR	1
Compound 61 ¹³ C NMR	2
Compound 61 ¹¹ B NMR	3
Compound 62 ¹ H NMR	4
Compound 62 ¹³ C NMR	5
Compound 62 ¹¹ B NMR	6
Compound 63 ¹ H NMR	7
Compound 63 ¹³ C NMR	8
Compound 63 ¹¹ B NMR	9
Compound 64 ¹ H NMR 400	0
Compound 64 ¹³ C NMR 402	1
Compound 64 ¹¹ B NMR 402	2
Compound 65 ¹ H NMR 403	3
Compound 65 ¹³ C NMR 404	4

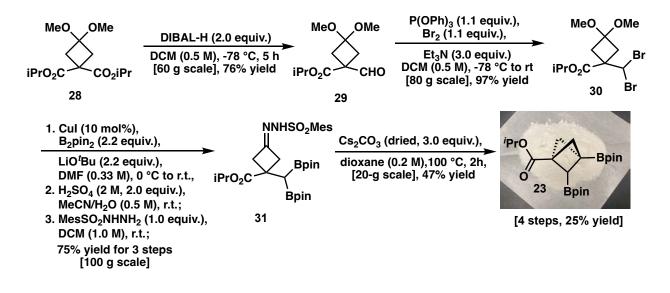
Compound 65 HSQC 405
Compound 65 ¹¹ B NMR
Compound 66 ¹ H NMR
Compound 66 ¹³ C NMR 408
Compound 66 ¹¹ B NMR
Compound 67 ¹ H NMR
Compound 67 ¹³ C NMR
Compound 67 ¹¹ B NMR
Compound 67 ¹⁹ F NMR
Compound 68 ¹ H NMR
Compound 68 ¹³ C NMR 415
Compound 68 ¹¹ B NMR
Compound 69 ¹ H NMR
Compound 69 ¹³ C NMR 418
Compound 69 ¹¹ B NMR
Compound 69 ¹⁹ F NMR
Compound 70 ¹ H NMR
Compound 70 ¹³ C NMR
Compound 70 ¹¹ B NMR
Compound 71 ¹ H NMR
Compound 71 ¹³ C NMR
Compound 71 ¹¹ B NMR
Compound 72 ¹ H NMR
Compound 72 ¹³ C NMR
Compound 72 ¹¹ B NMR
Compound 73 ¹ H NMR
Compound 73 ¹³ C NMR
Compound 73 HSQC
Compound 73 ¹¹ B NMR
Compound 74 ¹ H NMR
Compound 74 ¹³ C NMR

Compound 74 ¹¹ B NMR 436
Compound 74 ¹⁹ F NMR 437
Compound 75 ¹ H NMR438
Compound 75 ¹³ C NMR
Compound 75 ¹¹ B NMR 440
Compound 76 ¹ H NMR 441
Compound 76 ¹³ C NMR 442
Compound 76 ¹¹ B NMR 443
Compound 77 ¹ H NMR 444
Compound 77 ¹³ C NMR 445
Compound 77 HSQC 446
Compound 77 ¹¹ B NMR 447
Compound 78 ¹ H NMR 448
Compound 78 ¹³ C NMR 449
Compound 78 ¹¹ B NMR
Compound 78 ¹⁹ F NMR 451
Compound 79 ¹ H NMR 452
Compound 79 ¹³ C NMR 453
Compound 79 ¹¹ B NMR 454
Compound 79 ¹⁹ F NMR 455
Compound 80 ¹ H NMR
Compound 80 ¹³ C NMR 457
Compound 80 ¹¹ B NMR 458
Compound 80 ¹⁹ F NMR
Compound 81 ¹ H NMR 460
Compound 81 ¹³ C NMR 461
Compound 81 ¹¹ B NMR 462
Compound 82 ¹ H NMR
Compound 82 ¹³ C NMR464
Compound 82 HSQC 465
Compound 83 ¹ H NMR

Compound 83 ¹³ C NMR
Compound 84 ¹ H NMR
Compound 84 ¹³ C NMR 469
Compound 85 ¹ H NMR
Compound 85 ¹³ C NMR
Compound 86 ¹ H NMR
Compound 86 ¹³ C NMR
Compound 87 ¹ H NMR
Compound 87 ¹³ C NMR
Compound 88 ¹ H NMR
Compound 88 ¹³ C NMR
Compound 89 ¹ H NMR
Compound 89 ¹³ C NMR
Compound 90 ¹ H NMR
Compound 90 ¹³ C NMR
Compound 91 ¹ H NMR
Compound 91 ¹³ C NMR
Compound 91 ¹¹ B NMR
Compound 92 ¹ H NMR
Compound 92 ¹³ C NMR
Compound 93 ¹ H NMR
Compound 93 ¹³ C NMR
Compound 94 ¹ H NMR
Compound 94 ¹³ C NMR
Compound 94 ¹¹ B NMR
Compound 96 ¹ H NMR
Compound 96 ¹³ C NMR
Compound 97 ¹ H NMR
Compound 97 ¹³ C NMR 495
Compound SI-24 ¹ H NMR 496
Compound SI-24 ¹³ C NMR

Compound SI-24 ¹⁹ F NMR 498
Compound SI-24 ¹¹ B NMR 499
Compound 98 ¹ H NMR
Compound 98 ¹³ C NMR
Compound SI-25 ¹ H NMR
Compound SI-25 ¹³ C NMR
Compound SI-25 ¹⁹ F NMR
Compound SI-25 ¹¹ B NMR
Compound 99 ¹ H NMR
Compound 99 ¹³ C NMR
Compound SI-26 ¹ H NMR
Compound SI-26 ¹³ C NMR 509
Compound SI-26 ¹⁹ F NMR
Compound SI-26 ¹¹ B NMR
Compound 100 ¹ H NMR
Compound 100 ¹³ C NMR
Compound 101 ¹ H NMR
Compound 101 ¹³ C NMR
Compound SI-27 ¹ H NMR
Compound SI-27 ¹³ C NMR
Compound SI-27 ¹⁹ F NMR
Compound SI-27 ¹¹ B NMR
Compound 102 ¹ H NMR
Compound 102 ¹³ C NMR
Compound SI-28 ¹ H NMR
Compound SI-28 ¹³ C NMR
Compound SI-28 ¹⁹ F NMR
Compound SI-28 ¹¹ B NMR
Compound 103 ¹ H NMR
Compound 103 ¹³ C NMR
Compound 104 ¹ H NMR

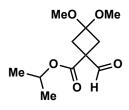
Compound 104 ¹³ C NMR	9
Compound 105 ¹ H NMR	0
Compound 105 ¹³ C NMR 53	1
Compound 105 HSQC	2
Compound 109 ¹ H NMR	3
Compound 109 ¹³ C NMR	4
Compound 109 ¹¹ B NMR53	5
Compound 111 ¹ H NMR	6
Compound 111 ¹³ C NMR	7
Compound 111 ¹¹ B NMR 538	8
Compound 110 ¹ H NMR	9
Compound 110 ¹³ C NMR	0
Compound 110 ¹¹ B NMR54	1
Compound 112 ¹ H NMR	2
Compound 112 ¹³ C NMR	3
Compound 112 ¹¹ B NMR	4
Compound 113 ¹ H NMR	5
Compound 113 ¹³ C NMR	6
Compound 113 ¹¹ B NMR	7
Compound SI-30 ¹ H NMR (containing 20% SI-29)	8
Compound 114 ¹ H NMR	9
Compound 114 ¹³ C NMR 55	0
Compound SI-31 ¹ H NMR	1
Compound SI-31 ¹³ C NMR	2
Compound SI-32 ¹ H NMR	3
Compound SI-32 ¹³ C NMR	4
Compound 115 ¹ H NMR	5
Compound 115 ¹³ C NMR	6
Compound SI-33 ¹ H NMR 55	7
Compound SI-33 ¹³ C NMR 55	8
Compound SI-34 ¹ H NMR	


Compound SI-34 ¹³ C NMR	560
Compound 116 ¹ H NMR	561
Compound 116 ¹³ C NMR	562

General Experimental

Tetrahydrofuran (THF), diethyl ether (Et₂O), toluene and dichloromethane (CH₂Cl₂) were obtained by passing the previously degassed solvents through an activated alumina column. Dioxane and reagents were purchased at the highest commercial quality and used without further purification. All of the rest reagents were purchased from BLD Pharmatech Co., Sigma-Aldrich, TCI, Synthonix and Combi-Blocks, which were used without further purification. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous material. Reactions were monitored by GC-MS (Rtx-5MS, 30 m, 0.25 mm ID, 0.25 µm), GC-FID (SH-Rxi-5Sil MS, 30m, 0.25 mm ID, 0.25 µm), LC/MS, and thin layer chromatography (TLC). TLC was performed using 0.25 mm E. Merck silica plates (60F-254), using short-wave UV light as the visualizing agent, and phosphomolybdic acid and CAM (H₂SO₄, ammonium molybdate and cerric ammonium sulfate), or KMnO₄ and heat as developing agents. NMR spectra were recorded on Bruker Ascend-600 spectrometers, Varian Inova-400 spectrometers and Bruker Ascend-400 spectrometers instruments and are calibrated using residual undeuterated solvent (CHCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR; acetone at 2.05 ppm ¹H NMR, 29.84, 206.26 ppm ¹³C NMR; DMSO at 2.50 ppm ¹H NMR, 39.52 ppm ¹³C NMR; methanol at 3.31 ppm ¹H NMR, 49.00 ppm ¹³C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. ¹³C signals adjacent to boron are generally not observed due to quadrupolar relaxation. Column chromatography was performed using E. Merck silica (60, particle size 0.043–0.063 mm), and preparative TLC was performed on Merck silica plates (60F-254). Melting points were recorded on a Fisher ScientificTM melting point apparatus (12-144) and are uncorrected. Optical rotation data was recorded on a JAS DIP-360 digital polarimeter.

Multi-gram Scale Preparation of BCP BisBoronates (13, 23-27)


Decagram-scale synthesis of BCP BisBoronates 23 ($R^1 = CO_2^i Pr$)

Step 1: Synthesis of compound 29

A 2-L three-necked (24/40 joint) round-bottomed flask, equipped with a 6.4 cm Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with diisopropyl 3,3-dimethoxycyclobutane-1,1dicarboxylate, compound 28, (103.8 g, 360 mmol, 1.0 equiv.). Methylene chloride (720 mL) was added into the flask and the mixture was cooled in a dried ice-acetone bath (-78 °C) and stirred for 15 minutes. Next a solution of DIBAL-H (720 mL, 1 M in hexanes, 2.0 equiv., pre-cooled at -78 °C) was added dropwise into the flask through a dropping funnel at -78 °C in 2 hours and the mixture was allowed to stir at -78 °C for another 3 hours. After it was confirmed that the starting material, 28, was consumed through TLC analysis, the reaction was quenched at -78 °C with methanol (24 mL, 720 mmol, 2.0 equiv.). After the reaction was slowly warmed to room temperature, water (29 mL), 20 % NaOH (29 mL) and water (72 mL) was slowly added into the reaction mixture in sequence and the mixture was allowed to stir for another 30 minutes. Next, excess Na₂SO₄ was added to dry the reaction mixture and the suspension was filtered through Celite. Solvents was removed under vaccum and the crude product was purified through flash chromatography (hexanes: ethyl acetate, 5:1) on silica gel to afford 63 g (76%) of the title compound 29.¹

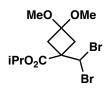
Compound 29

isopropyl 1-formyl-3,3-dimethoxycyclobutane-1-carboxylate (29)

Physical State: colorless oil.

¹**H** NMR (600 MHz, CDCl₃): δ 9.69 (s, 1H), 5.09 (hept, J = 6.3 Hz, 1H), 3.16 (s, 3H), 3.13 (s, 3H), 2.65 (d, J = 12.1 Hz, 2H), 2.61 (d, J = 11.8 Hz, 2H), 1.25 (d, J = 6.3 Hz, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 196.06, 170.25, 98.28, 69.74, 49.73, 48.79, 48.72, 37.30, 21.80 ppm.


HRMS (ESI-TOF): calc'd for C₁₁H₁₈O₅ [M+Na]⁺: 253.1047, found: 253.1035.

TLC: $R_f = 0.31$ (5:1 hexanes: ethyl acetate).

Step 2: Synthesis of compound 30

A 2-L three-necked (24/40 joint) round-bottomed flask, equipped with a 6.4 cm Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with triphenyl phosphite (78 mL, 300 mmol, 1.1 equiv.). Methylene chloride (340 mL) was added into the flask and the mixture was cooled to -78°C. Then bromine (15 mL, 300 mmol, 1.1 equiv.) was added slowly into the flask, followed by addition of triethyl amine (140 mL, 1.0 mol, 3.3 equiv.). (*Note: a suspension of the mixture was formed.*) Next, the solution of **29** (63 g, 270 mmol, 1.0 equiv.) in 160 mL methylene chloride was added into the mixture and the reaction was warmed up to room temperature. After it was confirmed that the starting material, **29**, was consumed through TLC analysis, solvent was removed by rotary evaporator and the crude product was purified through flash chromatography (hexanes: ethyl acetate, 20:1) on silica gel to afford 87 g (97%) of the title compound **30**.²

Compound 30

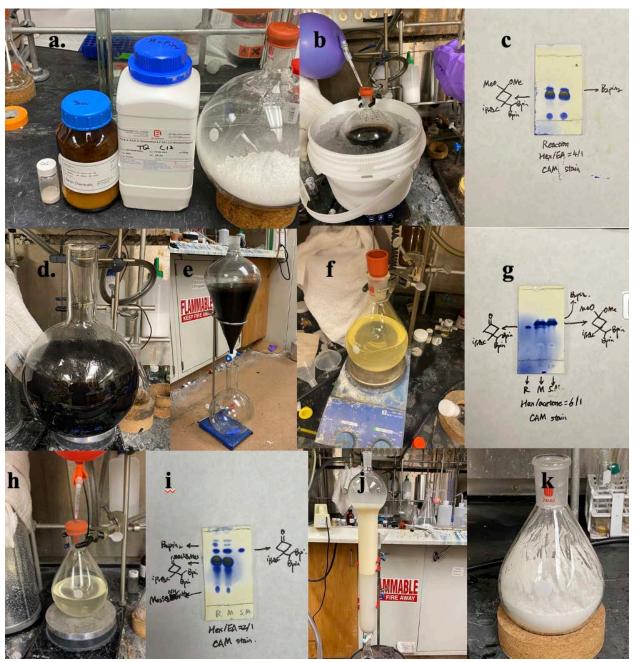
isopropyl 1-(dibromomethyl)-3,3-dimethoxycyclobutane-1-carboxylate (30)

Physical State: colorless oil.

¹H NMR (600 MHz, CDCl₃): δ 6.03 (s, 1H), 5.10 (hept, J = 6.3 Hz, 1H), 3.16 (s, 3H), 3.15 (s, 3H), 2.72 - 2.66 (m, 2H), 2.48 - 2.42 (m, 2H), 1.28 (d, J = 6.3 Hz, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 170.41, 96.85, 69.77, 49.87, 48.79, 48.75, 48.57, 40.13, 21.74. ppm.

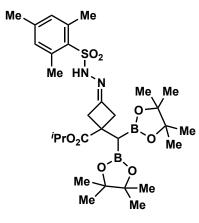
HRMS (ESI-TOF): calc'd for C₁₁H₁₈Br₂O₄ [M+Na]⁺: 394.9464, found: 394.9457.


TLC: $R_f = 0.32$ (10:1 hexanes: ethyl acetate).

Step 3: Synthesis of compound 31

A 2-L one-necked (24/40 joint) round-bottomed flask, equipped with a 6.4 cm Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with copper(I) iodide (4.88 g, 25.6 mmol, 0.1 equiv.), B₂pin₂ (140 g, 550 mmol, 2.2 equiv.), and lithium tert-butoxide (44.0 g, 550 mmol, 2.2 equiv.). After being evacuated and backfilled with argon from a balloon 3 times, DMF (500 mL) was added into the flask at 0 °C. Then a solution of compound **30** (256 mmol, 95.6 g, 1.0 equiv.) in DMF (250 mL) was added slowly into the mixture at 0 °C in 15 minutes and the reaction mixture was allowed to slowly warm to room temperature and stir for another 1 hour. After it was confirmed that the starting material, **30**, was consumed through TLC analysis, the reaction was filtered through Celite, washed with diethyl ether (200 mL) and quenched at 0 °C with water (500 mL) (Caution: the quenching process is exothermic). The mixture was transferred into a 6-L flask and diluted with water (1.5 L) and diethyl ether (300 mL). After the mixture was stirred for 30 minutes at room temperature, the two-phase solution was transferred into a 3-L separation funnel. The aqueous phase is separated and extracted with two 200-mL portions of diethyl ether. The combined organic layers are washed with the mixture of 200 mL water and 200 mL saturated NaCl solution twice, dried over Na₂SO₄, and filtered through Celite.³

After solvent was removed by rotary evaporator, the crude product was redissolved in 250 mL acetonitrile in a 1-L flask. 2M H₂SO₄ (256 mL, 2.0 equiv.) was added into the mixture at room temperature and the reaction was allowed to stir for another 1.5 hours. After it was confirmed that the ketal intermediate was consumed through TLC analysis, the crude reaction is concentrated to remove excess acetonitrile. Then diethyl ether (400 mL) and saturated brine (150 mL) is added to


the reaction mixture and the mixture is transferred to a 1-L separatory funnel. The aqueous layer is separated and further extracted with diethyl ether (3×150 mL). The combined organic layers are dried over Na₂SO₄, filtered through Celite. Excess solvent was removed by rotary evaporator. The crude product was redissolved in 250 mL methylene chloride in a 500 mL-flask and mesitylene sulfonyl hydrazide (54.9 g, 256 mmol, 1.0 equiv.) was added. The mixture was allowed to stir at room temperature for another 2 hours. After it was confirmed that the ketone intermediate was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 4:1 to 2:1) on silica gel to afford 116 g (73%) of the title compound **31**.¹

Graphic Suppoting Information for Synthesis of 31 (step 3)

(a) Reaction equipment setup charged with copper(I) iodide, B₂pin₂, and tBuOLi reagent; (b) The solution of **30** was added into the reaction mixture; (c) TLC plate of the borylation process; (d) The reaction was quenched by water and diluted with diethyl ether; (e) Extraction; (f) Hydrolysis of the crude ketal; (g) TLC plate of hydrolysis process; (h) Condensation of sulfonyl hydrazide; (i) TLC plate of the sulfonyl hydrazone; (j) Purification by column chromatography; (k) The final sulfonyl hydrazone product after being dried.

Compound 31

Isopropyl 1-(bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3-(2-(mesitylsulfonyl)hydrazineylidene)cyclobutane-1-carboxylate (31)

Physical State: white solid.

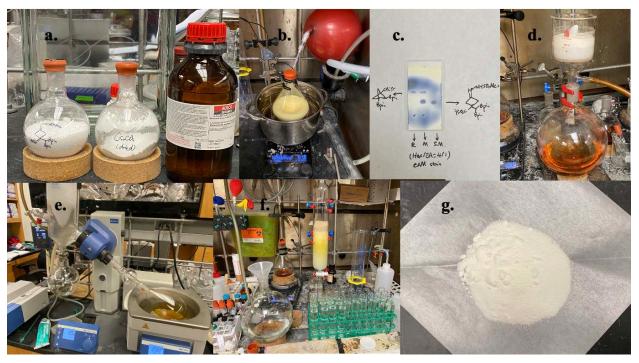
m.p.: 85-87 °C.

¹**H NMR (600 MHz, Acetone-***d*₆) δ 9.17 (s, 1H), 7.02 (s, 2H), 4.90 (hept, J = 6.2 Hz, 1H), 3.23 (ddd, J = 17.6, 3.3, 1.7 Hz, 1H), 3.12 (dt, J = 17.0, 2.5 Hz, 1H), 3.05 – 2.98 (m, 1H), 2.94 (ddd, J = 17.1, 3.4, 1.5 Hz, 1H), 2.65 (s, 6H), 2.28 (s, 3H), 1.22 (s, 1H), 1.19 (d, J = 6.3 Hz, 3H), 1.18 (d, J = 6.6 Hz, 3H), 1.17 (s, 6H), 1.16 (s, 6H), 1.13 (s, 12H) ppm.

¹³C NMR (151 MHz, Acetone-*d*₆) δ 176.43, 154.40, 143.07, 140.75, 134.85, 132.46, 83.83, 83.78, 68.79, 45.17, 43.93, 40.62, 25.18, 25.06, 24.74, 23.44, 21.80, 21.76, 20.85 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.98 ppm.

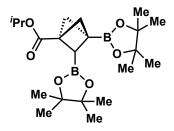
HRMS (ESI-TOF): calc'd for C₃₀H₄₈B₂N₂O₈S [M+H]⁺: 619.3390, found: 619.3402.


TLC: $R_f = 0.30$ (3:1 hexanes: ethyl acetate).

Step 4: Synthesis of 23

A 1-L one-necked (24/40 joint) round-bottomed flask, equipped with a 6.4 cm Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with **31** (61.8 g, 100 mmol, 1.0 equiv.) and dried cesium carbonate (100 g, 300 mmol, 3.0 equiv.). (*Note: Cesium carbonate was dried at 120 °C under vaccum for 18 hours.*) After being evacuated and backfilled with argon from a balloon 3 times, dioxane (500 mL) was added into the flask and the reaction mixture was allowed to stir at 100 °C for 40 minutes. After it was confirmed that the starting material, **31**, was consumed through TLC analysis, the reaction was cooled to room temperature, filtered through Celite, washed with hexanes (500 mL), and concentrated to remove excess solvents. The crude reaction was purified through flash chromatography (hexanes: ethyl acetate, 10:1) on silica gel to afford the title compound **23**, which was further purified through recrystallization in hexanes at -40 °C, affording 19.0 g product (47% yield) with >99% purity as white solids.¹

Recrystallization procedure: The product (around 21 g) after chromatography was dissolved in hexanes (10 mL) at room temperature and then cooled to -40 °C. After the solution of the product was slowly stirred at -40 °C for 1 h, the suspension was filtered and the white solid was washed with cooled hexanes (5 mL) quickly and dried under vaccum for 1 hour.


In the second run, following procedures in **step 4** on 87 mmol scale with the rest sulfonyl hydrazone **31**. Purification by flash chromatography (hexanes: ethyl acetate, 10:1) and trituration afforded 18.0 g (47%) of the title compound **23**.

Graphic Supporting Information for Synthesis of 23 (step 4)

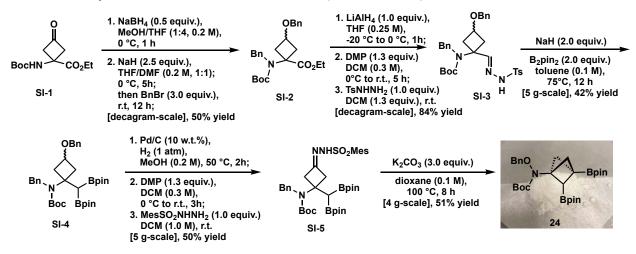
(a) Sulfonyl hydrazone **31**, dried cesium carbonate and dioxane; (b) The reaction mixture was stirred at 100 °C; (c) TLC plate of the cyclization reaction; (d) The reaction crude was filtered through Celite; (e) The reaction was concentrated; (f) Purification by column chromatography; (g) The final BCP bisboronate product after recrystallization.

Compound 23

isopropyl 2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1carboxylate (23)

Physical State: white solid.

m.p.: 41-43 °C.


¹**H NMR (600 MHz, CDCl₃)**: δ 4.93 (hept, *J* = 6.3 Hz, 1H), 2.71 (dd, *J* = 9.4, 2.3 Hz, 1H), 2.14 – 2.08 (m, 2H), 2.03 (dd, *J* = 8.1, 2.2 Hz, 1H), 1.88 (dd, *J* = 8.2, 0.9 Hz, 1H), 1.22 (s, 12H), 1.21 (s, 6H), 1.20 (s, 6H), 1.19 (d, *J* = 2.9 Hz, 3H), 1.18 (d, *J* = 3.0 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 169.49, 83.55, 83.10, 67.44, 55.81, 50.75, 44.87, 24.89, 24.87, 24.84, 24.79, 21.93 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.18 ppm.

HRMS (ESI-TOF): calc'd for C₂₁H₃₆B₂O₆ [M+H]⁺: 407.2771, found: 407.2778.

TLC: $R_f = 0.32$ (5:1 hexanes: ethyl acetate).

Gram-scale synthesis of BCP BisBoronates 24 (R¹ = NBnBoc)

Step 1: Synthesis of SI-2.

A flame-dried 1-L round-bottom flask charged with ethyl 1-([(tert-butoxy)carbonyl]amino)-3oxocyclobutane-1-carboxylate, **SI-1** (25 g, 100 mmol, 1.0 equiv.) dissolved in THF/methanol (500 mL, 4:1) was cooled to 0 °C. Then NaBH₄ (1.9 g, 50 mmol, 0.5 equiv.) was added slowly to the mixture at 0 °C and the reaction was allowed to stir at the same temperature for 1 h. After it was confirmed that the starting material, **SI-1**, was consumed totally, the reaction was quenched by water (1.0 mL). After excess solvent was removed, the mixture was diluted with ethyl acetate (200 mL) and transferred into a 1-L separatory funnel. The aqueous layer is separated and further extracted with ethyl acetate (3 × 100 mL). The combined organic layers are dried over Na₂SO₄, filtered through Celite. Excess solvent was removed by rotary evaporator. The crude alcohol was used without further purification.

The crude alcohol was dissolved in THF/DMF (500 mL, 1:1) and the mixture was cooled to 0 °C. NaH (10.0 g, 250 mmol, 2.5 equiv.) was added slowly to the reaction at 0 °C and the mixture was warmed to room temperature and stirred for 3 hours. After there is no bubble released, benzyl bromide (36 mL, 300 mmol, 3.0 equiv.) was added to the reaction at 0 °C and the mixture was allowed to stir at room temperature for around 12 hours. After it was confirmed that the alcohol intermediate was consumed totally, water (5.4 mL) was added to quench the reaction. Excess solvent was removed by rotary evaporator and the mixture was diluted with water (500 mL) and diethyl ether (200 mL) and then transferred into a 1-L separation funnel. The aqueous phase is separated and extracted with two 100-mL portions of diethyl ether. The combined organic layers

are washed with the mixture of 100 mL water and 100 mL saturated NaCl solution twice, dried over Na₂SO₄, and filtered through Celite. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 4:1) on silica gel to afford 21.9 g (50%) of the title compound **SI-2**.

Compound SI-2

ethyl 1-(benzyl(tert-butoxycarbonyl)amino)-3-(benzyloxy)cyclobutane-1-carboxylate (SI-2) *Note:* ¹*H NMR showed the presence of diastereoisomers and rotamers.*

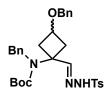
Physical State: yellow oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.31 – 7.14 (m, 10H), 4.49 (brs, 2H), 4.17 (brs, 2H), 4.12 – 4.06 (m, 2H), 3.65 (brs, 1H), 2.52 (brs, 4H), 1.35 (s, 9H), 1.24 – 1.13 (m, 3H) ppm. *Note: The complexity of the* ¹*H NMR is attributed to the diastereomerism and rotating isomerism.*

HRMS (ESI-TOF): calc'd for C₂₆H₃₃NO₅ [M+H]⁺: 440.2432, found: 440.2428.

TLC: $R_f = 0.68$ (3:1 hexanes: ethyl acetate).

Step 2: Synthesis of SI-3.


A flame-dried round-bottom flask charged with SI-2 (11.5 g, 25 mmol, 1.0 equiv.) dissolved in THF (100 mL) was cooled to -20 °C. LiAlH₄ (1.0 g, 26 mmol, 1.05 equiv.) was added slowly to the solution at -20 °C and the reaction was allowed to warm to 0 °C and stir at 0 °C for 1 hour. After it was confirmed that SI-2 was consumed totally, the reaction was quenched at 0 °C with water (1.0 mL), followed by 20% NaOH (1.0 mL) and water (3.0 mL) and the mixture was stirred at 0 °C for 30 min. Then excess Na₂SO₄ was added, and the suspended solution was stirred at room temperature for another 1 hour. The mixture was filtered through Celite, and the solvent was removed under high vacuum. The crude alcohol was used without further purification.

The crude alcohol was redissolved in methylene chloride (75 mL) and Dess–Martin periodinane (13.8 g, 32.5 mmol, 1.3 equiv.) was added to mixture at 0 °C. The reaction was allowed to warm to room temperature and stir for 2 hours. After it was confirmed that the alcohol intermediate was

consumed totally, the reaction was quenched by excess saturated NaHCO₃ solution and Na₂S₂O₃ solution and extracted with methylene chloride (100 mL) three times. The organic phase was separated, washed with brine, dried over Na₂SO₄ and evaporated. The crude aldehyde was used without further purification.

The aldehyde was dissolved in 25 mL methylene chloride and then p-toluenesulfonyl hydrazide (5.2 g, 27.5 mmol, 1.1 equiv.) was added. The mixture was allowed to stir at room temperature for another 1 hours. After it was confirmed that the aldehyde was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 3:1) on silica gel to afford 12.0 g (85%) of the title compound **SI-3**.

Compound SI-3

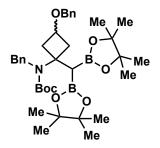
tert-butyl benzyl(3-(benzyloxy)-1-((2-tosylhydrazineylidene)methyl)cyclobutyl)carbamate (SI-3)

Note: ¹H NMR showed the presence of diastereoisomers (1/0.4) and trans/cis isomers. The ¹H NMR of the main isomer is given.

Physical State: yellow oil.

¹H NMR (600 MHz, Acetone-d⁶): δ 9.81 (s, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.58 (s, 1H), 7.38 – 7.14 (m, 12H), 4.25 (s, 2H), 4.15 (s, 2H), 3.87 (tt, J = 7.0, 4.2 Hz, 1H), 2.58 (dd, J = 13.7, 6.9 Hz, 2H), 2.34 (s, 3H), 2.29 (dd, J = 13.8, 4.1 Hz, 2H), 1.31 (s, 9H) ppm.

HRMS (ESI-TOF): calc'd for C₃₁H₃₇N₃O₅S [M+Na]⁺: 586.2346, found: 586.2344.


TLC: $R_f = 0.32$ (3:1 hexanes: ethyl acetate).

Step 3: Synthesis of SI-4

A dry round-bottom 500-mL flask charged with **SI-3** (12.0 g, 21 mmol, 1.0 equiv.), 60% NaH (1.68 g, 42 mmol, 2.0 equiv.) and B₂pin₂ (10.6 g, 42 mmol, 2.0 equiv.) was degassed and filled with argon for three times. Toluene (210 mL) was added, and the mixture was heated at 75 °C for 5 h.

After it was confirmed that the starting material **SI-3** was consumed totally, the reaction was cooled to room temperature and the suspension was filtered by Celite and washed by diethyl ether (200 mL). After solvent was removed by rotary evaporator from the filtrate, the crude product was flash chromatography (hexanes: ethyl acetate, 4:1) on silica gel to afford 5.3 g (42%) of the title compound **SI-4**.⁴

Compound SI-4

tert-butyl benzyl(3-(benzyloxy)-1-(bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)cyclo butyl)carbamate (SI-4)

Note: the main isomer was isolated and characterized.

Physical State: white solid.

m.p.: 99-101 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.25 – 7.04 (m, 10H), 4.59 (s, 2H), 4.07 (s, 2H), 3.48 – 3.33 (m, 1H), 2.69 – 2.63 (m, 2H), 2.36 – 2.28 (m, 2H), 2.09 (s, 1H), 1.38 (s, 9H), 1.17 (s, 12H), 1.17 (s, 12H) ppm.

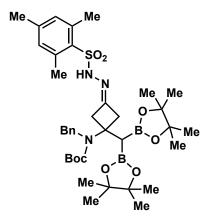
¹³C NMR (151 MHz, CDCl₃) δ 140.90, 138.80, 128.37, 128.22, 127.81, 127.29, 126.44, 126.40, 83.18, 69.66, 68.77, 49.84, 28.64, 25.05, 24.88 ppm. *Note:* CH(Bpin)₂, NC(cBu)(CH(Bpin)₂), NC(O)OtBu, NCH₂Ph and Me₃C were not observed.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 30.66 ppm.

HRMS (ESI-TOF): calc'd for C₃₆H₅₃B₂NO₇ [M+H]⁺: 634.4081, found: 634.4096.

TLC: $R_f = 0.68$ (3:1 hexanes: ethyl acetate).

Step 4: Synthesis of SI-5


A dry 250-mL round-bottom flask was charged with **SI-4** (7 g, 11 mmol, 1.0 equiv.) and Pd/C (10 w.t.%, 350 mg) and methanol (70 mL) was added then. After the flask was degassed and refilled with hydrogen for three times. The reaction mixture was heated at 50 °C for 2 h. After it was

confirmed that the starting material, **SI-4**, was consumed totally, the mixture was cooled to room temperature, filtered through Celite and concentrated. The crude alcohol was used without further purification.

The crude alcohol was redissolved in methylene chloride (40 mL) and Dess–Martin periodinane (6.4 g, 15 mmol, 1.3 equiv.) was added to mixture at 0 °C. The reaction was allowed to warm to room temperature and stir for 2 hours. After it was confirmed that the alcohol intermediate was consumed totally, the reaction was quenched by excess saturated Na₂CO₃ solution and Na₂S₂O₃ solution and extracted with methylene chloride (50 mL) three times. The organic phase was separated, washed with brine, dried over Na₂SO₄ and evaporated. The crude ketone was used without further purification.

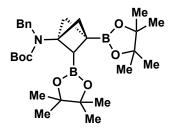
The ketone was dissolved in 25 mL methylene chloride and then mesitylsulfonyl hydrazide (2.6 g, 12 mmol, 1.1 equiv.) was added. The mixture was allowed to stir at room temperature for another 3-5 hours. After it was confirmed that the aldehyde was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 3:1) on silica gel to afford 4.48 g (55%) of the title compound **SI-5**.

tert-butyl benzyl(1-(bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3-(2-(mesityl sulfonyl)hydrazineylidene)cyclobutyl)carbamate (SI-5) Physical State: white solid.

m.p.: 161-163 °C.

¹**H NMR (600 MHz, Acetone-***d*₆): δ 9.08 (s, 1H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.22 – 7.15 (m, 3H), 6.98 (s, 2H), 4.71 – 4.52 (m, 2H), 3.28 – 3.01 (m, 4H), 2.57 (s, 6H), 2.28 (s, 3H), 2.10 (s, 1H), 1.55 – 1.29 (m, 9H), 1.25 – 1.12 (m, 24H) ppm.

¹³C NMR (151 MHz, Acetone-*d*₆): δ 142.98, 141.79, 140.73, 140.71, 135.00, 134.96, 132.44, 129.24, 127.21, 126.32, 84.09, 84.03, 50.70, 28.53, 25.21, 25.04, 25.01, 24.96, 23.43, 20.85 ppm. *Note:* CH(Bpin)₂, NC(cBu)(CH(Bpin)₂), NC(O)OtBu, NCH₂Ph and Me₃C were not observed.
 ¹¹B NMR (128 MHz, CDCl₃): δ 37.71 ppm.


HRMS (ESI-TOF): calc'd for $C_{38}H_{57}B_2N_3O_8S$ [M+H]⁺: 738.4125, found: 738.4148. TLC: $R_f = 0.40$ (3:1 hexanes: ethyl acetate).

Step 5: Synthesis of 24

A 250-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with **SI-5** (4.48 g, 6 mmol, 1.0 equiv.) and dried potassium carbonate (2.76 g, 20 mmol, 3.3 equiv.). (*Note: Potassium carbonate was ground and dried at 120 °C under vaccum for 18 hours.*) After being evacuated and backfilled with argon from a balloon 3 times, dioxane (60 mL) was added into the flask and the reaction mixture was allowed to stir at 105 °C for 8 hours. After it was confirmed that the starting material, **SI-5**, was consumed through TLC analysis, the reaction was cooled to room temperature, filtered through Celite, washed with diethyl ether (200 mL), and concentrated to remove excess solvents. The crude reaction was purified through flash chromatography (hexanes: ethyl acetate, 6:1) on silica gel to afford the title compound **24**, which was further purified through recrystallization in hexanes at -40 °C. affording 1.8 g product (57% yield) with >99% purity as white solids.¹

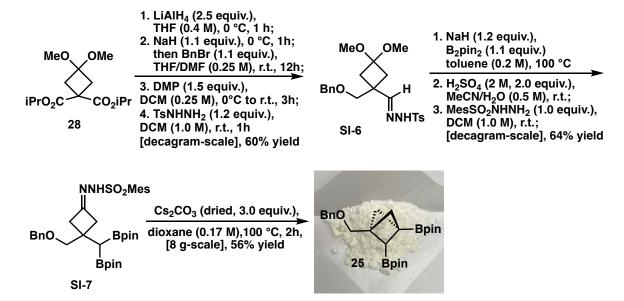
Recrystallization procedure: The product (around 2.5 g) after chromatography was dissolved in hexanes (2.0 mL) at room temperature and then cooled to -40 °C. After the solution of the product was slowly stirred at -40 °C for 40 minutes, the suspension was filtered and the white solid was washed with cooled hexanes (1.0 mL) quickly and dried under vaccum for 1 hour.

Compound 24

tert-butyl benzyl(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)carbamate (24)

Physical State: white solid.

m.p.: 89-91 °C.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.29 – 7.12 (m, 5H), 4.47 (brs, 2H), 2.56 (s, 1H), 2.12 (dd, *J* = 9.5, 1.4 Hz, 1H), 2.06 – 1.97 (m, 3H), 1.47 (s, 9H), 1.21 (s, 12H), 1.20 (s, 12H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 140.12, 128.26, 126.92, 126.51, 83.48, 83.07, 79.83, 52.68, 48.28, 28.69, 25.00, 24.95, 24.84, 24.81 ppm. *Note:* NC(O)OtBu, BocBnNC, NCH₂Ph, BpinCH, and BpinC were not observed.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 30.94 ppm.

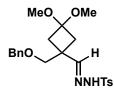
HRMS (ESI-TOF): calc'd for C₂₉H₄₆B₂NO₆ [M+H]⁺: 526.3506, found: 526.3518.

TLC: $R_f = 0.68$ (3:1 hexanes: ethyl acetate).

Gram-scale synthesis of BCP BisBoronates 25 (R¹ = CH₂OBn)

Step 1: Synthesis of SI-6

To a solution of diisopropyl 3,3-dimethoxycyclobutane-1,1-dicarboxylate, **28**, (115.2 g, 400 mmol, 1.0 equiv.) in dried THF (1.0 L) was added LiAlH₄ (38 g, 1.0 mmol, 2.5 equiv.) at 0 °C. The mixture was allowed to warm up to room temperature and stirred for 3 hours. After it was confirmed that the start material, **SI-6**, was totally consumed, water (38 mL) was slowly added at 0 °C, followed by 20% w.t. NaOH (38 mL) and water (95 mL), and the mixture was stirred at 0 °C for 30 min. Then excess Na₂SO₄ was added, and the suspended solution was stirred at room temperature for another 1 hour. The mixture was filtered through Celite, and the solvent was removed under high vacuum. The crude alcohol was used without further purification. The crude yield (90% from **28**) was calculated by ¹H NMR with dibromomethane as inner standard.


To a solution of the crude alcohol in THF/DMF (800 mL, 1:1) was added NaH (16.0 g, 400 mmol, 1.0 equiv.) slowly at 0 °C. (*Caution: Hydrogen was released.*) After the reaction was stirred for 1 hour at room temperature, benzyl bromide (52 mL, 440 mmol, 1.1 equiv.) was added and the mixture was allowed to stir for 12 hours at room temperature. After it was confirmed that the diol intermediate was totally consumed, the reaction was quenched with water (10 mL) at 0 °C. Excess solvent was removed by rotary evaporator and the mixture was diluted with water (500 mL) and diethyl ether (200 mL) and then transferred into a 1-L separation funnel. The aqueous phase is separated and extracted with two 200-mL portions of diethyl ether. The combined organic layers

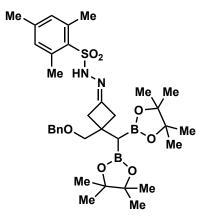
are washed with the mixture of 200 mL water and 200 mL saturated NaCl solution twice, dried over Na₂SO₄, and filtered through Celite. The crude yield (75% from **28**) was calculated by ¹H NMR with dibromomethane as inner standard.

After solvent was removed by rotary evaporator, the crude product was redissolved in methylene chloride (1.0 L) and Dess–Martin periodinane (153.5 g, 360 mmol, 0.9 equiv.) was added to mixture at 0 °C. The reaction was allowed to warm to room temperature and stir for 2 hours. After it was confirmed that the alcohol intermediate was consumed totally, the reaction was quenched by excess saturated Na₂CO₃ solution and Na₂S₂O₃ solution and extracted with methylene chloride (200 mL) three times. The organic phase was separated, washed with brine, dried over Na₂SO₄ and evaporated. The crude aldehyde was used without further purification. The crude yield (62.5% from **28** was calculated by ¹H NMR with dibromomethane as inner standard.

The aldehyde was dissolved in 100 mL methylene chloride and then p-toluenesulfonyl hydrazide (56 g, 300 mmol, 0.75 equiv.) was added. The mixture was allowed to stir at room temperature for another 1 hours. After it was confirmed that the aldehyde was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 3:1) on silica gel to afford 103.0 g (60% from **28**) of the title compound **SI-6**. *Cis/trans-isomerism (1/1.8) was observed. The 1H NMR characterization of main isomer was provided.*

N'-((1-((benzyloxy)methyl)-3,3-dimethoxycyclobutyl)methylene)-4-methylbenzenesulfonohydrazide (SI-6) Physical State: yellow oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.93 (s, 1H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.09 (m, 8H), 4.43 (s, 2H), 3.52 (s, 2H), 3.06 (s, 3H), 3.02 (s, 3H), 2.37 (s, 3H), 2.24 (d, *J* = 9.0 Hz, 2H), 2.11 (d, *J* = 13.3 Hz, 2H) ppm.


HRMS (ESI-TOF): calc'd for $C_{22}H_{28}N_2O_5S$ [M+H]⁺: 433.1792, found: 433.1786. TLC: $R_f = 0.23$ (2:1 hexanes: ethyl acetate).

Step 2: Synthesis of SI-7

A dry 1.0-L round-bottom flask charged with **SI-6** (103.0 g, 238 mmol, 1.0 equiv.) was degassed and filled with argon for three times. Toluene (1.0 L) was added, then 60% NaH (10.5 g, 262 mmol, 1.1 equiv.) was added in small portions and the mixture was stirred at room temperature for 1 h. A solution of B₂pin₂ (90 g, 357 mmol, 1.5 equiv.) in toluene (200 mL) was added. Then the reaction mixture was heated at 100 °C for 1 h.⁴ After cooling to room temperature, the suspension was filtered by Celite, and washed by diethyl ether (500 mL). After solvent was removed by rotary evaporator from the filtrate, the crude product was redissolved in 250 mL acetonitrile in a 1-L flask. 2 M H₂SO₄ (250 mL, 2.0 equiv.) was added into the mixture at room temperature and the reaction was allowed to stir for another 2 hours. After it was confirmed that the ketal intermediate was totally consumed, the crude reaction is concentrated to remove excess acetonitrile. Then diethyl ether (600 mL) and saturated brine (500 mL) is added to the reaction mixture and the mixture is transferred to a separatory funnel. The aqueous layer is separated and further extracted with diethyl ether (3 × 250 mL). The combined organic layers are dried over Na₂SO₄, filtered through Celite. Excess solvent was removed by rotary evaporator.

The crude ketone was redissolved in 250 mL methylene chloride in a 500 mL-flask and mesitylene sulfonyl hydrazide (55 g, 262 mmol, 1.1 equiv.) was added. The mixture was allowed to stir at room temperature for another 3-5 hours. After it was confirmed that the ketone intermediate was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 4:1) on silica gel to afford 100 g (64%) of the title compound **SI-7**.

Compound SI-7

N'-(3-((benzyloxy)methyl)-3-(bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)cyclo-butylidene)-2,4,6-trimethylbenzenesulfonohydrazide (SI-7)

Physical State: white solid.

m.p.: 198-200 °C.

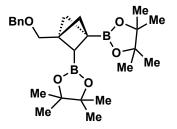
¹**H NMR (600 MHz, Acetone-***d*₆) δ 9.02 (s, 1H), 7.36 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 7.00 (s, 2H), 4.50 (s, 2H), 3.35 (d, *J* = 8.9 Hz, 1H), 3.33 (d, *J* = 8.9 Hz, 1H), 2.88 – 2.81 (m, 1H), 2.81 – 2.77 (m, 1H), 2.74 (ddd, *J* = 17.3, 3.1, 2.1 Hz, 1H), 2.66 (ddd, *J* = 17.3, 3.1, 2.1 Hz, 1H), 2.63 (s, 6H), 2.27 (s, 3H), 1.15 (s, 6H), 1.15 (s, 6H), 1.14 (s, 1H), 1.12 (s, 6H), 1.11 (s, 6H) ppm.

¹³C NMR (151 MHz, Acetone-*d*₆) δ 156.62, 142.96, 140.67, 139.71, 134.90, 132.41, 129.07, 128.36, 128.17, 83.67, 83.65, 78.27, 73.50, 43.34, 42.10, 36.28, 25.20, 25.08, 24.74, 23.39, 20.84 ppm.

¹¹**B NMR (128 MHz, Acetone-***d*₆): δ 33.11 ppm.

HRMS (ESI-TOF): calc'd for $C_{34}H_{50}B_2N_2O_7S [M+H]^+$: 653.3598, found: 653.3602.

TLC: $R_f = 0.37$ (3:1 hexanes: ethyl acetate).


Step 3: Synthesis of 25

A 500-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with **SI-7** (22 g, 33 mmol, 1.0 equiv.) and dried cesium carbonate (33 g, 100 mmol, 3.0 equiv.). (*Note: Cesium carbonate was dried at 120 °C under vaccum for 18 hours.*) After being evacuated and backfilled with argon from a balloon 3 times, dioxane (200 mL) was added into the flask and the reaction mixture was allowed to stir at 100 °C

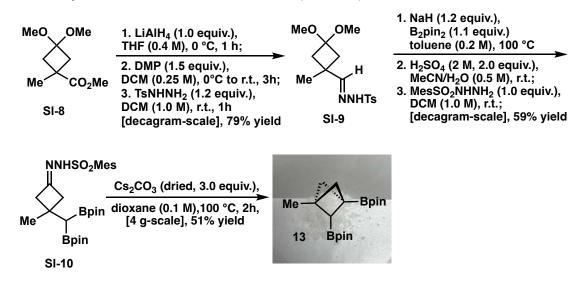
for 2 hours. After it was confirmed that the starting material, **SI-7**, was consumed through TLC analysis, the reaction was cooled to room temperature, filtered through Celite, washed with hexanes (500 mL), and concentrated to remove excess solvents. The crude reaction was purified through flash chromatography (hexanes: ethyl acetate, 10:1) on silica gel to afford the title compound **25**, which was further purified through recrystallization in hexanes at -40 °C. affording 8.3 g product (56% yield) with >99% purity as white solids.¹

Recrystallization procedure: The product (around 10 g) after chromatography was dissolved in hexanes (6 mL) at room temperature and then cooled to -40 °C. After the solution of the product was slowly stirred at -40 °C for 30 minutes, the suspension was filtered, and the white solid was washed with cooled hexanes (4 mL) quickly and dried under vaccum for 1 hour.

Compound 25

2,2'-(3-((benzyloxy)methyl)bicyclo[1.1.1]pentane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (25) Physical State: colorless crystal.

m.p.: 65-67 °C.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.36 – 7.28 (m, 4H), 7.24 (dd, *J* = 8.2, 5.9 Hz, 1H), 4.52 (s, 2H), 3.38 (d, *J* = 11.0, 1H), 3.36 (d, *J* = 11.0, 1H), 2.38 (dd, *J* = 9.7, 2.3 Hz, 1H), 1.93 (dd, *J* = 9.7, 1.5 Hz, 1H), 1.88 (s, 1H), 1.82 (dd, *J* = 8.3, 2.3 Hz, 1H), 1.67 (d, *J* = 8.2 Hz, 1H), 1.23 (s, 12H), 1.20 (s, 6H), 1.19 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 139.14, 128.32, 127.55, 127.37, 83.35, 82.91, 72.88, 71.28, 54.69, 49.02, 46.50, 24.99, 24.90, 24.87, 24.84 ppm.

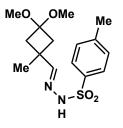
¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.92 ppm.

HRMS (ESI-TOF): calc'd for C₂₅H₃₈B₂O₅ [M+H]⁺: 441.2978, found: 441.2996.

TLC: $R_f = 0.54$ (5:1 hexanes: ethyl acetate).

Gram-scale synthesis of BCP BisBoronates 13 ($R^1 = Me$)

Step 1: Synthesis of SI-9


To a solution of methyl 3,3-dimethoxy-1-methyl-cyclobutanecarboxylate, **SI-8**, (10.8 g, 57 mmol, 1.0 equiv.) in diethyl ether (160 mL) was added LiAlH₄ (3.3 g, 85.5 mmol, 1.5 equiv.) at 0 °C. The mixture was allowed to warm up to room temperature. After it was confirmed that the start material, **SI-8**, was totally consumed, water (3.3 mL) was slowly added at 0 °C, followed by 20% w.t. NaOH (3.3 mL) and water (10 mL), and the mixture was stirred at 0 °C for 30 min. Then excess Na_2SO_4 was added, and the suspended solution was stirred at room temperature for another 1 hour. The mixture was filtered through Celite, and the solvent was removed under high vacuum. The crude alcohol was used without further purification.

To a solution of the crude alcohol in methylene chloride (250 mL) was added Dess–Martin periodinane (25 g, 60 mmol, 1.05 equiv.) at 0 °C and the reaction mixture was allowed to warm to room temperature and stir for 2 hours. Then after it was confirmed that the alcohol was consumed totally, the reaction was quenched by excess saturated Na₂CO₃ solution and Na₂S₂O₃ solution and extracted with methylene chloride (100 mL) three times. The organic phase was separated, washed with brine, dried over Na₂SO₄ and evaporated. The crude aldehyde was used without further purification.

The aldehyde was dissolved in methylene chloride (60 mL) and then p-toluenesulfonyl hydrazide (11.2 g, 60 mmol, 1.05 equiv.) was added. The mixture was allowed to stir at room temperature

for another 1 hour. After it was confirmed that the aldehyde was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 3:1) on silica gel to afford 14.7 g (79%) of the title compound **SI-9**.

Compound SI-9

N'-((3,3-dimethoxy-1-methylcyclobutyl)methylene)-4-methylbenzenesulfonohydrazide (SI-9) **Physical State**: white solid.

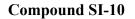
m.p.: 85-87 °C.

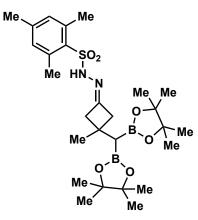
¹**H NMR (600 MHz, CDCl₃)**: δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.42 (*br.*, 1H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.25 (s, 1H), 3.12 (s, 3H), 3.04 (s, 3H), 2.43 (s, 3H), 2.28 (d, *J* = 13.1 Hz, 2H), 1.99 (d, *J* = 13.3 Hz, 2H), 1.28 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 157.68, 144.25, 135.30, 129.65, 128.16, 98.70, 48.46, 48.37, 41.94, 32.11, 24.46, 21.76 ppm.

HRMS (ESI-TOF): calc'd for C₁₅H₂₂N₂O₄S [M+H]⁺: 327.1273, not found.

LC-MS (ESI, m/z): calcd for [M+Na]⁺ 349.1; found:349.2.


TLC: $R_f = 0.20$ (2:1 hexanes: ethyl acetate).


Step 2: Synthesis of SI-10

A dry round-bottom flask charged with **SI-9** (14.7 g, 45 mmol, 1.0 equiv.), 60% NaH (2.2 g, 54 mmol, 1.2 equiv.) was degassed and filled with argon for three times. Toluene (200 mL) was added, and the mixture was stirred at room temperature for 1 h. A solution of B_2pin_2 (17.0 g, 67 mmol, 1.5 equiv.) in toluene (50 mL) was added via syringe. Then the reaction flask was heated at 100 °C for 1 h.⁴ After cooling to room temperature, the suspension was filtered by Celite, and washed by diethyl ether (200 mL). After solvent was removed by rotary evaporator from the filtrate, the crude product was redissolved in 45 mL acetonitrile in a 100-mL flask. 2M H₂SO₄ (45 mL, 2.0 equiv.) was added into the mixture at room temperature and the reaction was allowed to stir for another 2

hours. After it was confirmed that the ketal intermediate was totally consumed, the crude reaction is concentrated to remove excess acetonitrile. Then diethyl ether (150 mL) and saturated brine (150 mL) is added to the reaction mixture and the mixture is transferred to a separatory funnel. The aqueous layer is separated and further extracted with diethyl ether (3×50 mL). The combined organic layers are dried over Na₂SO₄, filtered through Celite. Excess solvent was removed by rotary evaporator.

The crude ketone was redissolved in 50 mL methylene chloride in a 100 mL-flask and mesitylene sulfonyl hydrazide (10.7 g, 50 mmol, 1.1 equiv.) was added. The mixture was allowed to stir at room temperature for another 3-5 hours. After it was confirmed that the ketone intermediate was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 4:1) on silica gel to afford 14.5 g (59%) of the title compound **SI-10**.

N'-(3-(bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3-methylcyclobutylidene)-2,4,6trimethylbenzenesulfonohydrazide (SI-10)

Physical State: white solid.

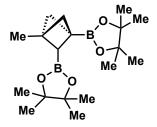
m.p.: 111-113 °C.

¹**H NMR (600 MHz, Acetone**-*d*⁶): δ 8.93 (s, 1H), 7.01 (s, 2H), 2.85 (dd, *J* = 18.1, 3.3 Hz, 1H), 2.80 (dd, *J* = 16.5, 2.2 Hz, 1H), 2.63 (s, 6H), 2.53 (dt, *J* = 17.1, 2.9 Hz, 1H), 2.43 (dt, *J* = 16.5, 3.0 Hz, 1H), 2.28 (s, 3H), 1.23 (s, 3H), 1.18 (s, 6H), 1.18 (s, 6H), 1.16 (s, 6H), 1.16 (s, 6H), 0.93 (s, 1H) ppm.

¹³C NMR (151 MHz, Acetone-*d*⁶): δ 156.80, 143.01, 140.69, 134.87, 132.42, 83.62, 83.61, 48.06, 46.69, 32.54, 30.04, 25.20, 25.12, 24.80, 24.79, 23.38, 20.86 ppm.

¹¹**B NMR (128 MHz, Acetone**-*d*⁶): δ 32.87 ppm.

HRMS (ESI-TOF): calc'd for C₂₇H₄₄B₂N₂O₆S [M+H]⁺: 547.3179, found: 547.3177.


TLC: $R_f = 0.40$ (3:1 hexanes: ethyl acetate).

Step 3: Synthesis of 13

A 500-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with **SI-10** (14.5 g, 26.5 mmol, 1.0 equiv.) and dried cesium carbonate (25.4 g, 78 mmol, 3.0 equiv.). (*Note: Cesium carbonate was dried at 120 °C under vaccum for 18 hours.*) After being evacuated and backfilled with argon from a balloon 3 times, dioxane (250 mL) was added into the flask and the reaction mixture was allowed to stir at 100 °C for 2 hours. After it was confirmed that the starting material, **SI-10**, was consumed through TLC analysis, the reaction was cooled to room temperature, filtered through Celite, washed with hexanes (500 mL), and concentrated to remove excess solvents. The crude reaction was purified through flash chromatography (hexanes: ethyl acetate, 30:1) on silica gel to afford the title compound **13**, which was further purified through recrystallization in hexanes at -40 °C. affording 4.5 g product (51% yield) with >99% purity as white solids.¹

Recrystallization procedure: The product (around 6 g) after chromatography was dissolved in hexanes (5 mL) at room temperature and then cooled to -40 °C. After the solution of the product was slowly stirred at -40 °C for 40 minutes, the suspension was filtered and the white solid was washed with cooled hexanes (3 mL) quickly and dried under vaccum for 1 hour.

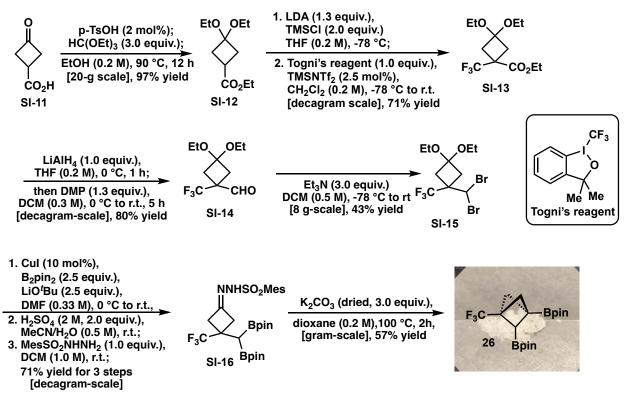
Compound 13

2,2'-(-3-methylbicyclo[1.1.1]pentane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (13)

Physical State: colorless crystal.

m.p.: 35-37 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 2.22 (dd, *J* = 9.7, 2.2 Hz, 1H), 1.86 – 1.81 (m, 1H), 1.76 (s, 1H), 1.69 (dd, *J* = 8.4, 2.2 Hz, 1H), 1.57 (d, *J* = 8.4 Hz, 1H), 1.230 (s, 6H), 1.228 (s, 6H), 1.22 (s, 12H), 1.10 (s, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 83.22, 82.81, 57.14, 51.38, 44.81, 25.07, 24.95, 24.85, 24.83, 20.37 ppm.

¹¹**B** NMR (128 MHz, CDCl₃): δ 31.89, 30.77 ppm.

HRMS (ESI-TOF): calc'd for C₁₈H₃₂B₂O₄ [M+H]⁺: 335.2560, found: 335.2574.

TLC: $R_f = 0.33$ (10:1 hexanes: ethyl acetate).

Step 1: Synthesis of SI-12

A 500-mL round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was added **SI-11** (22.8 g, 200 mmol, 1.0 equiv.) and TsOH•H₂O (760 mg, 4.0 mmol, 0.02 equiv.). Then EtOH (600 mL) and HC(OEt)₃ (67 mL, 400 mmol, 2.0 equiv.) were added, and the reaction mixture was refluxed at 90 °C for 12 h. The reaction was cooled to room temperature and concentrated under vaccum. The residue was purified through flash chromatography (hexanes: ethyl acetate, 10:1) on silica gel to afford 41.9 g (97%) of the title compound **SI-12**.

Compound SI-12

EtO OEt

CO₂Et

ethyl 3,3-diethoxycyclobutane-1-carboxylate (SI-12)

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 4.14 (q, *J* = 7.2 Hz, 2H), 3.46 – 3.37 (m, 4H), 2.88 (p, *J* = 8.6 Hz, 1H), 2.48 – 2.35 (m, 4H), 1.24 (d, *J* = 7.3 Hz, 3H), 1.20 – 1.16 (m, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 175.06, 99.29, 60.75, 56.87, 56.59, 36.49, 29.40, 15.48, 15.30, 14.35 ppm.

HRMS (ESI-TOF): calc'd for C₁₁H₂₀O₄ [M+Na]⁺: 239.1254, found: 239.1257.

TLC: $R_f = 0.28$ (10:1 hexanes: ethyl acetate).

Step 2: Synthesis of SI-13

A flame-dried 1-L flask equipped with rubber septum and magnetic stirring bar was charged under argon atmosphere subsequently with diisopropylamine (27.7 mL, 198 mmol, 1.1 equiv.) and anhydrous THF (500 mL). To this well-stirred solution held at -78 °C was added within 20 minutes via a dropping funnel a solution of n-BuLi (86.4 mL, 2.5M in hexanes, 1.2 equiv.). The resulting solution was stirred at this temperature for 30 minutes. A solution of the **SI-12** (38.9 g, 180 mmol, 1.0 equiv.) in anhydrous THF (100 mL) was slowly introduced dropwise via a dropping funnel within 20 minutes. After stirring at -78 °C for 2 h, neat trimethylchlorosilane (39 mL; 306 mmol; 1.7 equiv.) was introduced at once. The resultant reaction mixture was allowed to gradually warm up to room temperature and stir overnight. The turbid solution was concentrated in vacuo in the reaction flask. To the remaining white slurry hexane (200 mL) was introduced and the mixture was cooled to 0 °C. The resulting suspension was poured into ice water and hexanes, and extracted with hexanes. The combined organic solution was dried with Na₂SO₄, filtered and concentrated. The residue was purified by distillation to afford the desired trimethylsilylketene acetal 43 g (83%) as colorless oil.

In a flame-dried 2-L flask equipped with rubber septum and magnetic stirring bar, trimethylsilyl ketene acetal (34.6 g, 120 mmol, 1.0 equiv.) was added under argon atmosphere. Then anhydrous methylene chloride (1.3 L) was added, and the reaction mixture was cooled to -78 °C (dry ice/acetone bath). TMSNTf₂ (424 mg; 1.2 mmol; 0.01 equiv) was added via a syringe at once. To the resulting well-stirred solution was added solid 1-trifluoromethyl-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (39.6 g, 120 mmol, 1.0 equiv.). The mixture was allowed to reach room temperature with stirring for 4 h. NaHCO₃ (50 mL) aqueous solution was added. The organic phase was separated and dried by Na₂SO₄. The solvent was concentrated, and the residue was purified through flash chromatography (hexanes: ethyl acetate, 10:1) on silica gel to afford 24.2 g (71%) of the title compound **SI-13**.⁵

Compound SI-13

EtO, OEt F₃C [∼]CO₂Et

ethyl 3,3-diethoxy-1-(trifluoromethyl)cyclobutane-1-carboxylate (SI-13)

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 4.26 (q, *J* = 7.1 Hz, 2H), 3.40 (q, *J* = 7.1 Hz, 2H), 3.40 (q, *J* = 7.1 Hz, 2H), 2.83 – 2.72 (m, 2H), 2.61 – 2.52 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 168.86, 125.22 (q, *J* = 279.5 Hz), 97.02, 62.26, 56.91, 56.82, 44.13 (q, *J* = 30.1 Hz), 38.07, 15.11, 15.06, 13.96 ppm.

¹⁹F NMR (565 MHz, CDCl₃): δ -73.10 ppm.

HRMS (ESI-TOF): calc'd for C₁₂H₁₉F₃O₄ [M+Na]⁺: 307.1128, found: 307.1130.

TLC: $R_f = 0.59$ (10:1 hexanes: ethyl acetate).

Step 3: Synthesis of SI-14

A 1-L one-necked (24/40 joint) round-bottomed flask, equipped with a 6.4 cm Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with **SI-13** (20.2 g, 71 mmol, 1.0 equiv.). Dried THF (400 mL) was added into the flask and the mixture was cooled to 0 °C. Then LiAlH₄ (2.7 g, 71 mmol, 1.0 equiv.) was added into the flask slowly at 0 °C and the reaction mixture was allowed to stir at 0 °C for 1 hour. After it was confirmed that the start material, **SI-13**, was totally consumed, water (2.7 mL) was slowly added at 0 °C, followed by 20% w.t. NaOH (2.7 mL) and water (8.0 mL), and the mixture was stirred at 0 °C for 30 min. Then excess Na₂SO₄ was added, and the suspended solution was stirred at room temperature for another 1 hour. The mixture was filtered through Celite, and the solvent was removed under high vacuum. The crude alcohol was used without further purification.

To a solution of the crude alcohol in methylene chloride (280 mL) was added Dess–Martin periodinane (42.4 g, 100 mmol, 1.4 equiv.) at 0 °C and the reaction mixture was allowed to warm to room temperature and stir for 2 hours. Then after it is confirmed by TLC analysis that the alcohol

was consumed totally, the reaction was quenched by excess saturated NaHCO₃ solution and Na₂S₂O₃ solution and extracted with methylene chloride (100 mL) three times. The organic phase was separated, washed with brine, dried over Na₂SO₄ and evaporated. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 10:1) on silica gel to afford 13.0 g (80%) of the title compound **SI-14**.

Compound SI-14

3,3-diethoxy-1-(trifluoromethyl)cyclobutane-1-carbaldehyde (SI-14)

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 9.73 (s, 1H), 3.44 – 3.39 (m, 2H), 3.40 – 3.36 (m, 2H), 2.67 – 2.62 (m, 2H), 2.50 (dt, *J* = 11.5, 1.6 Hz, 2H), 1.19 (tt, *J* = 7.1, 1.1 Hz, 3H), 1.15 (tt, *J* = 7.1, 1.2 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 193.87, 125.64 (q, *J* = 279.3 Hz), 96.55, 56.95, 56.86, 47.30 (q, *J* = 27.8 Hz), 34.98, 15.13 (2C) ppm.

¹⁹F NMR (565 MHz, CDCl₃): δ -72.10 ppm.

HRMS (ESI-TOF): calc'd for C₁₀H₁₅F₃O₃ [M+H]⁺: 241.1046, found: 241.1039.

TLC: $R_f = 0.53$ (10:1 hexanes: ethyl acetate).

Step 4: Synthesis of SI-15

A 250-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with triphenyl phosphite (21 mL, 80 mmol, 1.5 equiv.). Methylene chloride (50 mL) was added into the flask and the mixture was cooled to -78°C. Then bromine (4 mL, 78 mmol, 1.4 equiv.) was added slowly into the flask, followed by addition of triethyl amine (23 mL, 162 mmol, 3.0 equiv.). Next, the solution of **SI-14** (13.0 g, 54 mmol, 1.0 equiv.) in 40 mL methylene chloride was added into the mixture and the reaction was warmed up to room temperature. After it was confirmed that the starting material, **SI-14**, was consumed through TLC analysis, solvent was removed by rotary evaporator and the crude product was

purified through flash chromatography (hexanes: ethyl acetate, 20:1) on silica gel to afford 8.6 g (43%) of the title compound **SI-15**.²

Compound SI-15

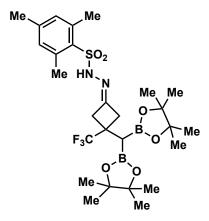
1-(dibromomethyl)-3,3-diethoxy-1-(trifluoromethyl)cyclobutane (SI-15)

Physical State: colorless oil.

¹H NMR (600 MHz, CDCl₃): δ 5.96 (s, 1H), 3.43 (q, J = 7.1 Hz, 2H), 3.40 (q, J = 7.1 Hz, 2H), 2.66 – 2.59 (m, 2H), 2.42 – 2.36 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 126.09 (q, J = 281.8 Hz), 95.57, 57.10, 56.88, 45.76, 45.48 (q, J = 27.8 Hz), 39.60 (q, J = 2.3 Hz), 15.40, 15.17 ppm. ¹⁹F NMR (565 MHz, CDCl₃): δ -68.99 ppm.

HRMS (ESI-TOF): calc'd for $C_{10}H_{15}Br_2F_3O_2$ [M+H]⁺: 382.9464, not found. MS (GCMS, EI): m/z = 341 (5%), 339 (10%), 337 (5%), 311 (9%), 211 (30%), 116 (100%). TLC: $R_f = 0.69$ (10:1 hexanes: ethyl acetate).

Step 5: Synthesis of SI-16


A 250-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with copper(I) iodide (437 mg, 2.3 mmol, 0.1 equiv.), B₂pin₂ (12.9 g, 51 mmol, 2.2 equiv.), and lithium tert-butoxide (4.4 g, 55 mmol, 2.4 equiv.). After being evacuated and backfilled with argon from a balloon 3 times, DMF (23 mL) was added into the flask at 0 °C. Then a solution of **SI-15** (23 mmol, 8.6 g, 1.0 equiv.) in DMF (46 mL) was added slowly into the mixture at 0 °C and the reaction mixture was allowed to slowly warm to room temperature and stir for another 1 hour. After it was confirmed that the starting material, **SI-15**, was consumed through TLC analysis, the reaction was filtered through Celite, washed with diethyl ether (100 mL) and quenched at 0 °C with water (300 mL) (*Caution: the quenching process is exothermic*). The mixture was then transferred into a 1-L separation funnel. The aqueous phase is separated and extracted with two 100-mL portions of diethyl ether. The combined organic layers

are washed with the mixture of 100 mL water and 100 mL saturated NaCl solution twice, dried over Na₂SO₄, and filtered through Celite. ³

After solvent was removed by rotary evaporator, the crude product was redissolved in 23 mL acetonitrile in a 100-mL flask. 2M H₂SO₄ (23 mL, 2.0 equiv.) was added into the mixture at room temperature and the reaction was allowed to stir for another 1.5 hours. After it was confirmed that the ketal intermediate was consumed through TLC analysis, the crude reaction is concentrated to remove excess acetonitrile. Then diethyl ether (100 mL) and saturated brine (50 mL) is added to the reaction mixture and the mixture is transferred to a 125-mL separatory funnel. The aqueous layer is separated and further extracted with diethyl ether (3×50 mL). The combined organic layers are dried over Na₂SO₄, filtered through Celite. Excess solvent was removed by rotary evaporator.

The crude product was redissolved in 20 mL methylene chloride in a 100 mL-flask and mesitylene sulfonyl hydrazide (4.93 g, 23 mmol, 1.0 equiv.) was added. The mixture was allowed to stir at room temperature for another 2 hours. After it was confirmed that the ketone intermediate was consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 4:1) on silica gel to afford 9.8 g (71%) of the title compound **SI-16**.

Compound SI-16

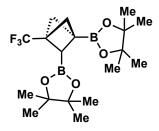
N'-(3-(bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3-(trifluoromethyl)cyclobutyl idene)-2,4,6-trimethylbenzenesulfonohydrazide (SI-16) Physical State: white solid. m.p.: 186-188 °C. ¹**H NMR (600 MHz, Acetone**-*d*₆): δ 9.34 (s, 1H), 7.03 (s, 2H), 3.22 (dd, *J* = 18.1, 3.3 Hz, 1H), 3.11 (dd, *J* = 17.6, 3.2 Hz, 1H), 3.06 (ddd, *J* = 18.2, 3.3, 1.9 Hz, 1H), 3.00 (ddd, *J* = 17.7, 3.3, 1.9 Hz, 1H), 2.64 (s, 6H), 2.29 (s, 3H), 1.28 (s, 1H), 1.19 (s, 6H), 1.18 (s, 6H), 1.17 (s, 6H), 1.14 (s, 6H) ppm.

¹³C NMR (151 MHz, Acetone-*d*₆) δ 151.49, 143.20, 140.78, 134.71, 132.49, 130.17 (q, *J* = 279.7 Hz), 84.32, 84.28, 41.54 (q, *J* = 2.8 Hz), 40.49 (q, *J* = 2.7 Hz), 39.96 (q, *J* = 27.4 Hz), 25.17, 24.98, 24.66, 24.64, 23.40, 20.85 ppm.

¹⁹F NMR (565 MHz, Acetone-*d*₆): δ -78.92 ppm.

¹¹**B** NMR (128 MHz, Acetone-*d*₆): δ 32.51 ppm.

HRMS (ESI-TOF): calc'd for C₂₇H₄₁B₂F₃N₂O₆S [M+H]⁺: 601.2896, found: 601.2903.


TLC: $R_f = 0.47$ (10:1 hexanes: ethyl acetate).

Step 6: Synthesis of 26

A 250-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with **SI-16** (6.0 g, 10 mmol, 1.0 equiv.) and dried potassium carbonate (4.14 g, 30 mmol, 3.0 equiv.). (*Note: Potassium carbonate was dried at 120 °C under vaccum for 18 hours.*) After being evacuated and backfilled with argon from a balloon 3 times, dioxane (60 mL) was added into the flask and the reaction mixture was allowed to stir at 105 °C for 2 hours. After it was confirmed that the starting material, **SI-16**, was consumed through TLC analysis, the reaction was cooled to room temperature, filtered through Celite, washed with hexanes (200 mL), and concentrated to remove excess solvents. The crude reaction was purified through flash chromatography (hexanes: ethyl acetate, 20:1) on silica gel to afford the title compound **26**, which was further purified through recrystallization in hexanes at -40 °C, affording 2.2 g product (57% yield) with >99% purity as white solids.¹

Recrystallization procedure: The product (around 3 g) after chromatography was dissolved in hexanes (2.0 mL) at room temperature and then cooled to -40 °C. After the solution of the product was slowly stirred at -40 °C for 40 minutes, the suspension was filtered and the white solid was washed with cooled hexanes (1.0 mL) quickly and dried under vaccum for 1 hour.

Compound 26

2,2'-(3-(trifluoromethyl)bicyclo[1.1.1]pentane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxa-

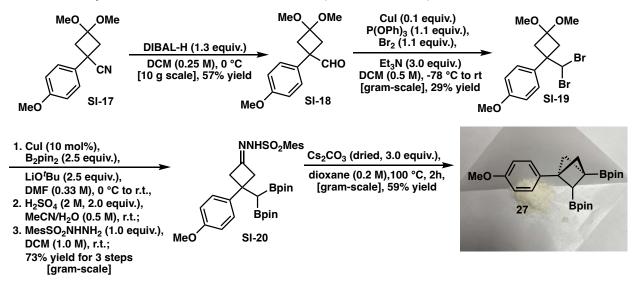
borolane) (26)

Physical State: white solid.

m.p.: 49-51 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 2.68 (dd, *J* = 9.6, 2.3 Hz, 1H), 2.07 (dd, *J* = 9.6, 1.7 Hz, 1H), 2.02 (d, *J* = 1.7 Hz, 1H), 1.96 (dd, *J* = 8.2, 2.3 Hz, 1H), 1.84 (d, *J* = 8.1 Hz, 1H), 1.25 – 1.18 (m, 24H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 121.70 (q, *J* = 278.4 Hz), 83.82, 83.44, 53.05 (q, *J* = 2.7 Hz), 47.47 (q, *J* = 2.4 Hz), 43.37 (q, *J* = 36.9 Hz), 24.88, 24.85, 24.81, 24.73 ppm.

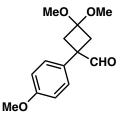

¹⁹F NMR (376 MHz, CDCl₃): δ -74.97 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 30.96 ppm.

HRMS (ESI-TOF): calc'd for C₁₈H₂₉B₂F₃O₄ [M+H]⁺: 389.2277, not found.

MS (GCMS, EI): m/z = 387 (0.1%), 373 (0.4%), 288 (1%), 231 (5%), 131 (15%), 83 (100%).

TLC: $R_f = 0.28$ (15:1 hexanes: ethyl acetate).


Gram-scale synthesis of BCP BisBoronates 27 ($R^1 = 4$ -MeOPh)

Compound SI-17 was prepared according to previous literature.⁶

Step 1: Synthesis of SI-18

A 500-mL round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with compound **SI-17** (12.5 g, 50 mmol, 1.0 equiv.). Then methylene chloride (200 mL) was added and the reaction mixture was cooled to 0 °C. Next, DIBAL-H (65 mL, 1.0 M, 1.3 equiv.) was added at 0 °C and the mixture was stirred at 0 °C for 3 hours. The cool mixture was added under vigorous stirring to saturated Rochelle salt solution at 0 °C and stirred overnight. The organic phase was separated, washed with brine, dried over Na₂SO₄ and evaporated. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 4:1) on silica gel to afford 7.1 g (57%) of the title compound **SI-18**.

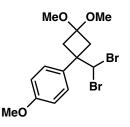
Compound SI-18

3,3-dimethoxy-1-(4-methoxyphenyl)cyclobutane-1-carbaldehyde (SI-18) Physical State: white solid.

m.p.: 56-58 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 9.49 (s, 1H), 7.11 – 7.06 (m, 2H), 6.94 – 6.87 (m, 2H), 3.80 (s, 3H), 3.17 (s, 3H), 3.14 (s, 3H), 3.02 – 2.96 (m, 2H), 2.48 – 2.42 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 198.24, 158.95, 131.30, 128.25, 114.49, 98.60, 55.45, 48.77, 48.68, 48.21, 38.95 ppm.


HRMS (ESI-TOF): calc'd for C₁₄H₁₈O₄ [M+H]⁺: 251.1278, found: 251.1278.

TLC: $R_f = 0.17$ (10:1 hexanes: ethyl acetate).

Step 2: Synthesis of SI-19

A 250-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with triphenyl phosphite (5.8 mL, 22 mmol, 1.1 equiv.). Methylene chloride (25 mL) was added into the flask and the mixture was cooled to -78°C. Then bromine (1.1 mL, 22 mmol, 1.1 equiv.) was added slowly into the flask, followed by addition of triethyl amine (8.4 mL, 60 mmol, 3.0 equiv.). Next, the solution of **SI-18** (5.0 g, 20 mmol, 1.0 equiv.) in 25 mL methylene chloride was added into the mixture and the reaction was warmed up to room temperature. After it was confirmed that the starting material, **SI-18**, was consumed through TLC analysis, solvent was removed by rotary evaporator and the crude product was purified through flash chromatography (hexanes: ethyl acetate, 20:1) on silica gel to afford 2.31 g (29%) of the title compound **SI-19**.²

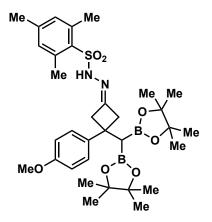
Compound SI-19

1-(1-(dibromomethyl)-3,3-dimethoxycyclobutyl)-4-methoxybenzene (SI-19) Physical State: white solid. m.p.: 59-61 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.33 – 7.26 (m, 2H), 6.92 – 6.86 (m, 2H), 6.22 (s, 1H), 3.82 (s, 3H), 3.22 (s, 3H), 3.10 (s, 3H), 2.71 – 2.60 (m, 4H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 158.79, 133.80, 130.48, 112.67, 97.64, 58.64, 55.36, 48.81, 48.65, 45.40, 43.67 ppm.

HRMS (ESI-TOF): calc'd for C₁₄H₁₈Br₂O₃ [M+Na]⁺: 414.9515, found: 414.9508.

TLC: $R_f = 0.45$ (10:1 hexanes: ethyl acetate).

Step 3: Synthesis of SI-20


A 100-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere of argon. Then the flask was charged with copper(I) iodide (114 mg, 0.6 mmol, 0.1 equiv.), B₂pin₂ (3.7 g, 14.5 mmol, 2.5 equiv.), and lithium tert-butoxide (1.16 g, 14.5 mmol, 2.5 equiv.). After being evacuated and backfilled with argon from a balloon 3 times, DMF (5 mL) was added into the flask at 0 °C. Then a solution of **SI-19** (5.8 mmol, 2.3 g, 1.0 equiv.) in DMF (10 mL) was added slowly into the mixture at 0 °C and the reaction mixture was allowed to slowly warm to room temperature and stir for another 1 hour. After it was confirmed that the starting material, **SI-19**, was consumed through TLC analysis, the reaction was filtered through Celite, washed with diethyl ether (50 mL) and quenched at 0 °C with water (100 mL) (*Caution: the quenching process is exothermic*). The mixture was then transferred into a 250-mL separation funnel. The aqueous phase is separated and extracted with two 50-mL portions of diethyl ether. The combined organic layers are washed with the mixture of 50 mL water and 50 mL saturated NaCl solution twice, dried over Na₂SO₄, and filtered through Celite. ³

After solvent was removed by rotary evaporator, the crude product was redissolved in 10 mL acetonitrile in a 50-mL flask. 2M H₂SO₄ (6 mL, 2.0 equiv.) was added into the mixture at room temperature and the reaction was allowed to stir for another 1.5 hours. After it was confirmed that the ketal intermediate was consumed through TLC analysis, the crude reaction is concentrated to remove excess acetonitrile. Then diethyl ether (40 mL) and saturated brine (15 mL) is added to the reaction mixture and the mixture is transferred to a 125-mL separatory funnel. The aqueous layer is separated and further extracted with diethyl ether (3×30 mL). The combined organic layers are dried over Na₂SO₄, filtered through Celite. Excess solvent was removed by rotary evaporator.

The crude product was redissolved in 20 mL methylene chloride in a 50 mL-flask and mesitylene sulfonyl hydrazide (1.24 g, 5.8 mmol, 1.0 equiv.) was added. The mixture was allowed to stir at room temperature for another 2 hours. After it was confirmed that the ketone intermediate was

consumed through TLC analysis, the crude reaction is concentrated to remove excess solvent. The crude product was purified through flash chromatography (hexanes: ethyl acetate, 4:1 to 2:1) on silica gel to afford 2.72 g (73%) of the title compound **SI-20**.

Compound SI-20

N'-(3-(bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3-(4-methoxyphenyl)cyclo-butylidene)-2,4,6-trimethylbenzenesulfonohydrazide (SI-20)

Physical State: white solid.

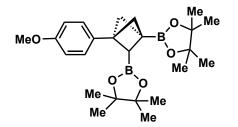
m.p.: 155-157 °C.

¹**H NMR (600 MHz, Acetone-***d*₆**)** δ 9.04 (s, 1H), 7.24 (d, *J* = 8.8 Hz, 2H), 6.98 (s, 2H), 6.89 – 6.64 (m, 2H), 3.74 (s, 3H), 3.40 (ddd, *J* = 17.8, 3.4, 1.9 Hz, 1H), 3.32 (ddd, *J* = 17.1, 3.4, 1.9 Hz, 1H), 3.16 (ddd, *J* = 17.7, 3.5, 1.6 Hz, 1H), 3.09 (ddd, *J* = 17.0, 3.5, 1.6 Hz, 1H), 2.63 (s, 6H), 2.26 (s, 3H), 1.31 (s, 1H), 1.11 (s, 12H), 1.10 (s, 12H) ppm.

¹³C NMR (151 MHz, Acetone-*d*₆) δ 158.50, 156.01, 143.72, 142.96, 140.72, 134.91, 132.40, 128.11, 113.93, 83.78, 83.71, 55.41, 47.78, 46.21, 39.47, 25.21, 25.03, 24.88, 24.84, 23.44, 20.84 ppm.

¹¹**B NMR (128 MHz, Acetone-***d*₆): δ 32.77 ppm.

HRMS (ESI-TOF): calc'd for C₃₃H₄₈B₂N₂O₇S [M+H]⁺: 639.3441, found: 639.3447.


TLC: $R_f = 0.30$ (3:1 hexanes: ethyl acetate).

Step 4: Synthesis of 21

A 100-mL one-necked (24/40 joint) round-bottomed flask, equipped with a Teflon-coated magnetic stir bar, was flame-dried under vacuum, and then cooled to 23 °C under an atmosphere

of argon. Then the flask was charged with **SI-20** (2.7 g, 4.2 mmol, 1.0 equiv.) and dried cesium carbonate (4.1 g, 12.6 mmol, 3.0 equiv.). (*Note: Cesium carbonate was dried at 120 °C under vaccum for 18 hours.*) After being evacuated and backfilled with argon from a balloon 3 times, dioxane (40 mL) was added into the flask and the reaction mixture was allowed to stir at 100 °C for 40 minutes. After it was confirmed that the starting material, **SI-20**, was consumed through TLC analysis, the reaction was cooled to room temperature, filtered through Celite, washed with hexanes (200 mL), and concentrated to remove excess solvents. The crude reaction was purified through flash chromatography (hexanes: ethyl acetate, 20:1) on silica gel to afford the title compound **21**, which was further purified through recrystallization in hexanes at -20 °C, affording 1.05 g product (59% yield) with >99% purity as white solids.¹

Compound 27

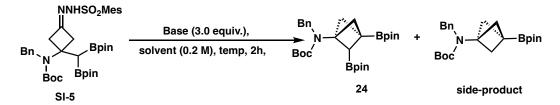
2,2'-(3-(4-methoxyphenyl)bicyclo[1.1.1]pentane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxa borolane) (27) Physical State: white solid. m.p.: 89-91 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.22 – 7.17 (m, 2H), 6.85 – 6.78 (m, 2H), 3.77 (s, 3H), 2.73 (dd,

H NMR (**600** MHz, **CDCI**₃). 67.22 = 7.17 (III, 2H), 6.83 = 6.78 (III, 2H), 5.77 (S, 5H), 2.75 (III, J = 9.7, 2.2 Hz, 1H), 2.17 (III, J = 9.7, 1.5 Hz, 1H), 2.15 - 2.12 (III, 1H), 2.04 (III, J = 8.2, 2.2 Hz, 1H), 1.93 (III, J = 8.2, 0.9 Hz, 1H), 1.25 (III, J = 1.3 Hz, 12H), 1.24 (S, 6H), 1.23 (S, 6H) ppm. ¹³C NMR (151 MHz, CDCI₃) δ 158.23, 135.32, 127.21, 113.47, 83.41, 83.05, 56.34, 55.40, 51.87, 49.01, 25.02, 24.92, 24.91, 24.87 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.00 ppm.

HRMS (ESI-TOF): calc'd for C₂₄H₃₆B₂O₅ [M+H]⁺: 427.2822, found: 427.2819.

TLC: $R_f = 0.43$ (5:1 hexanes: ethyl acetate).


Optimization of Synthesis & Functionalizations of BCP Bisboronates

I. Synthesis of BCP BisBoronates

iPrO ₂	NNHSO ₂ M P P P P P P P P P P P P P	les Base (3.0 eq n solvent (0.2 temp, 2h	<u>M), </u>	Bpin	Bn N Boc NNHTs SI-3			OBn Bn N Boc Bpin SI-4	
	base	solvent	temp	Yield ^a	base	solvent	temp	Yield ^a	
	Cs ₂ CO ₃ ^b	dioxane	100 °C	66%	Cs ₂ CO ₃ ^b	dioxane	100 °C	< 10%	
	NaH	benzene	100 °C	56%	Cs ₂ CO ₃ ^b	toluene	100 °C	< 10%	
	Cs ₂ CO ₃	toluene	100 °C	37%	NaH	toluene	80 °C	38%	
	Cs ₂ CO ₃	benzene	80 °C	20%	NaH	benzene	80 °C	< 10%	
	Cs ₂ CO ₃	dioxane	80 °C	28%	K ₃ PO₄	dioxane	80 °C	< 10%	
	NaH	toluene	80 °C	57%	K ₂ CO ₃	dioxane	80 °C	< 10%	
	Cs ₂ CO ₃	toluene	80 °C	40%	NaH	toluene	70 °C	40%	
	K ₂ CO ₃ ^b	dioxane	100 °C	50%	NaH	toluene	75 °C	50%	
	Cs ₂ CO ₃ ^c	dioxane	100 °C	61%	NaH	toluene	90 °C	19%	

Table S1: Optimization of synthesis of 23

Table S2: Optimization of synthesis of SI-4

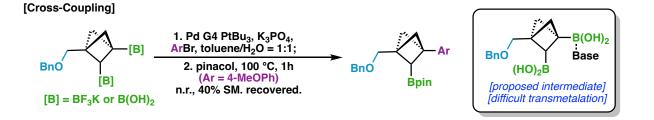
base	solvent	temp	yield of 24 ^a	side-product ^a
Cs ₂ CO ₃ ^b	dioxane	100 °C	30%	20%
Cs ₂ CO ₃ ^b Cs ₂ CO ₃ ^b	toluene	100 °C	26%	56%
ŇaH	toluene	100 °C	41%	28%
Cs ₂ CO ₃ ^b	benzene	100 °C	19%	63%
ŇaH	toluene	80 °C	46%	25%
K ₂ CO ₃	dioxane	100 °C	35%	20%
Cs ₂ CO ₃ ^c	dioxane	100 °C	22%	57%
К ₂ СО ₃ ^Ď	dioxane	100 °C	65%	trace

Note: a. Yield determined by ¹H NMR analysis with trimethoxybenzene as an internal standard;

b. The base was dried at 120 °C for 18 hours;

c. 99.995% from Sigma-aldrich.

Table S3: Optimization of synthesis of 24


II. Selective C₃-Functionalization of BCP BisBoronates

[Cyanation]

	Bpin	[cate	CN (2.0 equiv.) echol] (x equiv.)	$ \rightarrow $	-CN +		н
Bn	oʻY			nO Y	BnÓ	Ý	
	Bpin 25	5	olvent, temp,	Bpiı	า	Bpin	
	25			42		36	
Entry	[catechol]	x	additive	solvent	temp	42 ^a	36 ^a
1	ТВС	0.5	none	toluene	100 °C	45%	23%
2	catechol	0.5	none	toluene	100 °C	36%	12%
3	4-CI catechol	0.5	none	toluene	100 °C	37%	35%
4	TBC	0.5	DMPU	toluene	100 °C	36%	21%
5	TBC	0.5	MeOH	toluene	100 °C	30%	16%
6	TBC	0.5	MeOD	toluene	100 °C	33%	10%
7	TBC	0.5	H ₂ O	toluene	100 °C	33%	12%
8	TBC	0.5	none	toluene	r.t.	33%	17%
9	TBC	0.5	none	toluene	40 °C	39%	29%
10	TBC	0.5	none	toluene	70 °C	48%	29%
11	TBC	0.5	none	toluene	120 °C	38%	15%
12	TBC	1.0	none	toluene	100 °C	26%	20%
13	TBC	2.0	none	toluene	100 °C	16%	25%
14	TBC	0.2	none	toluene	100 °C	49%	7%
15	TBC	0.01	none	toluene	70 °C	23%	3%
16	TBC	0.05	none	toluene	70 °C	43%	5%
17	TBC	0.1	none	toluene	70 °C	43%	10%
18	TBC	0.2	none	toluene	70 °C	60%	6%
19	TBC	0.2	none	benzene	70 °C	50%	13%
20	TBC	0.2	none	DCE	70 °C	34%	< 5%
21	TBC	0.2	none	dioxane	70 °C	0%	0%
22	TBC	0.2	none	THF	70 °C	0%	0%
23	TBC	0.2	pyrogallol	toluene	70 °C	32%	23%
24	TBC	0.2	guaiacol	toluene	70 °C	70%	6%
25	TBC	0.2	1,2-naphthoquinone	toluene	70 °C	43%	9%
26	TBC	0.2	1,4-naphthoquinone	toluene	70 °C	36%	10%
27	TBC	0.2	B(OMe) ₃ ^b	toluene	70 °C	41%	7%
28	TBC	0.2	B(OMe) ₃ ^c	toluene	70 °C	29%	10%
29	TBC	0.2	MeOBcat	toluene	70 °C	60%	3%
30	TBC	0.2	TMSOTf	toluene	70 °C	50%	3%

Note: *a.* Yield determined by 1H NMR analysis with trimethoxybenzene as an internal standard; b. B(OMe)₃ (0.1 equiv.); c. B(OMe)₃ (0.5 equiv.).

Table S4: Optimization of cyanation of BCP 25

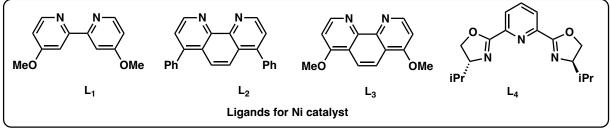

[Cross-	Coupling]		[PS] (5 mol% [Ni] (10-20 mo additive (2.0 eq Base (4.0 equ olvent (0.1 M), r. 450 nm photore	ĺ%) uiv.), iv.), .t., 48 h	BnO 58 Bpin	Ar ₊ Bi	nO 36	Bpin
Entry	[PS]	[Ni]	additive	Base	solvent	58 ^a	36 ^a	25 ^a
1	[lr]	Ni(dtbbpy)Cl ₂	none	DMAP	DMA	0%	0%	main
2	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	DMAP	DMA	25%	6%	10%
3	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	DMAP	DMSO	0%	0%	0%
4	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	DMAP	DMF	trace	0%	0%
5	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	DMAP	dioxane	0%	0%	main
6	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	DMAP	acetone	0%	10%	main
7 ^b	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	DMAP	DMA	2%	0%	0%
8		NiBr ₂ •glyme + dtbbpy	v ZnBr ₂	DMAP	DMA	10%	20%	trace
9	[lr]	NiBr ₂ •glyme + dtbbpy	^c ZnBr₂	DMAP	DMA	14%	23%	trace
10	[lr]	NiBr ₂ •glyme + L ₁	ZnBr ₂	DMAP	DMA	10%	29%	trace
11	[lr]	NiBr ₂ •glyme + L ₂	ZnBr ₂	DMAP	DMA	10%	15%	trace
12	[lr]	NiBr ₂ •glyme + L ₃	ZnBr ₂	DMAP	DMA	5%	20%	trace
13	[lr]	NiBr ₂ •glyme + L ₄	ZnBr ₂	DMAP	DMA	trace	25%	trace
14	[lr]	Ni(TMHD) ₂	ZnBr ₂	DMAP	DMA	0%	0%	trace%
15	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	CsF	DMA	17%	24%	10%
16	[lr]	Ni(dtbbpy)Cl ₂	ZnBr ₂	PhONa	DMA	22%	13%	7%
17	[lr]	Ni(dtbbpy)Cl ₂	Zn(OTf) ₂	DMAP	DMA	40%	18%	10%
18	[lr]	· · · · · ·	Zn(ClO) ₄ •6H ₂ O	DMAP	DMA	25%	20%	10%
19	[lr]	Ni(dtbbpy)Cl ₂	In(OTf) ₃	DMAP	DMA	23%	13%	38%
20	[lr]	Ni(cod) ₂ +dtbbpy	Zn(OTf) ₂	DMAP	DMA	39%	20%	trace
21	4-CzIPn	Ni(dtbbpy)Cl ₂	Zn(OTf) ₂	DMAP	DMA	50%	22%	trace
22	Acr-Mes	Ni(dtbbpy)Cl ₂	Zn(OTf) ₂	DMAP	DMA	trace	0%	0%

Table S5: Optimization of cross-coupling reaction of BCP 25

Note: *a.* Yield determined by 1H NMR analysis with trimethoxybenzene as an internal standard; *b.* The reaction was runned under light from 468-nm blue LED;

c. NiBr₂·glyme:dtbbpy = 1:2

d. [Ir] = $[Ir(dF(CF_3)ppy)_2(dtbpy)]PF_6$; dtbbpy = 4,4'-Di-tert-butyl-2,2'-dipyridyl.

BnO	Bpin 25	+ [Br SO ₂ Me	Zn C DM	[Ir] (5 mol%), bbpy)Cl ₂ (10 mol%) (OTf) ₂ (x equiv.), MAP (y equiv.), A (0.1 M), r.t., 48 h Inm photoreactor	BnO 58	Ar Bpin	+ BnO 36	Бріп
x	У	58 ^a	36 ^a	25 ^a	x	У	58 ^a	36 ^a	25 ^a
0.5	4.0	7%	11%	56%	2.0	2.0	21%	20%	13%
1	4.0	25%	13%	20%	2.0	3.0	33%	19%	16%
4.0	4.0	22%	21%	20%	2.0	4.0	50%	22%	trace

Table S5: Optimization of cross-coupling reaction of BCP 25 (continued)

III. Late-stage C₂-Functionalization of BCP BisBoronates

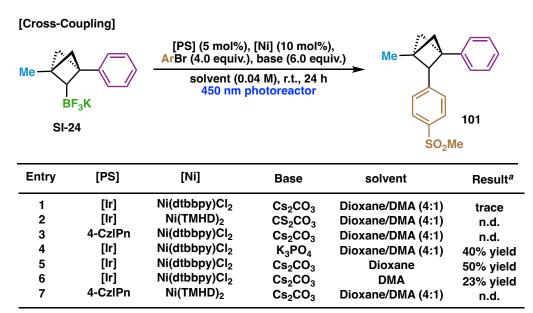


Table S6: Optimization of cross-coupling reaction of BCP SI-24 Note: *a.* Yield determined by ¹H NMR analysis with trimethoxybenzene as an internal standard;

b. [Ir] = [Ir(dF(CF₃)ppy)₂(dtbpy)]PF₆; dtbbpy = 4,4'-Di-tert-butyl-2,2'-dipyridyl.

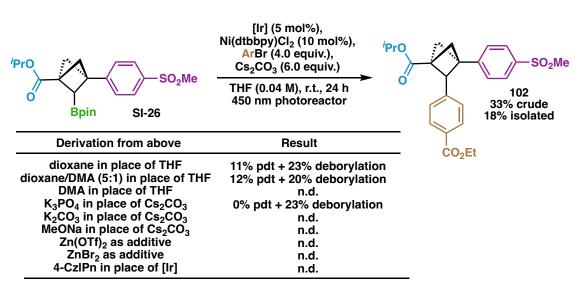


Table S7: Optimization of cross-coupling reaction of BCP SI-26

Note: *a.* Yield determined by ¹H NMR analysis with trimethoxybenzene as an internal standard;

b. $[Ir] = [Ir(dF(CF_3)ppy)_2(dtbpy)]PF_6; dtbbpy = 4,4'-Di-tert-butyl-2,2'-dipyridyl.$

C2 control of Selective C3-Functionalization of BCP Boronates

	Conditio	ons	
	[deborylation], [ligand [hydrazone coupling],[Giese	J R	
Conditions	R	pdt/%	SM/%
TBC, C ₆ D ₆ ,	R = cPent	17	63
100 °C, 5 h [deborylation]	Bpin	63	23
1,8-diamino-	R = cPent	7	85
naphthalene, toluene, 100 °C, 12 h <i>[ligand exchange]</i>	Bpin	60	28
sulfonyl hydrazone Cs ₂ CO ₃ , toluene,	R = cPent	14	80
70 °C, 48 h [hydrazone coupling]	Bpin	42	23
TsCN, TBC,	R = cPent	0	78
toluene, 70 °C, 16 h <i>[cyanation]</i>	Bpin	50	30
[Ir], DMAP, MVK,	R = cPent	0	54
acetone/MeOH, 450 nm hv [Giese]	Bpin	26	44
2,6-diClpyrazine	R = cPent	52	0
Mn(OAc) ₃ , TFA, AcOH/H ₂ O, 50 °C, 18 h <i>[Minisci]</i>	Bpin	52	0
[Ir], [Ni], 4-CF ₃ PhBr Zn(OTf) ₂ , DMAP,	R = cPent	20	40
DMA, 450 nm hv, 24 h [cross-coupling]	Bpin	40	0

Table S8 : C_2 -control of 1st functionalization of BCP boronate

Troubleshooting:

For Synthesis and Chemistry of BCP Bisboronates:

Question 1:

Are BCP bis-boronates stable at room temperature? If not, how could we store them?

Answer:

Most of the BCP bis-boronates could be stable in air at room temperature for several days. But they would decompose for staying under air atmosphere at room temperature longer. Usually the BCP bisboronates are stored at -20 °C for several months.

Question 2:

Is the intramolecular coupling sensitive to moisture? Could this type of reaction work with cesium carbonate which is not dried at high temperature under vacuum?

Answer:

BCP bisboronates 13, 25, 27 are relatively stable and the coupling reaction will work under existence of trace water, although the yield will drop a little. BCP 13 was synthesized through a procedure with sulfonyl hydrazone formed in situ (where water was formed as the by-product). However, BCP 23, 24, 26 are more sensitive to moisture at high temperature and the yield of the hydrazone coupling will drop a lot if the cesium carbonate is not dried. Details are listed in the optimization of BCP synthesis.

Question 3:

Any tips for purification of BCP bisboronates?

Answer:

All of the BCP bisboronates are not very stable on the column so purification of BCP bisBpins through chromatography on silica gel should be finished in one hour at most.

For 1st functionalization of BCP Bisboronates:

Question 1:

In the transformations of 1^{st} functionalization of BCP bisboronates, is there any by-product with C₂-functionalization observed?

Answer:

No, owing to lower reactivity of C_2 -Bpin, no C_2 -functionalized by-product with C_3 -Bpin retained was observed in all type of transformations in Figure 4. However, sometimes over functionalization happened with more harsh conditions, which transformed C_2 -Bpin into other functional groups (like H, SPh).

Question 2:

In the hydrazone coupling, did the tertiary Bpin formed in the product react with excess sulfonyl hydrazones?

Answer:

No, the reactivity of alkyl Bpin is lower and no by-product through double hydrazone coupling was observed. Thus, excess sulfonyl hydrazones could be added into the reaction mixture if they were consumed faster than BCPs.

Question 3:

In the protodeborylation of BCP bisboronates, what is the by-product of the reaction?

Answer:

The C₂-Bpin could also be deborylated after C₃-Bpin was transformed into hydrogen thus trace double deborylation product (R^2 , $R^3 = H$) was observed in this transformation. It is necessary to choose a proper temperature for reaction and a proper time to stop it with the yield went to the highest.

Question 4:

What are the by-products in other transformations of BCP bisboronates including cyanation and C-X (X = S or N) formation, Giese-type reaction and cross-coupling?

Answer:

Owing to the use of catalytic tertbutyl catechol, deborylation will also happen in the cyanation and C-S, C-N formation of BCPs. Also, the same byproduct was observed in the Giese reaction and cross-coupling thus photo-induced deborylation was utilized in the synthesis of compound **36**.

Question 5:

Do I need a glovebox to run these transformations?

Answer:

We do not set up or run the reaction in a glovebox unless extra details like that $Ni(cod)_2$ was charged in a glovebox were included. A glovebox is not necessary to run these reactions. The reaction tubes were purged under argon atmosphere for more than 10 seconds when it is needed.

Question 6:

Could BCP bisboronates react with quinolines and pyridines to install 2-quinolyl and 2-pyridyl groups through Minisci-type reaction?

Answer:

Yes, the Minisci reaction actually happened when quinolines and pyridines was added into the reaction. However, the quinolyl and 2-pyridyl group motivated the hydrolysis of C₂-Bpin and a mixture of boronic acid and boronic pinacol ester was obtained in this transformation.

For 2nd functionalization of BCP Bisboronates:

Question 1:

Could all BCP C₂-Bpin be oxidized into the alcohol?

Answer:

According to our result, whether BCPs are able to contain a hydroxyl group on C_2 position depends on substituents on C_1 , C_3 -position. If there are some polar functional groups like esters, the BCP core could easily be opened to form a cyclobutanone product if the C_2 -Bpin is oxidized into the alcohol. See details in the Limitation Part.

Question 2:

Are all BCP C₂-BF₃Ks and BCP C₂-boronic acids stable?

Answer:

According to our observation, all of BCP C_2 -BF₃Ks are stable at room temperature for months. However, the BCP C_2 -boronic acids containing alkyl groups at C_1 , C_3 -positions like compound **82** is stable at room temperature for several days after they are recrystalized. Usually, such boronic acids should be stored at -20 °C in case of its decomposition. However, other boronic acids containing some electron-withdrawing group like esters and cyanides are not very stable, which should be used intermediately in following transformations.

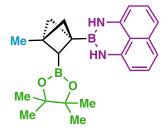
Question 3:

There are several conditions for the cross-coupling with aryl bromide step. What condition do you recommend to choose for a specific substrate?

Answer:

Owing to effect from C_1 , C_3 -substituents, optimization of cross-coupling for each substrate is needed. Usually it is recommended that K_3PO_4 and Cs_2CO_3 are used as bases while dioxane and THF as solvents.

Question 4:


Is the ate-complex formed from BCP C2-Bpin with PhLi stable?

Answer:

The ate complex is stable for several hours without any solvent under vacuum or argon atmosphere. Usually it is used intermediately in the following transformation rather than stored for days.

General Experimental Procedures and Characterization Data of substrates in Selective C₃-Bpin Functionalization of BCP BisBoronates

Compound 15

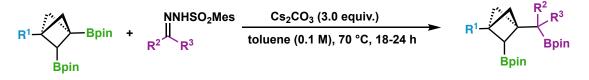
2-(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-2,3dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (15)

A flame-dried 13×100 mm pyrex culture tube was charged with BCP bis-boronate **13** (33.4 mg, 0.1 mmol, 1.0 equiv.) and 1,8-diaminonaphthalene (31.6 mg, 0.2 mmol, 2.0 equiv.). Then the tube was evacuated and backfilled with argon for three times, followed by addition of toluene (1.0 mL, 0.1 M) via a syringe. After stirring for at 100 °C for 12 hours, the reaction mixture was cooled to room temperature. Next, the solvent was removed under high vacuum, and the crude residue was purified by chromatography on silica gel (50:1, hexanes: ethyl acetate) to afford 22.4 mg (60%) of the title compound **15**.

Physical State: white solid.

m.p.: 162-164 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.08 (dd, *J* = 8.2, 7.3 Hz, 2H), 6.97 (dd, *J* = 8.3, 0.9 Hz, 2H), 6.28 – 6.23 (m, 4H), 2.07 (dd, *J* = 9.8, 2.5 Hz, 1H), 1.79 (s, 1H), 1.77 (dd, *J* = 9.8, 1.3 Hz, 1H), 1.73 (dd, *J* = 8.8, 2.5 Hz, 1H), 1.55 (d, *J* = 8.7 Hz, 1H), 1.35 (s, 12H), 1.19 (s, 3H) ppm.

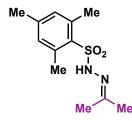

¹³C NMR (151 MHz, CDCl₃): δ 141.70, 136.56, 127.65, 119.93, 117.14, 105.36, 83.45, 55.08, 54.21, 44.23, 25.27, 25.05, 20.12 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.50, 29.75 ppm.

HRMS (ESI-TOF): calc'd for C₂₂H₂₈B₂N₂O₂ [M+H]⁺: 375.2410, found: 375.2421.

TLC: $R_f = 0.40$ (10:1 hexanes: ethyl acetate).

General Procedure A for Hydrazone Coupling of BCP BisBoronates



A screw-capped 13×100 mm pyrex culture tube was charged with cesium carbonate (3.0 equiv.), 2-mesitylsulfonyl hydrazone (2.0 equiv.) and BCP bis-boronate (1.0 equiv.). Then the tube was evacuated and backfilled with argon for three times, followed by addition of toluene (0.1 M) via a syringe. After stirring for at 70 °C for 18-48 hours when it is confirmed that the BCP bis-boronate was totally consumed, the reaction mixture was cooled to room temperature. Next, the suspended solution was then filtered over Celite and washed with diethyl ether. The solvent was removed under high vacuum, and the crude residue was purified by chromatography on silica gel.⁷

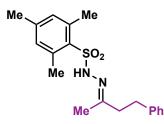
The sulfonyl hydrazones were prepared through the procedure in literatures:⁷

Compound 17

2,4,6-trimethyl-N'-(propan-2-ylidene)benzenesulfonohydrazide (17).

Physical State: white solid.

m.p.: 149-152 °C.


¹**H NMR (600 MHz, Acetone**-*d*₆): δ 8.80 (s, 1H), 7.01 (s, 2H), 2.64 (s, 6H), 2.28 (s, 3H), 1.86 (s, 3H), 1.82 (s, 3H) ppm.

¹³C NMR (151 MHz, Acetone-*d*₆): δ 154.87, 143.10, 140.91, 134.78, 132.37, 25.15, 23.38, 20.84,

16.94 ppm.

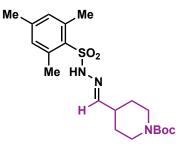
HRMS (ESI-TOF): calc'd for $C_{12}H_{18}N_2O_2S$ [M+H]⁺: 255.1162, found: 255.1170. TLC: $R_f = 0.42$ (2:1 hexanes : ethyl acetate).

Compound SI-22

2,4,6-trimethyl-N'-(4-phenylbutan-2-ylidene)benzenesulfonohydrazide (SI-22).

Physical State: white solid.

m.p.: 105-107 °C.


¹**H NMR (600 MHz, Acetone-***d*₆): δ 8.87 (br., 1H), 7.21 – 7.15 (m, 2H), 7.14 – 7.10 (m, 1H), 7.08 – 7.06 (m, 2H), 7.02 (s, 2H), 2.74 – 2.69 (m, 2H), 2.66 (s, 6H), 2.49 – 2.43 (m, 2H), 2.29 (s, 3H), 1.86 (s, 3H) ppm.

¹³C NMR (151 MHz, Acetone-*d*₆): δ 156.52, 143.10, 142.42, 140.91, 134.66, 132.40, 129.11, 129.03, 126.56, 40.84, 32.51, 23.42, 23.41, 20.89, 16.53 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₄N₂O₂S [M+H]⁺: 345.1631, found: 345.1625.

TLC: $R_f = 0.27$ (5:1 hexanes : ethyl acetate).

Compound SI-23

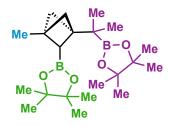
tert-butyl-4-((2-(mesitylsulfonyl)hydrazineylidene)methyl)piperidine-1-carboxylate (SI-23).

Physical State: white solid.

m.p.: 165-167 °C.

¹H NMR (600 MHz, CDCl₃): δ 7.85 (s, 1H), 7.05 (d, *J* = 4.1 Hz, 1H), 6.96 (s, 2H), 4.03 – 3.83

(m, 2H), 2.80 – 2.68 (m, 2H), 2.64 (s, 6H), 2.34 – 2.23 (m, 1H), 2.30 (s, 3H), 1.71 – 1.62 (m, 2H), 1.43 (s, 9H), 1.36 – 1.25 (m, 2H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 154.83, 152.46, 143.12, 140.28, 132.25, 132.00, 79.71, 43.48 (*approx.*), 38.76, 28.71, 28.56, 23.32, 21.15 ppm.

HRMS (ESI-TOF): calc'd for C₂₀H₃₁N₃O₄S [M+H]⁺: 410.2108, found: 410.2104.

TLC: $R_f = 0.56$ (2:1 hexanes : ethyl acetate).

Characterization of Substrates in Hydrazone Coupling (18, 32-35)

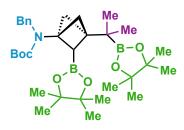
Compound 18

4,4,5,5-tetramethyl-2-(2-(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)propan-2-yl)-1,3,2-dioxaborolane (18)

Following **General Procedure A** on 0.1 mmol scale with BCP bisboronate **13** and 2-mesityl sulfonyl hydrazone **17** reacting for 48 h. Purification by flash chromatography (hexanes: diethyl ether, 20:1) and afforded 16.0 mg (42%) of the title compound **18**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 2.27 (dd, *J* = 9.7, 1.8 Hz, 1H), 1.52 (dd, *J* = 9.7, 1.1 Hz, 1H), 1.43 (s, 1H), 1.37 (dd, *J* = 8.1, 1.8 Hz, 1H), 1.28 (d, *J* = 8.0 Hz, 1H), 1.22 (s, 12H), 1.21 (s, 12H), 1.15 (s, 3H), 0.86 (s, 3H), 0.85 (s, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 82.94, 82.54, 54.70, 48.90, 47.59, 37.02, 24.98, 24.94, 24.89, 22.04, 21.85, 18.79 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 33.30 ppm.

HRMS (ESI-TOF): calc'd for C₂₁H₃₈B₂O₄ [M+H]⁺: 377.3029, found: 377.3040.

TLC: $R_f = 0.35$ (15:1 hexanes: ethyl acetate).

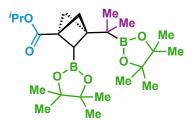
Compound 32

tert-butyl benzyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(2-(4,4,5,5-tetra methyl-1,3,2-dioxaborolan-2-yl)propan-2-yl)bicyclo[1.1.1]pentan-1-yl)carbamate (32)

Following **General Procedure A** on 0.05 mmol scale with BCP bisboronate **24** and 2-mesityl sulfonyl hydrazone **SI-21** reacting for 24 h. Purification by flash chromatography (hexanes: ethyl acetate, 4:1) and afforded 17.5 mg (62%) of the title compound **27**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.22 – 7.14 (m, 4H), 7.11 (t, *J* = 7.0 Hz, 1H), 4.46 – 4.24 (m, 2H), 2.58 (s, 1H), 1.85 (d, *J* = 9.5 Hz, 1H), 1.78 (d, *J* = 7.9 Hz, 1H), 1.67 (s, 1H), 1.66 (s, 1H), 1.38 (s, 9H), 1.139 (s, 6H), 1.136 (s, 6H) 1.11 (s, 12H), 0.80 (s, 3H), 0.79 (s, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 140.28, 128.22, 126.85, 126.47, 83.06, 82.80, 49.14, 48.76, 45.90, 28.61, 25.07, 24.92, 24.90, 22.40, 22.16 ppm. *Note:* BnN*C*(O), BocBnN*C*, NCH₂Ph, Me₃CO, BCH and BCMe₂ were not observed.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.08 ppm.

HRMS (ESI-TOF): calc'd for C₃₂H₅₁BNO₆ [M+H]⁺: 568.3975, found: 568.3975.

TLC: $R_f = 0.56$ (5:1 hexanes: ethyl acetate).

Compound 33

isopropyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)propan-2-yl)bicyclo[1.1.1]pentane-1-carboxylate (33)

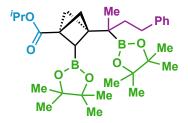
Following General Procedure A on 0.1 mmol scale with BCP bisboronate 23 and 2-mesityl sulfonyl hydrazone 17 reacting for 18 h. Purification by flash chromatography (hexanes: ethyl

acetate, 4:1) and afforded 27.7 mg (62%) of the title compound 33.

Physical State: white solid.

m.p.: 74-76 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 4.97 (hept, *J* = 6.3 Hz, 1H), 2.69 (dd, *J* = 9.5, 1.8 Hz, 1H), 1.89 – 1.85 (m, 2H), 1.81 (dd, *J* = 7.9, 1.8 Hz, 1H), 1.66 (d, *J* = 7.8 Hz, 1H), 1.23 (s, 6H), 1.22 (s, 6H), 1.20 (s, 12H), 1.195 (d, *J* = 7.0 Hz, 6H), 0.88 (s, 3H), 0.87 (s, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 170.85, 83.14, 82.91, 67.44, 54.10, 49.29, 47.75, 38.82, 24.96, 24.94, 24.92, 24.86, 22.00, 21.80, 21.66 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 33.04 ppm.

HRMS (ESI-TOF): calc'd for C₂₄H₄₂B₂O₆ [M+H]⁺: 449.3240, found: 449.3259.

TLC: $R_f = 0.54$ (5:1 hexanes: ethyl acetate).

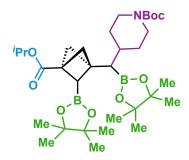
Compound 34

isopropyl 3-(4-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl)-2-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1-carboxylate (34)

Following General Procedure A on 0.1 mmol scale with BCP bisboronate 23 and 2-mesityl sulfonyl hydrazone SI-22 reacting for 18 h. Purification by flash chromatography (hexanes: ethyl acetate, 4:1) and afforded 30.6 mg (57%) of the title compound 34.

Note: two diastereoisomers (1/1) were observed. NMR characterization for the mixture was given. **Physical State**: pale yellow solid.

m.p.: 53-55 °C.


¹H NMR (600 MHz, CDCl₃): δ 7.27 – 7.09 (m, 5H), 4.96 (hept, J = 6.3 Hz, 1H), 2.75 (dd, J = 9.6, 1.9 Hz, 1H), 2.56 (tdd, J = 12.9, 5.1, 2.7 Hz, 1H), 2.49 – 2.38 (m, 1H), 1.92 (ddd, J = 5.6, 4.3, 1.4 Hz, 1H), 1.89 – 1.78 (m, 3H), 1.67 (dd, J = 7.8, 4.4 Hz, 1H), 1.26 (s, 6H), 1.26 (s, 6H), 1.21 – 1.19 (m, 7H), 1.18 (s, 3H), 1.17 (s, 3H), 1.12 (s, 3H), 1.11 (s, 3H), 0.97 (s, 1.5H), 0.96 (s, 1.5H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ 170.70, 170.69, 143.66, 143.62, 128.54, 128.52, 128.30, 128.28, 125.60, 83.44, 82.93, 67.51, 67.50, 54.19, 54.13, 49.17, 49.03, 48.18, 48.12, 39.23, 39.15, 39.07, 38.61, 33.54, 33.49, 25.37, 25.33, 25.07, 25.03, 24.90, 24.86, 24.78, 24.75, 21.99, 18.35, 18.31 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.84 ppm.

HRMS (ESI-TOF): calc'd for C₃₁H₄₈B₂O₆ [M+H]⁺: 539.3710, found: 539.3705.

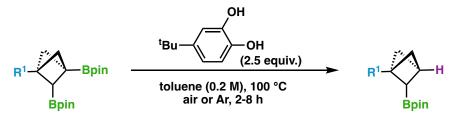
TLC: $R_f = 0.52$ (5:1 hexanes: ethyl acetate).

Compound 35

tert-butyl 4-((3-(isopropoxycarbonyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1. 1.1]pentan-1-yl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)piperidine-1-carboxylate (35)

Following General Procedure A on 0.1 mmol scale with BCP bisboronate 23 and 2-mesityl sulfonyl hydrazone SI-23 reacting for 24 h. Purification by flash chromatography (hexanes: ethyl acetate, 4:1) and afforded 45.1 mg (75%) of the title compound 35.

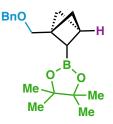
Note: two diastereoisomers (1/1) were observed. NMR characterization for the mixture was given. **Physical State**: colorless oil.


¹H NMR (600 MHz, CDCl₃): δ 4.96 (hept, J = 6.3, 1.1 Hz, 1H), 4.03 (br., 2H), 2.69 – 2.56 (m, 3H), 2.06 – 1.93 (m, 3H), 1.90 – 1.83 (m, 1H), 1.72 (d, J = 8.0 Hz, 1H), 1.69 – 1.58 (m, 3H), 1.46 – 1.42 (m, 11H), 1.24 (s, 3H), 1.23 (s, 3H), 1.23 (s, 6H), 1.22 (s, 12H), 1.21 – 1.18 (m, 6H) ppm.
¹³C NMR (151 MHz, CDCl₃): δ 170.09, 155.06, 155.04, 83.31, 83.24, 83.10, 83.08, 79.20, 67.56, 56.10, 51.94, 42.97, 42.84, 40.75, 40.72, 36.60, 36.47, 28.60, 25.28, 25.24, 25.16, 25.10, 25.08, 24.84, 24.83, 21.99, 21.97 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.78 ppm.

HRMS (ESI-TOF): calc'd for C₃₂H₅₅B₂NO₈ [M+H]⁺: 604.4187, found: 604.4194.

TLC: $R_f = 0.32$ (5:1 hexanes: ethyl acetate).


General Procedure B for Deborylation of BCP Bisboronates

A screw-capped 13×100 mm Pyrex culture tube or a flame-dried 100-mL Pyrex flask was charged with BCP bisboronate (1.0 equiv.) and tert-butyl catechol (2.5 equiv.). Then the tube or the flask was evacuated and backfilled with argon or air (as details below showed) for three times, followed by addition of toluene (0.1 M) via a syringe. After stirring for at 100 °C for 2-12 hours when it is confirmed that the starting material was consumed totally, the reaction mixture was cooled to room temperature. Next, the solvent was removed under high vacuum, and the crude residue was purified by chromatography on silica gel.⁸

Characterization of Substrates in Protodeborylation (36-41)

Compound 36

2-(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (36)

Following General Procedure B on 0.1 mmol scale with BCP bisboronate 25 under argon atmosphere heating for 12 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 22.0 mg (70%) of the title compound 36.

Following General Procedure B on 2.0 mmol scale with BCP bisboronate 25 under argon atmosphere heating for 5 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 528 mg (84%) of the title compound 36.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.37 – 7.30 (m, 4H), 7.28 – 7.24 (m, 1H), 4.54 (s, 2H), 3.45 (s, 2H), 2.69 (s, 1H), 2.22 (dd, *J* = 9.8, 2.2 Hz, 1H), 1.82 (d, *J* = 9.0 Hz, 2H), 1.78 (dd, *J* = 8.3, 2.2 Hz, 1H), 1.61 (d, *J* = 8.3 Hz, 1H), 1.225 (s, 6H), 1.222 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 139.04, 128.37, 127.60, 127.45, 83.06, 72.96, 70.74, 53.55, 48.90, 46.48, 30.49, 24.94(2C) ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.21 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₇BO₃ [M+H]⁺: 315.2126, found: 315.2134.

TLC: $R_f = 0.46$ (10:1 hexanes: ethyl acetate).

Compound 37

isopropyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1-carboxylate

(37)

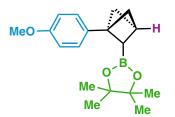
Following General Procedure B on 0.1 mmol scale with BCP bisboronate 23 under air atmosphere heating for 3 h. Purification by flash chromatography (hexanes: ethyl acetate, 10:1) and afforded 20.2 mg (72%) of the title compound 37.

Following General Procedure B on 3.0 mmol scale with BCP bisboronate 23 under air atmosphere heating for 2 h 20 minutes. Purification by flash chromatography (hexanes: ethyl acetate, 10:1) and afforded 630.7 mg (75%) of the title compound 37.

Following General Procedure B on 10.0 mmol scale with BCP bisboronate 23 under air atmosphere heating for 2.5 h. Purification by flash chromatography (hexanes: ethyl acetate, 10:1) and afforded 2.09 g (75%) of the title compound 37.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 4.97 (hept, *J* = 6.3 Hz, 1H), 2.58 (dd, *J* = 9.5, 2.2 Hz, 1H), 2.55 (s, 1H), 2.10 – 2.04 (m, 2H), 2.02 (dd, *J* = 8.2, 2.3 Hz, 1H), 1.89 (dd, *J* = 8.2, 1.0 Hz, 1H), 1.25 (s, 12H), 1.22 (d, *J* = 3.9 Hz, 3H), 1.20 (d, *J* = 3.9 Hz, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 169.38, 83.32, 67.59, 55.03, 50.46, 44.96, 29.72, 25.01, 24.88, 21.96, 21.95 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.65 ppm.

HRMS (ESI-TOF): calc'd for C₁₅H₂₅BO₄ [M+H]⁺: 289.1919, found: 289.1933.

TLC: $R_f = 0.36$ (10:1 hexanes: ethyl acetate).

Compound 38

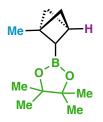
2-(1-(4-methoxyphenyl)bicyclo[1.1.1]pentan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (38) Following General Procedure B on 0.1 mmol scale with BCP bisboronate 27 under argon atmosphere heating for 6 h. Purification by flash chromatography (hexanes: ethyl acetate, 4:1) and afforded 19.6 mg (65%) of the title compound 38.

Physical State: colorless oil.

¹H NMR (600 MHz, CDCl₃): δ 7.21 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 3.78 (s, 3H),

2.68 (s, 1H), 2.61 (dd, *J* = 9.7, 2.1 Hz, 1H), 2.08 (d, *J* = 9.6 Hz, 1H), 2.05 (s, 1H), 2.00 (dd, *J* = 8.2, 2.1 Hz, 1H), 1.89 (d, *J* = 8.2 Hz, 1H), 1.25 (s, 6H), 1.24 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 158.23, 134.47, 127.43, 113.45, 83.15, 55.65, 55.39, 51.39, 49.27, 28.71, 24.99, 24.96 ppm.


¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.18 ppm.

HRMS (ESI-TOF): calc'd for C₁₈H₂₅BO₃ [M+H]⁺: 301.1970, not found.

MS (GCMS, EI): m/z = 300 (14%), 200 (18%), 172 (90%), 133 (100%), 84 (54%).

TLC: $R_f = 0.50$ (10:1 hexanes: ethyl acetate).

Compound 39

4,4,5,5-tetramethyl-2-((1s,3s)-1-methylbicyclo[1.1.1]pentan-2-yl)-1,3,2-dioxaborolane (39)

Following General Procedure B on 0.1 mmol scale with BCP bisboronate 13 under argon atmosphere heating for 5 hours. Purification by flash chromatography (hexanes: ethyl acetate, 40:1) and afforded 12.6 mg (61%) of the title compound 39. *Note: The compound is volatile.* Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 2.59 (s, 1H), 2.07 (dd, *J* = 9.7, 2.2 Hz, 1H), 1.71 (dd, *J* = 9.7, 1.4 Hz, 1H), 1.69 (s, 1H), 1.64 (dd, *J* = 8.4, 2.2 Hz, 1H), 1.49 (dd, *J* = 8.4, 1.1 Hz, 1H), 1.258 (s, 6H), 1.256 (s, 6H), 1.17 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 82.96, 55.95, 51.30, 44.81, 29.44, 25.04, 24.95, 19.39 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.16 ppm.

HRMS (ESI-TOF): calc'd for C₁₂H₂₁BO₂ [M+H]⁺: 209.1707, not found.

MS (GCMS, EI): m/z = 193 (7%), 151 (8%), 135 (7%), 108 (100%), 67 (62%).

TLC: $R_f = 0.50$ (20:1 hexanes: ethyl acetate).

Compound 40

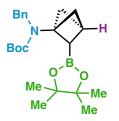
4,4,5,5-tetramethyl-2-(1-(trifluoromethyl)bicyclo[1.1.1]pentan-2-yl)-1,3,2-dioxaborolane (40) Following General Procedure B on 0.1 mmol scale with BCP bisboronate 26 under argon atmosphere in benzene solution heating at 100 °C for 12 hours. Purification by flash chromatography (hexanes: ethyl acetate, 40:1) and afforded 17.4 mg (66%) of the title compound 40.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 2.67 (s, 1H), 2.58 (dd, *J* = 9.5, 2.3 Hz, 1H), 2.03 – 1.98 (m, 2H), 1.96 (dd, *J* = 8.2, 2.3 Hz, 1H), 1.84 (d, *J* = 8.2 Hz, 1H), 1.254 (s, 6H), 1.252 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 122.03 (q, *J* = 277.2 Hz), 83.46, 52.13, 47.33, 43.36 (q, *J* = 37.5 Hz), 29.72, 24.70, 24.69 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.45 ppm.


¹⁹F NMR (565 MHz, CDCl₃): δ -73.45 ppm.

HRMS (ESI-TOF): calc'd for C₁₂H₁₈BF₃O₂ [M+H]⁺: 263.1425, not found.

MS (GCMS, EI): m/z = 247 (11%), 153 (9%), 131 (29%), 83 (52%), 59 (100%).

TLC: $R_f = 0.50$ (20:1 hexanes: ethyl acetate).

Compound 41

tert-butyl benzyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-

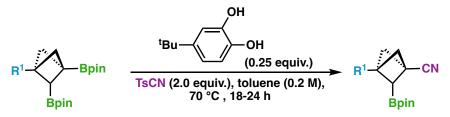
yl)carbamate (41)

In a 5 mL screw-capped culture tube was added **24** (0.1 mmol), DMAP (30 mol%), MeOBcat (30 mol%) and (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (5 mol%). CH₃OH (0.5 mL) and acetone (0.5 mL) was

added, and the tube was sealed. The reaction was stirred under irradiation by blue LED for 2 hours when TLC analysis showed the consume of the starting material. The solvent was concentrated and the residue was purified by flash chromatography (hexanes: ethyl acetate, 10:1) and afforded 20.5 mg (53%) of the title compound **41**.

Note: the protodeboralation product of bis-Bpins was observed as the reaction time is extended. **Physical State**: colorless oil.

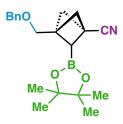
¹**H NMR (600 MHz, CDCl₃)**: δ 7.30 – 7.26 (m, 2H), 7.24 – 7.21 (m, 2H), 7.19 (td, *J* = 7.1, 1.4 Hz, 1H), 4.57 – 4.33 (m, 2H), 2.80 – 2.28 (m, 2H), 2.04 (dd, *J* = 9.6, 1.3 Hz, 1H), 2.00 – 1.91 (m, 3H), 1.45 (br., 9H), 1.23 (s, 12H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 140.09, 128.29, 126.76, 126.57, 83.16, 52.11, 48.88, 28.58, 25.79, 25.00 ppm. *Note:* BnN*C*(O), BocBnN*C*, N*C*H₂Ph, Me₃*C*, and Bpin*C* were not observed.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.29 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₃₄BNO₄ [M+H]⁺: 400.2653, found: 400.2655.

TLC: $R_f = 0.39$ (10:1 hexanes: ethyl acetate).


General Procedures C for Cyanation of BCP Bisboronates

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP bisboronate (1.0 equiv.), p-toluenesulfonyl cyanide (2.0 equiv.) and tert-butyl catechol (0.25 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of toluene (0.2 M) via a syringe. After stirring for at 70°C for 18-24 hours when it is confirmed that the starting material was consumed totally, the reaction mixture was cooled to room temperature. Next, the solvent was removed under high vacuum, and the crude residue was purified by chromatography on silica gel.⁸

Characterization of Substrates in Cyanation (42, 43)

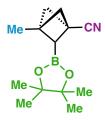
Compound 42

3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1carbonitrile (42)

Following **General Procedure C** on 0.1 mmol scale with BCP bisboronate **25**, p-toluenesulfonyl cyanide and guaiacol (1.0 equiv.) as additive. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 19.5 mg (57%) of the title compound **42**.

Physical State: colorless oil.

¹H NMR (600 MHz, CDCl₃): δ 7.30 – 7.24 (m, 4H), 7.24 – 7.21 (m, 1H), 4.45 (s, 2H), 3.39 (s, 2H), 2.69 (dd, *J* = 9.9, 2.3 Hz, 1H), 2.19 – 2.14 (m, 2H), 2.10 (dd, *J* = 8.2, 2.3 Hz, 1H), 1.98 (d, *J* = 8.2 Hz, 1H), 1.19 (s, 6H), 1.18 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 138.26, 128.44, 127.71, 127.61, 118.00, 83.85, 73.17, 68.93, 57.33, 52.55, 45.48, 26.01, 24.87, 24.84 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.02 ppm.

HRMS (ESI-TOF): calc'd for C₂₀H₂₆BNO₃ [M+H]⁺: 340.2079, found: 340.2088.

TLC: $R_f = 0.28$ (10:1 hexanes: ethyl acetate).

Compound 43

3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1-carbonitrile (43)

Following General Procedure C on 0.2 mmol scale with BCP bisboronate 13, and p-toluenesulfonyl cyanide. Purification by flash chromatography (hexanes: ethyl acetate, 50:1) and

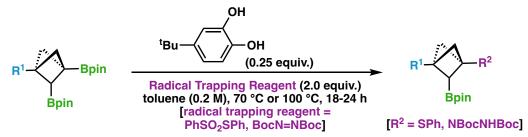
afforded 23.0 mg (50%) of the title compound 43.

Physical State: white solid.

m.p.: 44-46 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 2.56 (dd, J = 9.7, 2.3 Hz, 1H), 2.14 – 2.11 (m, 2H), 2.05 (dd, J =

8.4, 2.4 Hz, 1H), 1.92 (d, J = 8.3 Hz, 1H), 1.26 (s, 12H), 1.19 (s, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 118.13, 83.79, 59.60, 54.83, 43.87, 25.19, 24.96, 24.93, 17.82 ppm.

¹¹**B** NMR (128 MHz, CDCl₃): δ 31.12 ppm.

HRMS (ESI-TOF): calc'd for C₁₃H₂₀BNO₂ [M+H]⁺: 234.1660, found: 234.1667.

TLC: $R_f = 0.28$ (10:1 hexanes: ethyl acetate).

General Procedures D for C-S & C-N Formation of BCP Bisboronates

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP bisboronate (1.0 equiv.), radical trapping reagent (2.0 equiv., PhSO₂SPh or DBAD) and tert-butyl catechol (0.25 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of toluene (0.2 M) via a syringe. After stirring for at 70 °C or 100 °C (as details showed) for 18-24 hours when it is confirmed that the starting material was consumed totally, the reaction mixture was cooled to room temperature. Next, the solvent was removed under high vacuum, and the crude residue was purified by chromatography on silica gel.⁸

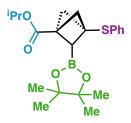
Characterization of Substrates in C-S & C-N Formation (44-47)

2-(1-((benzyloxy)methyl)-3-(phenylthio)bicyclo[1.1.1]pentan-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (44)

Following **General Procedure D** on 0.1 mmol scale with BCP bisboronate **25**, and PhSO₂SPh reacting at 100 °C for 24 h. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 29.6 mg (70%) of the title compound **44**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.46 – 7.41 (m, 2H), 7.32 – 7.16 (m, 8H), 4.46 (s, 2H), 3.44 (s, 2H), 2.54 (dd, *J* = 9.5, 1.9 Hz, 1H), 1.87 (dd, *J* = 8.1, 1.9 Hz, 1H), 1.85 – 1.81 (m, 2H), 1.67 (d, *J* = 8.0 Hz, 1H), 1.142 (s, 6H), 1.138 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 138.67, 134.17, 134.12, 128.78, 128.40, 127.60, 127.57, 127.55, 83.22, 72.96, 69.71, 57.80, 52.05, 45.30, 42.19, 24.92, 24.87 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.13 ppm.

HRMS (ESI-TOF): calc'd for C₂₅H₃₁BO₃S [M+H]⁺: 423.2160, found: 423.2173.

TLC: $R_f = 0.48$ (10:1 hexanes: ethyl acetate).

Compound 45

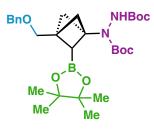
isopropyl 3-(phenylthio)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1-carboxylate (45)

Following **General Procedure D** on 0.1 mmol scale with BCP bisboronate **23**, and PhSO₂SPh reacting at 70 °C for 24 h. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and

afforded 13.6 mg (35%) of the title compound 45.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.48 – 7.43 (m, 2H), 7.31 – 7.27 (m, 3H), 4.95 (hept, J = 6.3 Hz, 1H), 2.90 (dd, J = 9.4, 1.9 Hz, 1H), 2.20 – 2.13 (m, 1H), 2.12 (s, 1H), 2.12 – 2.07 (m, 1H), 2.01 – 1.92 (m, 1H), 1.22 (s, 6H), 1.21 (s, 6H), 1.18 (d, J = 6.3 Hz, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 168.60, 134.51, 133.16, 128.95, 128.04, 83.50, 68.10, 59.22, 53.67, 45.08, 41.21, 25.02, 24.82, 21.90 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.01 ppm.

HRMS (ESI-TOF): calc'd for C₂₁H₂₉BO₄S [M+H]⁺: 389.1952, found: 389.1959.

TLC: $R_f = 0.45$ (10:1 hexanes: ethyl acetate).

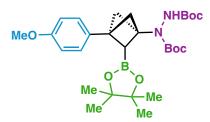
Compound 46

di-tert-butyl 1-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo [1.1.1]pentan-1-yl)hydrazine-1,2-dicarboxylate (46)

Following **General Procedure D** on 0.1 mmol scale with BCP bisboronate **25**, and and di*-tert*butyl azodicarboxylate (DBAD) reacting at 100 °C for 24 h. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 27.2 mg (50%) of the title compound **46**.

Physical State: red oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.36 – 7.23 (m, 5H), 6.66 (s, 0.5H), 6.15 (s, 0.5H), 4.54 (s, 2H), 3.61 (s, 2H), 2.57 – 1.68 (m, 5H), 1.46 (s, 9H), 1.45 (s, 9H), 1.21 (s, 12H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 138.82, 128.40, 127.61, 127.52, 83.37, 72.97, 69.05, 28.45, 28.34, 24.95, 24.90 ppm. *Note:* Me₃C, CNC(O), NNHC(O) *and all the carbon of BCP skeleton were not observed*.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 30.76 ppm.

HRMS (ESI-TOF): calc. for C₂₉H₄₅BN₂O₇ [M+H]⁺: 545.3393, found: 545.3374.

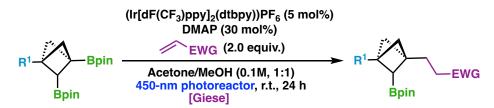
TLC: $R_f = 0.59$ (2:1 hexanes: ethyl acetate).

Compound 47

di-tert-butyl 1-(3-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo [1.1.1]pentan-1-yl)hydrazine-1,2-dicarboxylate (47)

Following **General Procedure D** on 0.1 mmol scale with BCP bisboronate **27**, and di*-tert*-butyl azodicarboxylate (DBAD) reacting at 100 °C for 24 h. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 23.9 mg (45%) of the title compound **47**.

Physical State: light yellow foam.

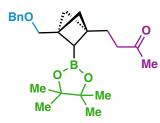

¹**H NMR (600 MHz, CDCl₃)**: δ 7.21 (d, *J* = 8.1 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 6.65 (br., 0.5H), 6.16 (br., 0.5H), 3.78 (s, 3H), 2.98 – 2.60 (m, 1H), 2.52 – 2.25 (m, 2H), 2.20 – 1.97 (m, 2H), 1.54 – 1.44 (m, 18H), 1.24 (s, 12H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 158.44, 131.80, 127.93, 113.59, 83.45, 55.41, 28.46, 28.34, 25.03, 24.92 ppm. *Note:* Me₃C, CNC(O), NNHC(O) *and all the carbon of BCP skeleton were not observed*.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.11 ppm.

HRMS (ESI-TOF): calc. for C₂₈H₄₃BN₂O₇ [M+H]⁺: 531.3236, found: 531.3235.

TLC: $R_f = 0.59$ (2:1 hexanes: ethyl acetate).



General Procedure E for Giese-type reaction of BCP Bisboronates

A screw-capped 13×100 mm pyrex culture tube was charged with (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (5 mol%), DMAP (30 mol%), BCP bisboronate (1.0 equiv.) and Michael acceptor (2.0 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of methanol/acetone (0.1 M, 1:1) solvent via a syringe. Then the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds. After stirring in a 450-nm photoreactor for 24 hours when it is confirmed that the starting material was consumed totally, the reaction mixture was concentrated under high vacuum, and the crude residue was purified by chromatography on silica gel. ⁹

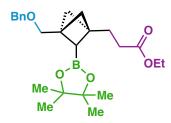
Characterization of Substrates in Giese reaction (48-54)

Compound 48

4-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)butan-2-one (48)

Following **General Procedure E** on 0.05 mmol scale with BCP bisboronate **25**, and methyl vinyl ketone. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 13.5 mg (70%) of the title compound **48**.

Physical State: colorless oil.


¹H NMR (600 MHz, CDCl₃): δ 7.35 – 7.29 (m, 4H), 7.27 – 7.23 (m, 1H), 4.53 (s, 2H), 3.47 (s, 2H), 2.42 (dd, J = 8.6, 6.9 Hz, 2H), 2.14 (s, 3H), 2.11 (dd, J = 9.9, 2.0 Hz, 1H), 1.79 (t, J = 7.7 Hz, 2H), 1.61 – 1.58 (m, 2H), 1.55 (dd, J = 8.2, 2.0 Hz, 1H), 1.44 – 1.38 (m, 1H), 1.21 (s, 12H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ 209.17, 139.00, 128.36, 127.57, 127.44, 82.96, 72.93, 70.40, 53.49, 48.17, 42.45, 41.01, 40.72, 29.93, 26.48, 24.96, 24.95 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.69 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₃₃BO₄S [M+H]⁺: 385.2545, found: 385.2547.

TLC: $R_f = 0.32$ (4:1 hexanes: ethyl acetate).

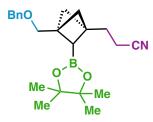
Compound 49

ethyl 3-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1] pentan-1-yl)propanoate (49)

Following **General Procedure E** on 0.1 mmol scale with BCP bisboronate **25**, and ethyl acrylate. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 15.7 mg (38%) of the title compound **49**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.36 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 4.53 (s, 2H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.48 (s, 2H), 2.29 (td, *J* = 7.5, 1.8 Hz, 2H), 2.12 (dd, *J* = 9.8, 2.0 Hz, 1H), 1.85 (t, *J* = 7.8 Hz, 2H), 1.63 – 1.59 (m, 2H), 1.57 (dd, *J* = 8.3, 2.0 Hz, 1H), 1.42 (d, *J* = 8.2 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.21 (s, 12H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 173.95, 139.01, 128.36, 127.58, 127.44, 82.96, 72.94, 70.41, 60.34, 53.40, 48.12, 42.46, 40.69, 31.71, 27.58, 24.95, 24.93, 14.35 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.62 ppm.

HRMS (ESI-TOF): calc'd for C₂₄H₃₅BO₅ [M+H]⁺: 415.2650, found: 415.2656.

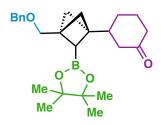
TLC: $R_f = 0.54$ (4:1 hexanes: ethyl acetate).

Compound 50

3-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)propanenitrile (50)

Following **General Procedure E** on 0.1 mmol scale with BCP bisboronate **25**, and acrylonitrile. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 20.0 mg (55%) of the title compound **50**.

Physical State: colorless oil.


¹H NMR (600 MHz, CDCl₃): δ 7.35 – 7.30 (m, 4H), 7.30 – 7.23 (m, 1H), 4.53 (s, 2H), 3.50 (s, 2H), 2.34 (t, *J* = 7.5 Hz, 2H), 2.13 (dd, *J* = 10.0, 2.2 Hz, 1H), 1.89 (t, *J* = 7.5 Hz, 2H), 1.73 – 1.69 (m, 2H), 1.66 (dd, *J* = 8.3, 2.1 Hz, 1H), 1.47 (d, *J* = 8.2 Hz, 1H), 1.213 (s, 6H), 1.208 (s, 6H) ppm.
¹³C NMR (151 MHz, CDCl₃): δ 138.88, 128.37, 127.57, 127.49, 120.28, 83.19, 72.99, 70.07, 53.51, 48.42, 41.61, 40.95, 28.16, 24.95 (2C), 14.52 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.66 ppm.

HRMS (ESI-TOF): calc'd for C₂₂H₃₀BNO₃ [M+H]⁺: 368.2392, found: 368.2400.

TLC: $R_f = 0.39$ (4:1 hexanes: ethyl acetate).

Compound 51

3-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one (51)

Following **General Procedure E** on 0.1 mmol scale with BCP bisboronate **25**, and cyclohexenone. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 22.8 mg (56%) of the title compound **51**.

Note: two diastereoisomers (1/1) were observed. NMR spectroscopy of the mixture was given.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.35 – 7.28 (m, 4H), 7.29 – 7.21 (m, 1H), 4.53 (s, 2H), 3.49 (s, 2H), 2.36 – 2.28 (m, 2H), 2.24 – 2.15 (m, 2H), 2.10 – 1.98 (m, 2H), 1.90 (tt, *J* = 12.3, 3.7 Hz, 1H), 1.86 – 1.79 (m, 1H), 1.66 – 1.51 (m, 4H), 1.41 (dd, *J* = 11.1, 8.1 Hz, 1H), 1.34 – 1.27 (m, 1H), 1.20 (s, 6H), 1.19 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 212.61, 138.90, 128.37, 127.58, 127.47, 83.02, 83.00, 72.98, 70.37, 70.35, 51.37, 51.24, 46.22, 46.20, 46.09, 46.07, 44.87, 44.85, 41.38, 41.34, 40.57, 40.50, 39.97, 39.95, 28.08, 28.00, 25.59, 25.48, 24.91, 24.87 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.00 ppm.

HRMS (ESI-TOF): calc'd for C₂₅H₃₅BO₄ [M+H]⁺: 411.2701, found: 411.2700.

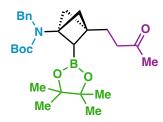
TLC: $R_f = 0.36$ (4:1 hexanes: ethyl acetate).

Compound 52

isopropyl 3-(3-oxobutyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1-carboxylate (52) Following **General Procedure E** on 0.1 mmol scale with BCP bisboronate **23**, and methyl vinyl ketone. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 12.9 mg (37%) of the title compound **52**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 4.97 (hept, *J* = 6.3 Hz, 1H), 2.47 (dd, *J* = 9.9, 2.1 Hz, 1H), 2.44 – 2.38 (m, 2H), 2.13 (s, 3H), 1.87 – 1.83 (m, 2H), 1.82 (dd, *J* = 8.1, 2.1 Hz, 1H), 1.78 (ddd, *J* = 11.2, 6.7, 3.4 Hz, 2H), 1.67 (d, *J* = 8.1 Hz, 1H), 1.241 (s, 6H), 1.238 (s, 6H), 1.21 (d, *J* = 2.9 Hz, 3H), 1.20 (d, *J* = 2.9 Hz, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 208.53, 169.90, 83.26, 67.64, 55.18, 50.05, 41.72, 40.64, 39.95, 29.98, 25.85, 25.01, 24.89, 21.96, 21.95 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.62 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₃₁BO₅ [M+H]⁺: 351.2337, found: 351.2347.

TLC: $R_f = 0.29$ (4:1 hexanes: ethyl acetate).

Compound 53

tert-butyl benzyl(3-(3-oxobutyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1] pentan-1-yl)carbamate (53)

Following **General Procedure E** on 0.1 mmol scale with BCP bisboronate **24**, and methyl vinyl ketone. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 13.6 mg (29%) of the title compound **53**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.42 – 7.22 (m, 2H), 7.23 – 7.16 (m, 3H), 4.52 – 4.41 (m, 2H), 2.37 (t, *J* = 7.7 Hz, 2H), 2.10 (s, 3H), 1.84 (dd, *J* = 9.6, 1.2 Hz, 1H), 1.82 – 1.71 (m, 5H), 1.57 – 1.32 (m, 10H), 1.22 (s, 12H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 208.73, 140.05, 128.29, 126.73, 126.59, 83.11, 79.83 (br.), 51.62, 49.08 (br.), 41.25, 38.27, 29.93, 28.58, 25.05, 25.00, 24.44 ppm. *Note:* BnN*C*(O), BnBocN*C*, BocN*C*H₂Ph *and* Bpin*C were not observed*.

¹¹**B** NMR (128 MHz, CDCl₃): δ 31.06 ppm. HRMS (ESI-TOF): calc. for C₂₇H₄₀BNO₅ [M+H]⁺: 470.3072, found: 470.3069. TLC: R_f = 0.32 (4:1 hexanes: ethyl acetate).

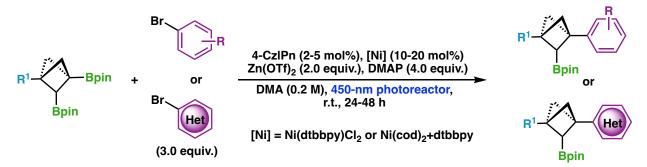
Compound 54

isopropyl 3-(2-(pyridin-4-yl)ethyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo [1.1.1]pentane-1-carboxylate (54)

Following **General Procedure E** on 0.1 mmol scale with BCP bisboronate **23**, and 4-vinylpyridine. Purification by flash chromatography (hexanes: ethyl acetate, 2:1) and afforded 20.5 mg (53%) of the title compound **54**.

Scale-up preparation: A flame-dried screw-capped 50-mL pyrex flask was charged with BCP bisboronate **23** (810 mg, 2.0 mmol, 1.0 equiv.), 4-CzlPn (78.8 mg, 0.1 mmol, 0.05 equiv.) and DMAP (73.2 mg, 0.6 mmol, 0.3 equiv.). Then the flask was evacuated and backfilled with argon for three times, followed by addition of 4-vinyl pyridine (0.43 mL, 4.0 mmol, 2.0 equiv.), and acetone/methanol (20 mL, 1:1). Next, the reaction tube was irradiated under a 40 W Kessil blue LED lamp (468 nm) for 24 hours with a fan running to cool the reaction down. After it is confirmed that the starting material was consumed totally, the reaction mixture was concentrated under high vacuum. The crude residue was purified by chromatography on silica gel (hexanes: ethyl acetate, 2:1) and that afforded 578 mg (75%) product **54** as pale-yellow oil.

Physical State: pale yellow oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 8.49 (br., 2H), 7.14 (br., 2H), 4.97 (hept, J = 6.2 Hz, 1H), 2.59 (td, J = 7.7, 4.4 Hz, 2H), 2.50 (dd, J = 9.9, 2.0 Hz, 1H), 1.90 – 1.87 (m, 2H), 1.87 – 1.83 (m, 3H), 1.72 (d, J = 8.1 Hz, 1H), 1.240 (s, 6H), 1.238 (s, 6H), 1.21 (d, J = 2.8 Hz, 3H), 1.20 (d, J = 2.8 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 169.84, 151.88, 149.29, 124.15, 83.28, 67.70, 55.28, 50.27, 42.07, 40.04, 32.25, 32.20, 24.99, 24.92, 21.94 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.50 ppm.

HRMS (ESI-TOF): calc'd for $C_{22}H_{32}BNO_4 [M+H]^+$: 386.2497, found: 386.2498. TLC: $R_f = 0.23$ (1:1 hexanes: ethyl acetate).

General Procedure F for Cross-Coupling of BCP Bisboronates

General Procedure F1:

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP bisboronate (1.0 equiv.), aryl bromide (3.0 equiv.), 4-CzlPn (5 mol%), Ni(dtbbpy)Cl₂ (10 mol%), Zn(OTf)₂ (2.0 equiv.) and DMAP (4.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of DMA (0.2 M) solvent via a syringe. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm PennPhD integrated photoreactor (M2) for 24-60 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture quenched with water, extracted with ethyl acetate or diethyl ether, washed with brine, dried by Na₂SO₄, and concentrated under high vacuum. The crude residue was purified by chromatography on silica gel.

General Procedure F2:

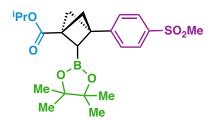
Preparation of [Ni] catalyst: A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with Ni(cod)₂ (0.2 mmol, 55 mg) and dtbbpy (0.24 mmol, 64.4 mg). Then the tube was evacuated and backfilled with argon three times, followed by addition of DMA (4.0 mL) solvent via a syringe. Next, the tube was then sonicated for 20 minutes to dissolve the catalyst.

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP bisboronate (1.0 equiv.), aryl bromide (3.0 equiv.), Zn(OTf)₂ (2.0 equiv.) and DMAP (4.0 equiv.). Then the tube was evacuated and backfilled with argon for three times, followed by addition of 4-CzlPn solution (0.02 equiv., 0.02 M) in DMA and [Ni] catalyst solution (0.2 equiv., 0.05 M) in DMA via a syringe. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm PennPhD integrated photoreactor (M2) for 24-60 hours. After it is confirmed that the starting material was consumed

totally, the reaction mixture quenched with water, extracted with ethyl acetate or diethyl ether, washed with brine, dried by Na₂SO₄, and concentrated under high vacuum. The crude residue was purified by chromatography on silica gel.

Scale-up of cross-coupling of BCP boronate 13 & 23:

Preparation of [Ni] catalyst: A flame-dried screw-capped 20×150 mm pyrex culture tube was charged with Ni(cod)₂ (0.4 mmol, 110 mg) and dtbbpy (0.48 mmol, 128.8 mg). Then the tube was evacuated and backfilled with argon for three times, followed by addition of DMA (8.0 mL) solvent via a syringe. Next, the tube was then sonicated for 20 minutes to form a dark purple solution of Ni catalyst.


Scale-up preparation of BCP boronate 65: A flame-dried 20×150 mm pyrex screw-capped culture tube was charged with BCP bisboronate 13 (668 mg, 2.0 mmol, 1.0 equiv.), Zn(OTf)₂ (1.46 mg, 4.0 mmol, 2.0 equiv.) and DMAP (977.6 mg, 8.0 mmol, 4.0 equiv.). Then the tube was evacuated and backfilled with argon for three times, followed by addition of phenyl bromide (0.62 mL, 6.0 mmol, 3.0 equiv.), 4-CzlPn solution (1.0 mL, 0.05 equiv., 0.05 M) in DMA and [Ni] catalyst solution (8.0 mL, 0.2 equiv., 0.05 M) in DMA via a syringe. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction tube was sealed and then irradiated under a 40 W Kessil blue LED lamp (468 nm) for 60 hours with a fan running to cool the reaction down. After it is confirmed that the starting material was consumed totally, the reaction mixture quenched with water (30 mL), extracted with ethyl acetate (10 mL × 2) and diethyl ether (10 mL × 2), washed with brine (10 mL × 2), dried by Na₂SO₄, and concentrated under high vacuum. The crude residue was purified by chromatography on silica gel and that afforded 209.6 mg (37%) product as colorless oil.

Scale-up preparation of BCP boronate 55: A flame-dried screw-capped 20×150 mm pyrex culture tube was charged with BCP bisboronate 23 (406 mg, 1.0 mmol, 1.0 equiv.), 4-bromophenyl methyl sulfone (705 mg, 3.0 mmol, 3.0 equiv.), Zn(OTf)₂ (732 mg, 2.0 mmol, 2.0 equiv.) and DMAP (488.8 mg, 4.0 mmol, 4.0 equiv.). Then the tube was evacuated and backfilled with argon for three times, followed by addition of 4-CzlPn solution (1.0 mL, 0.02 equiv., 0.02 M) in DMA and [Ni] catalyst solution (4.0 mL, 0.2 equiv., 0.05 M) in DMA via a syringe. Next, the headspace

of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was sealed and then irradiated under a 40 W Kessil blue LED lamp (468 nm) for 48 hours with a fan running to cool the reaction down. After it is confirmed that the starting material was consumed totally, the reaction mixture quenched with water (30 mL), extracted with ethyl acetate (10 mL \times 2) and diethyl ether (10 mL \times 2), washed with brine (10 mL \times 2), dried by Na₂SO₄, and concentrated under high vacuum. The crude residue was purified by chromatography on silica gel and that afforded 200.0 mg (46%) product as colorless oil.

Characterization of Substrates in Cross-Coupling (55-69)

Compound 55

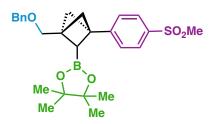
isopropyl 3-(4-(methylsulfonyl)phenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo [1.1.1]pentane-1-carboxylate (55)

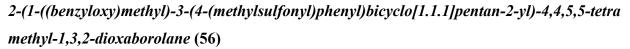
Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 23, and 4bromophenyl methyl sulfone reacting for 60 hours. Purification by flash chromatography (methylene chloride: ethyl acetate, 50:1 to 20:1) afforded 22.4 mg (52%) of the title compound 55. Following Scale-up of preparation of BCP boronate 55 on 1.0 mmol scale with BCP bisboronate 23, and 4-bromophenyl methyl sulfone reacting for 48 hours. Purification by flash chromatography (methylene chloride: ethyl acetate, 50:1 to 20:1) afforded 200.0 mg (46%) of the title compound 55.

Physical State: white solid.

m.p.: 114-116 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.88 – 7.84 (m, 2H), 7.49 – 7.45 (m, 2H), 5.04 (hept, *J* = 6.3 Hz, 1H), 3.05 (dd, *J* = 10.0, 1.9 Hz, 1H), 3.03 (s, 3H), 2.37 – 2.32 (m, 2H), 2.27 (dd, *J* = 8.1, 2.0 Hz, 1H), 2.15 (d, *J* = 8.0 Hz, 1H), 1.26 (d, *J* = 2.5 Hz, 3H), 1.25 – 1.24 (m, 15H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 169.58, 146.67, 138.89, 127.54, 127.45, 83.68, 68.13, 56.72, 52.42, 44.72, 43.53, 39.60, 24.96, 24.91, 21.98 ppm.


¹¹**B NMR (128 MHz, CDCl₃)**: δ 30.90 ppm.

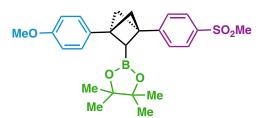
HRMS (ESI-TOF): calc'd for C₂₂H₃₁BO₆S [M+H]⁺: 435.2007, found: 435.2000.

TLC: $R_f = 0.20$ (2:1 hexanes: ethyl acetate).

Compound 56

Following General Procedure F1 on 0.1 mmol scale with BCP bisboronate 25, and 4bromophenyl methyl sulfone reacting for 48 hours. Purification by flash chromatography (methylene chloride: ethyl acetate, 50:1 to 20:1) afforded 19.8 mg (42%) of the title compound 56. Physical State: pale yellow oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.84 (dd, J = 8.2, 1.3 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.40 – 7.31 (m, 4H), 7.30 – 7.27 (m, 1H), 4.58 (s, 2H), 3.58 (s, 2H), 3.03 (s, 3H), 2.74 – 2.69 (m, 1H), 2.09 (d, J = 8.9 Hz, 2H), 2.00 (dd, J = 8.0, 1.7 Hz, 1H), 1.87 (d, J = 8.1 Hz, 1H), 1.20 (s, 12H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 147.83, 138.77, 138.35, 128.43, 127.64, 127.59, 127.52, 127.30, 83.37, 73.14, 70.06, 55.30, 50.64, 44.75, 44.42, 40.55, 24.93, 24.91 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.32 ppm.

HRMS (ESI-TOF): calc'd for C₂₆H₃₃BO₅S [M+H]⁺: 469.2215, found: 469.2222.

TLC: $R_f = 0.25$ (2:1 hexanes: ethyl acetate).

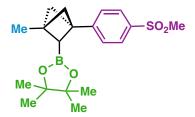
Compound 57

2-(1-(4-methoxyphenyl)-3-(4-(methylsulfonyl)phenyl)bicyclo[1.1.1]pentan-2-yl)-4,4,5,5-tetra methyl-1,3,2-dioxaborolane (57)

Following **General Procedure F2** on 0.1 mmol scale with BCP bisboronate **27**, and 4bromophenyl methyl sulfone reacting for 48 hours. Purification by flash chromatography (methylene chloride: ethyl acetate, 50:1) and afforded 22.2 mg (31%) of the title compound **57**. Physical State: white solid.

m.p.: 155-157 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.90 – 7.85 (m, 2H), 7.56 – 7.51 (m, 2H), 7.29 – 7.24 (m, 2H), 6.88 – 6.83 (m, 2H), 3.80 (s, 3H), 3.11 (dd, *J* = 9.6, 1.9 Hz, 1H), 3.04 (s, 3H), 2.37 (dd, *J* = 9.6, 1.2 Hz, 1H), 2.32 (s, 1H), 2.24 (dd, *J* = 8.1, 1.9 Hz, 1H), 2.16 (d, *J* = 7.9 Hz, 1H), 1.22 (s, 6H), 1.21 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 158.57, 147.87, 138.42, 133.02, 127.57(2C), 127.35, 113.65, 83.49, 57.64, 55.43, 52.84, 44.77, 43.36, 42.82, 25.00, 24.92 ppm.

¹¹B NMR (128 MHz, CDCl₃): δ 31.22 ppm.

HRMS (ESI-TOF): calc'd for C₂₅H₃₁BO₅S [M+H]⁺: 455.2058, found: 455.2058.

TLC: $R_f = 0.28$ (2:1 hexanes: ethyl acetate).

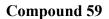
Compound 58

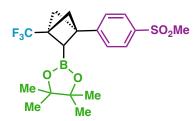
4,4,5,5-tetramethyl-2-(1-methyl-3-(4-(methylsulfonyl)phenyl)bicyclo[1.1.1]pentan-2-yl)-1,3,2dioxaborolane (58)

Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 13, and 4bromophenyl methyl sulfone reacting for 48 hours. Purification by flash chromatography (hexanes: methylene chloride, 1:1) and afforded 15.7 mg (43%) of the title compound 58.

Physical State: white solid.

m.p.: 88-90 °C.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.85 – 7.80 (m, 2H), 7.49 – 7.44 (m, 2H), 3.02 (s, 3H), 2.55 (dd, *J* = 9.7, 2.0 Hz, 1H), 2.01 – 1.96 (m, 2H), 1.89 (dd, *J* = 8.3, 2.0 Hz, 1H), 1.77 (d, *J* = 8.3 Hz, 1H), 1.29 (s, 3H), 1.24 (s, 12H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 148.14, 138.10, 127.53, 127.24, 83.28, 57.75, 53.02, 44.77, 43.56, 38.54, 25.01, 24.97, 18.36 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.95 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₇BO₄S [M+H]⁺: 361.1800, found: 361.1801.

TLC: $R_f = 0.38$ (2:1 hexanes: ethyl acetate).

4,4,5,5-tetramethyl-2-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)bicyclo[1.1.1]pentan-2yl)-1,3,2-dioxaborolane (59)

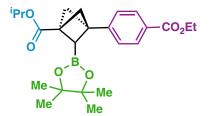
Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 26, and 4bromophenyl methyl sulfone reacting for 48 hours. Purification by flash chromatography (hexanes: methylene chloride, 1:1) and afforded 13.0 mg (31%) of the title compound 59.

Physical State: white solid.

m.p.: 95-97 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.92 – 7.85 (m, 2H), 7.51 – 7.44 (m, 2H), 3.08 (dd, *J* = 9.6, 2.1 Hz, 1H), 3.04 (s, 3H), 2.30 (dd, *J* = 9.6, 1.5 Hz, 1H), 2.27 (s, 1H), 2.21 (dd, *J* = 8.1, 2.1 Hz, 1H), 2.11 (d, *J* = 8.1 Hz, 1H), 1.24 (s, 12H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 145.53, 139.28, 127.56, 127.54, 123.04 (q, *J* = 276.4 Hz), 83.97, 54.16, 49.22, 44.69, 43.31, 38.91 (q, *J* = 38.5 Hz), 24.83, 24.78 ppm.


¹⁹F NMR (376 MHz, CDCl₃): δ -72.73 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.29 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₄BF₃O₄S [M+H]⁺: 417.1513, found: 417.1510.

TLC: $R_f = 0.35$ (2:1 hexanes: ethyl acetate).

Compound 60

isopropyl 3-(4-(ethoxycarbonyl)phenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo

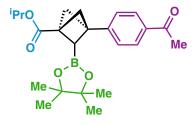
[1.1.1]pentane-1-carboxylate (60)

Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 23, and ethyl 4bromo-benzoate reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 15.0 mg (35%) of the title compound 60.

Physical State: white solid.

m.p.: 54-56 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.98 – 7.94 (m, 2H), 7.35 – 7.30 (m, 2H), 5.03 (hept, *J* = 6.3 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.06 (dd, *J* = 9.9, 2.0 Hz, 1H), 2.32 (d, *J* = 8.8 Hz, 2H), 2.26 (dd, *J* = 8.1, 1.9 Hz, 1H), 2.13 (d, *J* = 7.9 Hz, 1H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.25 (d, *J* = 2.2 Hz, 3H), 1.24 (d, *J* = 2.2 Hz, 3H), 1.24 (s, 6H), 1.23 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 169.90, 166.73, 145.44, 129.56, 128.98, 126.47, 83.52, 67.98, 61.01, 56.83, 52.29, 43.87, 39.54, 24.96, 24.89, 22.00, 14.49 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.40 ppm.

HRMS (ESI-TOF): calc'd for C₂₄H₃₃BO₆ [M+H]⁺: 429.2443, found: 429.2451.

TLC: $R_f = 0.66$ (3:1 hexanes: ethyl acetate).

Compound 61

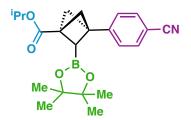
isopropyl 3-(4-acetylphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1] pentane-1-carboxylate (61)

Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 23, and 4'-Bromoacetophenone reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 12.9 mg (32%) of the title compound 61.

Physical State: white solid.

m.p.: 39-41 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.91 – 7.86 (m, 2H), 7.38 – 7.33 (m, 2H), 5.03 (hept, J = 6.3 Hz, 1H), 3.06 (dd, J = 9.8, 2.0 Hz, 1H), 2.58 (s, 3H), 2.33 (d, J = 9.0 Hz, 2H), 2.27 (dd, J = 8.1, 2.0 Hz, 1H), 2.13 (d, J = 8.0 Hz, 1H), 1.26 (d, J = 2.3 Hz, 3H), 1.25 – 1.23 (m, 15H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 198.00, 169.84, 145.82, 135.75, 128.43, 126.72, 83.55, 68.01, 56.81, 52.32, 43.83, 39.57, 26.79, 24.97, 24.89, 21.99 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.88 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₃₁BO₅ [M+H]⁺: 399.2337, found: 399.2342.

TLC: $R_f = 0.50$ (3:1 hexanes: ethyl acetate).

Compound 62

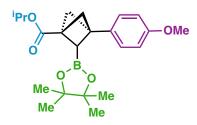
isopropyl 3-(4-cyanophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pent ane-1-carboxylate (62)

Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 23, and 4bromobenzonitrile reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 14.7 mg (39%) of the title compound 62.

Physical State: white solid.

m.p.: 57-59 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.58 (d, J = 8.3 Hz, 2H), 7.39 – 7.36 (m, 2H), 5.03 (hept, J = 6.3 Hz, 1H), 3.02 (dd, J = 9.8, 2.0 Hz, 1H), 2.34 – 2.30 (m, 2H), 2.25 (dd, J = 8.1, 2.0 Hz, 1H), 2.13 (d, J = 8.0 Hz, 1H), 1.25 (d, J = 2.5 Hz, 3H), 1.24 (d, J = 2.6 Hz, 3H), 1.24 (s, 6H) 1.23 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 169.58, 145.66, 132.13, 127.33, 119.17, 110.60, 83.65, 68.11, 56.72, 52.24, 43.64, 39.56, 24.95, 24.88, 21.98, 21.97 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.54 ppm.

HRMS (ESI-TOF): calc'd for C₂₂H₂₈BNO₄ [M+H]⁺: 382.2184, found: 382.2201.

TLC: $R_f = 0.56$ (3:1 hexanes: ethyl acetate).

Compound 63

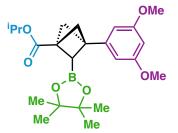
isopropyl 3-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1] pentane-1-carboxylate (63)

Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 23, and 4-bromoanisole reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 12.8 mg (33%) of the title compound 63.

Physical State: white solid.

m.p.: 38-40 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.22 – 7.17 (m, 2H), 6.85 – 6.80 (m, 2H), 5.07 – 4.98 (hept, *J* = 6.3 Hz, 1H), 3.78 (s, 3H), 3.01 (dd, *J* = 9.5, 1.9 Hz, 1H), 2.29 – 2.24 (m, 2H), 2.20 (dd, *J* = 8.1, 1.9 Hz, 1H), 2.07 (d, *J* = 7.9 Hz, 1H), 1.27 – 1.19 (m, 18H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 170.28, 158.61, 132.83, 127.57, 113.63, 83.36, 67.80, 56.76, 55.42, 52.38, 43.67, 39.28, 24.99, 24.89, 22.01 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.64 ppm.

HRMS (ESI-TOF): calc'd for C₂₂H₃₁BO₅ [M+H]⁺: 387.2337, found: 387.2347.

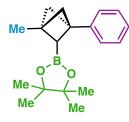
TLC: $R_f = 0.63$ (3:1 hexanes: ethyl acetate).

Compound 64


```
isopropyl 3-(3,5-dimethoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo
[1.1.1]pentane-1-carboxylate (64)
```

Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 23, and 3,5dimethoxylbromobenzene reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 14.2 mg (34%) of the title compound 64.

Physical State: colorless oil.


¹H NMR (600 MHz, CDCl₃): δ 6.46 (d, J = 2.3 Hz, 2H), 6.33 (t, J = 2.3 Hz, 1H), 5.03 (hept, J = 6.3 Hz, 1H), 3.78 (s, 6H), 3.00 (dd, J = 9.5, 1.9 Hz, 1H), 2.28 (s, 1H), 2.26 (dd, J = 9.5, 1.4 Hz, 1H), 2.20 (dd, J = 8.1, 1.9 Hz, 1H), 2.07 (d, J = 7.6 Hz, 1H), 1.28 – 1.23 (m, 18H) ppm.
¹³C NMR (151 MHz, CDCl₃): δ 170.10, 160.83, 142.92, 104.43, 99.22, 83.41, 67.86, 56.41, 55.42, 52.61, 44.10, 39.22, 25.06, 24.93, 22.01, 21.99 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.75 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₃₃BO₆ [M+H]⁺: 417.2443, found: 417.2462.

TLC: $R_f = 0.56$ (3:1 hexanes: ethyl acetate).

Compound 65

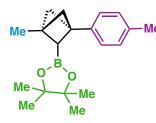
4,4,5,5-tetramethyl-2-(1-methyl-3-phenylbicyclo[1.1.1]pentan-2-yl)-1,3,2-dioxaborolane (65)

Following **General Procedure F2** on 0.1 mmol scale with BCP bisboronate **13**, and bromobenzene reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 12.0 mg (42%) of the title compound **65**.

Following Scale-up of preparation of BCP boronate 65 on 2.0 mmol scale with BCP bisboronate 13, and bromobenzene reacting for 60 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) afforded 209.6 mg (37%) of the title compound 65.

[Note: The protodeborylated side-product ($R^3 = H$) was removed by high vaccum.]

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.30 – 7.22 (m, 4H), 7.16 (tt, *J* = 6.6, 1.9 Hz, 1H), 2.56 (dd, *J* = 9.9, 1.9 Hz, 1H), 1.93 (d, *J* = 9.3 Hz, 2H), 1.83 (dd, *J* = 8.2, 1.9 Hz, 1H), 1.72 (d, *J* = 8.2 Hz, 1H), 1.26 (s, 3H), 1.230 (s, 6H), 1.225 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 141.89, 128.01, 126.45, 126.12, 83.01, 57.73, 52.75, 44.02, 38.05, 25.00, 24.98, 18.55 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.18 ppm.

HRMS (ESI-TOF): calc'd for $C_{18}H_{25}BO_2 [M+H]^+$: 285.2020, found: 285.2029. TLC: $R_f = 0.38$ (15:1 hexanes: ethyl acetate).

Compound 66

4,4,5,5-tetramethyl-2-(1-methyl-3-(p-tolyl)bicyclo[1.1.1]pentan-2-yl)-1,3,2-dioxaborolane (66) Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 13, and 4-bromotoluene reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 11.2 mg (37%) of the title compound 66.

[Note: The deborolated side-product ($R^3 = H$) was removed by high vaccum]

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.20 – 7.15 (m, 2H), 7.08 (d, *J* = 7.8 Hz, 2H), 2.55 (dd, *J* = 10.0, 1.9 Hz, 1H), 2.31 (s, 3H), 1.94 – 1.90 (m, 2H), 1.82 (dd, *J* = 8.2, 1.9 Hz, 1H), 1.71 (d, *J* = 8.1 Hz, 1H), 1.27 (s, 3H), 1.244 (s, 6H), 1.240 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 138.96, 135.59, 128.71, 126.36, 82.97, 57.75, 52.79, 43.81, 37.99, 25.01, 24.98, 21.25, 18.56 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.23 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₇BO₂ [M+H]⁺: 299.2177, found: 299.2187.

TLC: $R_f = 0.38$ (15:1 hexanes: ethyl acetate).

Compound 67

4,4,5,5-tetramethyl-2-(1-methyl-3-(4-(trifluoromethyl)phenyl)bicyclo[1.1.1]pentan-2-yl)-1,3,2dioxaborolane (67)

Following General Procedure F2 on 0.1 mmol scale with BCP bisboronate 13, and 4-bromotrifluorotoluene reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 13.7 mg (39%) of the title compound 67.

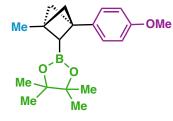
[Note: The deborolated side-product ($R^3 = H$) was removed by high vaccum]

Physical State: colorless crystal.

m.p.: 31-33 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 2H), 2.56 (dd, *J* = 9.6, 1.9 Hz, 1H), 2.01 – 1.94 (m, 2H), 1.87 (dd, *J* = 8.2, 1.9 Hz, 1H), 1.76 (d, *J* = 8.3 Hz, 1H), 1.29 (s, 3H), 1.243 (s, 6H) ,1.241 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 145.76,128.32 (q, *J* = 32.4 Hz), 126.84, 124.98 (q, *J* = 3.9 Hz), 124.59 (q, *J* = 272.0 Hz), 83.18, 57.75, 52.87, 43.60, 38.36, 25.00, 24.98, 18.42 ppm.


¹⁹F NMR (376 MHz, CDCl₃) δ -62.28 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.01 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₅BF₃O₂ [M+H]⁺: 353.1894, found: 353.1899.

TLC: $R_f = 0.38$ (15:1 hexanes: ethyl acetate).

Compound 68

2-(1-(4-methoxyphenyl)-3-methylbicyclo[1.1.1]pentan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxa borolane (68)

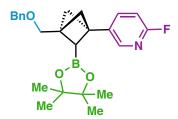
Following **General Procedure F2** on 0.1 mmol scale with BCP bisboronate **13**, and 4-bromoanisole reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 7.6 mg (24%) of the title compound **68**.

[Note: The deborolated side-product ($R^3 = H$) was removed by high vaccum]

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.23 – 7.18 (m, 2H), 6.83 – 6.78 (m, 2H), 3.78 (s, 3H), 2.53 (dd, *J* = 9.7, 1.9 Hz, 1H), 1.94 – 1.89 (m, 2H), 1.81 (dd, *J* = 8.2, 1.9 Hz, 1H), 1.70 (d, *J* = 8.2 Hz, 1H), 1.26 (s, 3H), 1.243 (s, 6H), 1.238 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 158.11, 134.36, 127.53, 113.45, 82.98, 57.76, 55.40, 52.83, 43.57,


37.91, 25.01, 24.99, 18.53 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 32.15 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₇BO₃ [M+H]⁺: 315.2126, found: 315.2142.

TLC: $R_f = 0.31$ (15:1 hexanes: ethyl acetate).

Compound 69

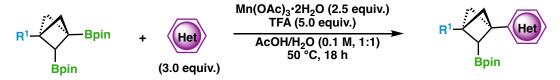
5-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-2-fluoropyridine (69)

Following General Procedure F1 on 0.1 mmol scale with BCP bisboronate 25, and 3-bromo-6-fluoropyridine reacting for 48 hours. Purification by flash chromatography (hexanes: ethyl acetate, 5:1) and afforded 9.0 mg (22%) of the title compound 69.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.12 (d, *J* = 2.5 Hz, 1H), 7.72 (td, *J* = 8.1, 2.5 Hz, 1H), 7.35 (d, *J* = 7.0 Hz, 4H), 7.31 – 7.24 (m, 1H), 6.83 (dd, *J* = 8.4, 2.8 Hz, 1H), 4.57 (s, 2H), 3.57 (s, 2H), 2.66 (dd, *J* = 9.7, 2.0 Hz, 1H), 2.10 – 2.06 (m, 2H), 1.98 (dd, *J* = 8.2, 2.1 Hz, 1H), 1.85 (d, *J* = 8.1 Hz, 1H), 1.20 (s, 12H) ppm.

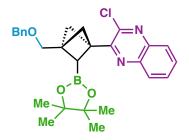
¹³C NMR (151 MHz, CDCl₃): δ 162.61 (d, *J* = 237.1 Hz), 145.89 (d, *J* = 14.5 Hz), 139.60 (d, *J* = 7.7 Hz), 138.80, 134.58, 128.43, 127.64, 127.58, 108.73 (d, *J* = 37.4 Hz), 83.37, 73.12, 70.03, 55.14, 50.74, 41.98, 40.88, 24.94, 24.91 ppm.


¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.62 ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ -71.46 ppm.

HRMS (ESI-TOF): calc'd for C₂₄H₂₉BFNO₃ [M+H]⁺: 410.2297, found: 410.2294.

TLC: $R_f = 0.59$ (3:1 hexanes: ethyl acetate).


General Procedure G for Minisci reaction of BCP Bisboronates

A screw-capped 13×100 mm pyrex culture tube was charged with BCP bisboronate (1.0 equiv.), heteroarene (3.0 equiv.) and Mn(OAc)₃•2H₂O (2.5 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of acetic acid/water (0.1 M, 1:1) solvent via a syringe. Next, trifluoroacetic acid (5.0 equiv.) was added into the reaction. Then the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was stirred at 50 °C for 18 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was concentrated under high vacuum to remove excess acetic acid, quenched with Na₂CO₃ solution, extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under high vacuum. The crude residue was purified by chromatography on silica gel. ¹⁰

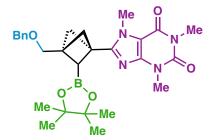
Characterization of Substrates in Hydrazone Coupling (70-79)

Compound 70

2-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-3-chloroquinoxaline (70)

Following General Procedure G on 0.1 mmol scale with BCP bisboronate 25, and 2chloroquinoxaline. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 23.2 mg (49%) of the title compound 70.

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 8.06 – 8.00 (m, 1H), 7.99 – 7.94 (m, 1H), 7.74 – 7.68 (m, 2H), 7.41 – 7.33 (m, 4H), 7.30 – 7.27 (m, 1H), 4.61 (s, 2H), 3.62 (s, 2H), 2.94 (dd, *J* = 9.5, 1.9 Hz, 1H), 2.56 (s, 1H), 2.53 (dd, *J* = 8.0, 1.9 Hz, 1H), 2.28 (dd, *J* = 9.5, 1.3 Hz, 1H), 2.17 (d, *J* = 7.9 Hz, 1H), 1.22 (s, 6H), 1.18 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 152.16, 146.94, 141.17, 141.10, 138.80, 130.21, 129.94, 128.97, 128.44, 128.11, 127.64, 127.56, 83.11, 73.09, 70.19, 56.77, 50.50, 45.40, 42.03, 24.88, 24.81 ppm.
¹¹B NMR (128 MHz, CDCl₃): δ 32.52 ppm.

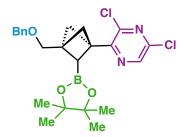
HRMS (ESI-TOF): calc'd for C₂₇H₃₀BClN₂O₃ [M+H]⁺: 477.2111, found: 477.2124.

TLC: $R_f = 0.25$ (10:1 hexanes: ethyl acetate).

Compound 71

8-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione (71)

Following **General Procedure G** on 0.1 mmol scale with BCP bisboronate **25**, and caffeine. Purification by flash chromatography (hexanes: ethyl acetate, 2:1) and afforded 27.7 mg (55%) of the title compound **71**.


Physical State: white solid.

m.p.: 124-126 °C.

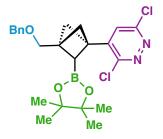
¹**H NMR** (600 MHz, CDCl₃): δ 7.34 (d, J = 4.4 Hz, 4H), 7.30 – 7.26 (m, 1H), 4.56 (s, 2H), 4.01 (s, 3H), 3.55 (s, 3H), 3.55 (s, 2H), 3.38 (s, 3H), 2.90 (dd, J = 9.6, 2.1 Hz, 1H), 2.33 (dd, J = 9.6, 1.5 Hz, 1H), 2.29 – 2.24 (m, 2H), 2.12 (d, J = 8.1 Hz, 1H), 1.200 (s, 6H), 1.196 (s, 6H) ppm. ¹³**C NMR** (151 MHz, CDCl₃): δ 155.53, 151.82, 151.10, 147.59, 138.56, 128.45, 127.66, 127.64, 107.55, 83.55, 73.17, 69.63, 56.53, 50.85, 43.43, 38.06, 32.60, 30.03, 28.00, 24.89, 24.85 ppm. ¹¹**B NMR** (128 MHz, CDCl₃): δ 31.53 ppm. **HRMS** (ESI-TOF): calc'd for C₂₇H₃₅BN₄O₅ [M+H]⁺: 507.2773, found: 507.2778.

TLC: $R_f = 0.30$ (1:1 hexanes: ethyl acetate).

Compound 72

2-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-3,5-dichloropyrazine (72)

Following General Procedure G on 0.1 mmol scale with BCP bisboronate 25, and 2,6-Dichloropyrazine. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 28.3 mg (61%) of the title compound 72.


Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.39 (s, 1H), 7.38 – 7.31 (m, 4H), 7.29 – 7.26 (m, 1H), 4.57 (s, 2H), 3.58 (s, 2H), 2.81 (dd, *J* = 9.6, 2.0 Hz, 1H), 2.38 – 2.33 (m, 2H), 2.25 (dd, *J* = 9.5, 1.4 Hz, 1H), 2.09 (d, *J* = 8.0 Hz, 1H), 1.19 (s, 6H), 1.17 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 150.83, 146.22, 144.99, 141.56, 138.72, 128.43, 127.64, 127.58, 83.23, 73.11, 69.96, 56.33, 50.17, 43.96, 42.12, 24.84, 24.79 ppm.

¹¹B NMR (128 MHz, CDCl₃): δ 31.26 ppm. HRMS (ESI-TOF): calc'd for C₂₃H₂₇BCl₂N₂O₃ [M+H]⁺: 461.1565, found: 461.1558. TLC: R_f = 0.32 (10:1 hexanes: ethyl acetate).

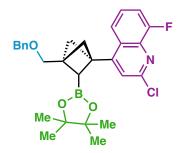
Compound 73

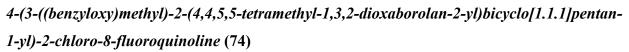
4-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-3,6-dichloropyridazine (73)

Following General Procedure G on 0.1 mmol scale with BCP bisboronate 25, and 3,6dichloropyridazine. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 21.6 mg (47%) of the title compound 73.

Physical State: colorless oil.

¹**H NMR (600 MHz, Acetone-***d*⁶): δ 7.70 (s, 1H), 7.41 – 7.32 (m, 4H), 7.31 – 7.24 (m, 1H), 4.57 (s, 2H), 3.61 (s, 2H), 2.60 (dd, *J* = 9.6, 2.1 Hz, 1H), 2.37 (dd, *J* = 8.3, 2.1 Hz, 1H), 2.35 (d, *J* = 1.2 Hz, 1H), 2.31 (dd, *J* = 9.5, 1.4 Hz, 1H), 2.16 (dd, *J* = 8.3, 1.0 Hz, 1H), 1.201 (s, 6H), 1.198 (s, 6H) ppm.


¹³C NMR (151 MHz, Acetone-*d*⁶): δ 156.74, 156.28, 142.53, 139.85, 130.21, 129.05, 128.25, 128.17, 84.22, 73.44, 70.07, 56.72, 50.51, 42.97, 42.92, 25.08 (2C) ppm.


¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.58 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₂₇BCl₂N₂O₃ [M+H]⁺: 461.1565, found: 461.1560.

TLC: $R_f = 0.18$ (10:1 hexanes: ethyl acetate).

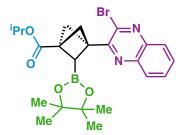
Compound 74

Following General Procedure G on 0.1 mmol scale with BCP bisboronate 25, and 2,6-Dichloropyrazine. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 18.6 mg (38%) of the title compound 74.

Physical State: red oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.46 (td, *J* = 8.1, 5.2 Hz, 1H), 7.42 – 7.39 (m, 1H), 7.39 – 7.33 (m, 4H), 7.31 (s, 1H), 7.30 – 7.28 (m, 1H), 4.60 (s, 2H), 3.63 (s, 2H), 2.91 (dd, *J* = 9.6, 2.2 Hz, 1H), 2.45 – 2.42 (m, 1H), 2.40 (dd, *J* = 8.2, 2.2 Hz, 1H), 2.36 (dd, *J* = 9.5, 1.6 Hz, 1H), 2.17 (d, *J* = 8.1 Hz, 1H), 1.18 (s, 12H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 157.57 (d, *J* = 257.2 Hz), 151.32, 149.76 (d, *J* = 2.5 Hz), 138.65, 138.43 (d, *J* = 11.5 Hz), 128.49, 128.15, 127.69, 127.68, 126.21 (d, *J* = 8.1 Hz), 122.77, 121.03, 114.32 (d, *J* = 18.7 Hz), 83.55, 73.23, 69.79, 57.86, 51.30, 44.56, 41.97, 24.91, 24.83 ppm.


¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.32 ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ -123.05 ppm.

HRMS (ESI-TOF): calc'd for C₂₈H₃₀BClFNO₃ [M+H]⁺: 494.2064, found: 494.2063.

TLC: $R_f = 0.36$ (5:1 hexanes: ethyl acetate).

Compound 75

isopropyl 3-(3-bromoquinoxalin-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo

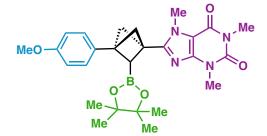
[1.1.1]pentane-1-carboxylate (75)

Following General Procedure G on 0.1 mmol scale with BCP bisboronate 23, and 2bromoquinoxaline. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 22.5 mg (46%) of the title compound 75.

Physical State: pale red solid.

m.p.: 102-103 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.02 – 7.97 (m, 2H), 7.76 – 7.69 (m, 2H), 5.05 (hept, *J* = 6.3 Hz, 1H), 3.24 (dd, *J* = 9.4, 1.9 Hz, 1H), 2.95 (d, *J* = 1.2 Hz, 1H), 2.89 (dd, *J* = 8.0, 1.9 Hz, 1H), 2.51 (dd, *J* = 9.4, 1.4 Hz, 1H), 2.42 (d, *J* = 8.0 Hz, 1H), 1.29 – 1.26 (m, 9H), 1.26 (d, *J* = 4.0 Hz, 3H), 1.23 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 169.74, 152.38, 142.10, 140.93, 138.58, 130.53, 130.31, 129.05, 128.25, 83.36, 68.12, 58.13, 52.77, 45.26, 40.91, 24.94, 24.81, 22.03, 22.01 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.05 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₂₈BBrN₂O₄ [M+H]⁺: 487.1398, found: 487.1399.

TLC: $R_f = 0.36$ (5:1 hexanes: ethyl acetate).

Compound 76

8-(3-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1yl)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione (76)

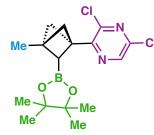
Following **General Procedure G** on 0.1 mmol scale with BCP bisboronate **27**, and caffeine Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 17.1 mg (35%) of the title compound **76**.

Physical State: yellow solid.

m.p.: >200 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.25 – 7.21 (m, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 4.05 (s, 3H), 3.80 (s, 3H), 3.56 (s, 3H), 3.40 (s, 3H), 3.26 (dd, *J* = 9.6, 2.0 Hz, 1H), 2.58 (dd, *J* = 9.6, 1.5 Hz, 1H),

2.52 (t, *J* = 1.2 Hz, 1H), 2.49 (dd, *J* = 8.1, 2.0 Hz, 1H), 2.38 (dd, *J* = 8.1, 1.0 Hz, 1H), 1.23 (s, 6H), 1.22 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 158.77, 155.58, 151.89, 151.45, 147.88, 132.23, 127.49, 113.73, 107.69, 83.65, 58.58, 55.43, 53.21, 46.12, 36.71, 32.66, 29.92, 28.01, 24.92 (2C) ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 30.50 ppm.

HRMS (ESI-TOF): calc'd for C₂₆H₃₃BN₄O₅ [M+H]⁺: 493.2617, found: 493.2597.

TLC: $R_f = 0.40$ (1:1 hexanes: ethyl acetate).

Compound 77

3,5-dichloro-2-(3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)pyrazine (77)

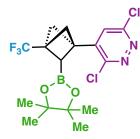
Following General Procedure G on 0.1 mmol scale with BCP bisboronate 13, and 2,6dichloropyrazine. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 26.1 mg (74%) of the title compound 77.

Following General Procedure G on 2.0 mmol scale with BCP bisboronate 13, and 2,6dichloropyrazine in a 50-mL pyrex flask. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 465.7 mg (65%) of the title compound 77.

Physical State: white solid.

m.p.: 32-33 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.38 (s, 1H), 2.66 (dd, *J* = 9.6, 2.1 Hz, 1H), 2.25 – 2.20 (m, 2H), 2.17 (dd, *J* = 9.6, 1.2 Hz, 1H), 2.01 (dd, *J* = 8.1, 1.0 Hz, 1H), 1.29 (s, 3H), 1.22 (s, 6H), 1.21 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 151.11, 146.19, 144.73, 141.51, 83.17, 58.64, 52.33, 43.13, 40.18, 24.92, 24.87, 18.35 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.87 ppm.

HRMS (ESI-TOF): calc'd for C₁₆H₂₁BCl₂N₂O₂ [M+H]⁺: 355.1146, found: 355.1152.

TLC: $R_f = 0.46$ (10:1 hexanes: ethyl acetate).

Compound 78

3,6-dichloro-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trifluoromethyl)bicyclo [1.1.1]pentan-1-yl)pyridazine (78)

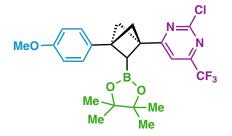
Following General Procedure G on 0.1 mmol scale with BCP bisboronate 26, and 2,6-Dichloropyrazine. Purification by flash chromatography (hexanes: ethyl acetate, 20:1) and afforded 13.6 mg (33%) of the title compound 78.

Physical State: white solid.

m.p.: 77-79 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.41 (s, 1H), 2.94 (dd, *J* = 9.6, 2.2 Hz, 1H), 2.61 – 2.59 (m, 1H), 2.57 (dd, *J* = 8.2, 2.2 Hz, 1H), 2.47 (dd, *J* = 9.6, 1.7 Hz, 1H), 2.33 (d, *J* = 8.1 Hz, 1H), 1.24 (s, 6H), 1.23 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 156.15, 155.34, 139.82, 129.17, 122.48 (q, *J* = 276.1 Hz), 84.39, 55.23, 49.07, 41.20, 40.38 (q, *J* = 39.1 Hz). 24.80, 24.76 ppm.


¹⁹F NMR (376 MHz, CDCl₃): δ -72.73 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 30.91 ppm.

HRMS (ESI-TOF): calc'd for C₁₆H₁₈BCl₂F₃N₂O₂ [M+H]⁺: 409.0863, found: 409.0860.

TLC: $R_f = 0.30$ (10:1 hexanes: ethyl acetate).

Compound 79

2-chloro-4-(3-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1] pentan-1-yl)-6-(trifluoromethyl)pyrimidine (79)

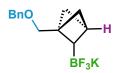
Following General Procedure G on 0.1 mmol scale with BCP bisboronate 27, and 2-chloro-4-(trifluoromethyl)pyrimidine. Purification by flash chromatography (hexanes: ethyl acetate, 10:1) and afforded 17.6 mg (37%) of the title compound 79.

Physical State: yellow oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.73 (s, 1H), 7.29 – 7.24 (m, 2H), 6.90 – 6.84 (m, 2H), 3.81 (s, 3H), 3.12 (dd, *J* = 9.6, 1.9 Hz, 1H), 2.50 (d, *J* = 1.3 Hz, 1H), 2.48 – 2.43 (m, 1H), 2.37 (dd, *J* = 8.2, 1.9 Hz, 1H), 2.25 – 2.21 (m, 1H), 1.27 (s, 6H), 1.26 (s, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 174.79, 161.98, 158.83, 157.62 (q, *J* = 37.0 Hz), 132.13, 127.64, 120.06 (q, *J* = 275.3 Hz), 113.76, 113.40 (q, *J* = 2.8 Hz), 83.87, 56.61, 55.45, 54.22, 44.16, 43.12, 25.03, 24.87 ppm.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -69.81 ppm.


¹¹**B** NMR (128 MHz, CDCl₃): δ 31.28 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₂₅BClF₃N₂O₃ [M+H]⁺: 481.1672, found: 481.1669.

TLC: $R_f = 0.36$ (10:1 hexanes: ethyl acetate).

Experimental Procedures and Characterization Data of substrates in Latestage Functionalization of BCP C₂-Boronates

Experimental Procedures and Characterization of C1, C2-disubstituted BCPs (80-94) Compound 80

$(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)trifluoro-\lambda^4-borane, potassium salt (80)$

BCP boronate **36** (1.1 g, 3.3 mmol) was suspended in methanol (6.6 mL), and a saturated aqueous solution of KHF₂ (5 mL, 25 mmol) was added dropwise. The suspended solution was stirred at room temperature for 2 hours and then concentrated to dryness. (Note: removing the pinacol by azeotrope with methanol and water under high vacuum 5 times facilitate the subsequent crystallization). The residue was extracted with hot acetone (3×30 mL), and the combined filtered extracts were concentrated to approximately 5 mL. Diethyl ether was added, and the resultant precipitate was collected and dried to afford the 750 mg (73%) of the potassium trifluoroborate **80**. **Physical State**: white solid.

m.p.: 88-90 °C.

¹**H NMR (600 MHz, acetone-***d*⁶): δ 7.34 (d, *J* = 7.1 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.20 (m, 1H), 4.51 (d, *J* = 12.3 Hz, 1H), 4.47 (d, *J* = 12.3 Hz, 1H), 3.48 (d, *J* = 10.7 Hz, 1H), 3.39 (d, *J* = 10.7 Hz, 1H), 2.49 (d, *J* = 9.4 Hz, 1H), 2.36 (s, 1H), 1.70 (s, 1H), 1.54 (d, *J* = 8.0 Hz, 1H), 1.52 (d, *J* = 9.4 Hz, 1H), 1.23 – 1.15 (m, 1H) ppm.

¹³C NMR (151 MHz, acetone-d⁶): δ 140.80, 128.88, 128.09, 127.75, 72.91, 72.33, 54.06, 47.92, 46.61, 31.15 (q, J = 3.3 Hz) ppm.

¹⁹F NMR (376 MHz, acetone-*d*⁶): δ -136.15 ppm.

¹¹**B NMR (128 MHz, Acetone**-*d*⁶): δ 3.77 (q, *J* = 75.1 Hz) ppm.

Compound 81

BnO

(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)boronic acid (81)

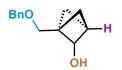
A screw-capped 20×150 mm pyrex culture tube was charged with **80** (294 mg, 1.0 mmol) and water (5.0 mL), followed by addition of silica gel (500 mg) under argon atmosphere. The mixture was stirred at room temperature for 1 hour. Ethyl ether (10 mL) was added, and the suspended solution was filtered by Celite. The organic phase was separated, and the water phase was extracted with diethyl ether (3 × 5 mL). The combined organic solvent was washed with brine and dried by anhydrous MgSO₄. The solvent was removed under vacuum to afford the desire boronic acid **81** (230 mg, 99%) without further purification.

A screw-capped 20×150 mm pyrex culture tube was charged with **36** (314 mg, 1.0 mmol, 1.0 equiv.) and Na₅IO₆ (855.6 mg, 4.0 mmol, 4.0 equiv.), followed by addition of THF/H₂O (5 mL, 1:1). Then 12 M HCl (0.17 mL, 2.0 mmol, 2.0 equiv.) was added to reaction tube at 0 °C. The reaction mixture was allowed to stir at 0 °C for 3 hours. After it was confirmed by TLC analysis that **36** was totally consumed, the suspended reaction mixture was filtered via Celite to remove excess Na₅IO₆, and the organic phase was separated, and the water phase was extracted with diethyl ether (3 × 5 mL). The combined organic solvent was washed with brine and dried by anhydrous Na₂SO₄. The solvent was removed under vacuum to afford the desire boronic acid **81** (157.8 mg, 68%) without further purification.

Physical State: white solid.

m.p.: 64-66 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.39 – 7.35 (m, 2H), 7.34 – 7.30 (m, 3H), 6.05 (br., 2H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.56 (d, *J* = 12.0 Hz, 1H), 3.52 (dd, *J* = 9.9, 1.5 Hz, 1H), 3.48 (dd, *J* = 9.7, 1.2 Hz, 1H), 2.71 (s, 1H), 2.12 (dd, *J* = 9.8, 2.5 Hz, 1H), 1.76 – 1.71 (m, 3H), 1.68 (d, *J* = 8.7 Hz, 1H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 136.97, 128.75, 128.31, 128.12, 73.79, 71.83, 52.42, 49.98, 44.48, 31.14 ppm.

¹¹**B** NMR (128 MHz, CDCl₃) δ 31.19 ppm.

HRMS (ESI-TOF): calc'd for C₁₃H₁₇BO₃ [M+H]⁺: 233.1344, found: 233.1350.

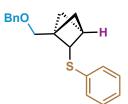
TLC: $R_f = 0.68$ (2:1 hexanes: ethyl acetate).

Compound 82

1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-ol (82)

To a solution of BCP boronate **36** (314.2 mg, 1.0 mmol) and NaOAc (164 mg, 2.0 mmol) in THF (10 mL) at 0 °C was added H_2O_2 (35 wt.% in water, 1.0 mL) dropwise. The resulting mixture was stirred at 0 °C for 1.5 hours. Na₂S₂O₃ was added and the mixture was stirred at 0 °C for 10 min. Diethyl ether was added, the layers were separated, and the aqueous phase was extracted with diethyl ether. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, concentrated, and purified by column chromatography (hexanes: ethyl acetate, 2:1) on silica gel to obtain the 150 mg (75%) of the alcohol **82**.

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.37 – 7.31 (m, 4H), 7.30 – 7.27 (m, 1H), 4.51 (s, 2H), 4.08 (d, *J* = 6.2 Hz, 1H), 3.46 (d, *J* = 12.0 Hz, 1H), 3.44 (d, *J* = 12.0 Hz, 1H), 2.65 (dd, *J* = 9.7, 2.6 Hz, 1H), 2.55 (s, 1H), 2.22 (br., 1H), 1.76 (dd, *J* = 6.2, 2.5 Hz, 1H), 1.62 (d, *J* = 2.9 Hz, 1H), 1.25 (dd, *J* = 9.7, 2.9 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 138.52, 128.54, 127.74, 127.66, 82.73, 73.29, 68.76, 49.09, 43.46, 39.48, 35.23 ppm.

HRMS (ESI-TOF): calc'd for C₁₃H₁₆O₂ [M+H]⁺: 205.1223, found: 205.1220.

TLC: $R_f = 0.41$ (2:1 hexanes: ethyl acetate).

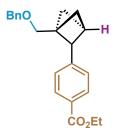
Compound 83

(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)(phenyl)sulfane (83)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate **36** (31.4 mg, 0.1 mmol, 1.0 equiv.), PhSO₂SPh (50 mg, 0.2 mmol, 2.0 equiv.), and tert-butyl catechol (4.8 mg, 0.03 mmol, 0.3 equiv.), MeOBcat (6.0 mg, 0.04 mmol, 0.4 equiv.). Then the tube was

evacuated and backfilled with argon for three times, followed by addition of toluene (0.5 mL, 0.2 M) solvent via a syringe. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir at 100 °C for 36 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was concentrated under high vacuum and the crude residue was purified by chromatography on silica gel to give 15.8 mg (53%) of the desired product **83**. ⁸

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.40 – 7.37 (m, 2H), 7.37 – 7.31 (m, 4H), 7.30 – 7.27 (m, 1H), 7.23 (dd, J = 8.5, 7.0 Hz, 2H), 7.18 – 7.12 (m, 1H), 4.51 (d, J = 12.2 Hz, 1H), 4.48 (d, J = 12.2 Hz, 1H), 3.72 – 3.67 (m, 1H), 3.46 (d, J = 10.8 Hz, 1H), 3.42 (d, J = 10.7 Hz, 1H), 2.76 (s, 1H), 2.63 (dd, J = 10.0, 3.0 Hz, 1H), 2.03 (d, J = 2.5 Hz, 1H), 1.89 – 1.82 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 138.51, 137.52, 129.10, 128.92, 128.48, 127.66, 127.61, 125.69, 73.23, 68.36, 64.74, 49.32, 47.80, 47.04, 34.68 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₀OS [M+H]⁺: 297.1308, found: 297.1319.

TLC: $R_f = 0.57$ (10:1 hexanes: ethyl acetate).

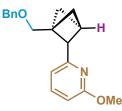
Compound 84

ethyl 4-(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)benzoate (84)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate **36** (31.4 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (0.5 mL, 0.2 M) solvent via a syringe. Next, PhLi (68 µL, 1.75 M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzlPn (3.9 mg, 0.005 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (8.0 mg, 0.02 mmol, 0.2 equiv.) and ethyl 4-bromobenzoate (49 µL, 0.3 mmol, 3.0 equiv.) in DMA (0.5 mL) was added into the reaction mixture. Next, the headspace of

the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was quenched with water, extracted with diethyl ether, washed by saturated brine, dried with Na₂SO₄ and concentrated under high vacuum and the crude residue was purified by chromatography on silica gel to give 21.2 mg (63%) of the desired product **84**.

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.39 – 7.34 (m, 4H), 7.31 (ddd, *J* = 8.6, 5.5, 2.4 Hz, 1H), 7.23 (d, *J* = 7.9 Hz, 2H), 4.59 (d, *J* = 12.1 Hz, 1H), 4.53 (d, *J* = 12.2 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.50 (d, *J* = 10.7 Hz, 1H), 3.47 – 3.42 (m, 2H), 2.92 (s, 1H), 2.07 – 2.02 (m, 1H), 1.88 (dd, *J* = 9.7, 1.9 Hz, 1H), 1.86 (d, *J* = 1.8 Hz, 1H), 1.78 (dd, *J* = 6.9, 2.7 Hz, 1H), 1.39 (t, *J* = 7.1 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 166.88, 145.42, 138.48, 129.35, 128.92, 128.52, 128.23, 127.85, 127.79, 73.28, 68.86, 62.78, 60.93, 47.61, 47.34, 46.51, 31.22, 14.50 ppm.

HRMS (ESI-TOF): calc'd for C₂₂H₂₄O₃ [M+H]⁺: 337.1798, found: 337.1800.

TLC: $R_f = 0.46$ (10:1 hexanes: ethyl acetate).

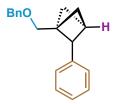
Compound 85

2-(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)-6-methoxypyridine (85)

A solution of 2-bromo-6-methoxypyridine (17 μ L, 0.14 mmol, 1.4 equiv.) in THF:diethyl ether:pentane (4:1:1, 0.3 M) was cooled to -78 °C and treated with *n*-BuLi (0.06 mL, 0.14 mmol, 1.3 eq., 2.32 M in hexanes) and the mixture was stirred at this temperature for 30 min. BCP boronate **36** (31.4 mg, 0.1 mmol, 1.0 equiv.) was added dropwise as a solution in THF (0.5 mL). The mixture was stirred at -78 °C for 30 min. The mixture was warmed to room temperature. and the solvents were removed under high vacuum at room temperature. The crude was redissolved in MeOH (1.0 mL) and the mixture was cooled to 0 °C. A solution of 1,3-dibromo-5,5-dimethylhydantoin (56 mg, 0.2 mmol, 2.0 eq.) in MeOH (1.5 mL) was added dropwise. After 1

hour at 0 °C saturated aqueous solution of $Na_2S_2O_3$ was added and the reaction mixture was allowed to warm to room temperature. The reaction mixture was diluted with ethyl acetate (1.5 mL) and water (1.5 mL). The layers were separated, and the aqueous layer was extracted with ethyl acetate twice. The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under vacuum. The crude material was adsorbed on silica and purified by flash column chromatography (hexanes: ethyl acetate, 20:1) on silica gel to give 15.6 mg (53%) of the desired product **85**.¹²

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.49 (t, J = 7.7 Hz, 1H), 7.37 – 7.30 (m, 4H), 7.29 – 7.25 (m, 1H), 6.75 (d, J = 7.3 Hz, 1H), 6.57 (d, J = 8.2 Hz, 1H), 4.61 (d, J = 12.2 Hz, 1H), 4.58 (d, J = 12.2 Hz, 1H), 3.83 (s, 3H), 3.72 (d, J = 10.9 Hz, 1H), 3.67 (d, J = 10.8 Hz, 1H), 3.40 (d, J = 6.9 Hz, 1H), 2.91 (s, 1H), 2.14 (dd, J = 9.5, 2.6 Hz, 1H), 1.91 – 1.84 (m, 2H), 1.83 (dd, J = 6.9, 2.6 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 163.37, 157.95, 138.87, 138.70 (br.), 128.43, 127.68, 127.58, 115.95, 107.76, 73.21, 69.46, 63.87 (br.), 53.45, 47.68, 47.49, 46.78, 32.06 ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₁NO₂ [M+H]⁺: 296.1645, found: 296.1648.

TLC: $R_f = 0.54$ (10:1 hexanes: ethyl acetate).

Compound 86

1-((benzyloxy)methyl)-2-phenylbicyclo[1.1.1]pentane (86)

On the benchtop, BCP BF₃K **80** (14.7 mg, 0.05 mmol, 1.0 equiv.), $(Ir[dF(CF_3)ppy]_2(dtbbpy))PF_6$ (2.8 mg, 0.0025 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (4.0 mg, 0.01 mmol, 0.20 equiv.) and Cs₂CO₃ (100 mg, 0.3 mmol, 6.0 equiv.) were added to a flame-dried 13×100 mm pyrex culture tube equipped with a stir bar. The test tube was evacuated and backfilled with argon three times. Then PhBr (26 µL, 0.25 mmol, 5.0 equiv.), and distilled dioxane (0.5 mL) was added into the tube. Then the tube was purged with a gentle stream of argon for 10 seconds, then sealed and stirred at room temperature in 450-nm photoreactor for 24 hours. Next, the reaction mixture was quenched with

water (1.0 mL) and extracted with diethyl ether (1.0 mL) three times. The combined organic layers were dried over Na_2SO_4 , filtered through Celite, concentrated under reduced pressure, and purified by pTLC (hexanes: diethyl ether, 10:1) on silica gel to obtain 5.3 mg (40%) of the desired coupling product **86**. ¹³

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃):** δ 7.38 – 7.33 (m, 4H), 7.32 – 7.26 (m, 3H), 7.22 – 7.18 (m, 1H), 7.16 (dt, *J* = 8.1, 1.1 Hz, 2H), 4.60 (d, *J* = 12.1 Hz, 1H), 4.53 (d, *J* = 12.2 Hz, 1H), 3.53 (d, *J* = 10.7 Hz, 1H), 3.47 – 3.41 (m, 2H), 2.89 (s, 1H), 2.10 (dd, *J* = 10.1, 2.6 Hz, 1H), 1.86 (dq, *J* = 4.0, 1.9 Hz, 2H), 1.78 (dd, *J* = 6.8, 2.6 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 139.99, 138.66, 128.94, 128.49, 128.09, 127.83, 127.70, 125.94,
73.24, 69.05, 62.79, 47.59, 47.00, 46.50, 31.13 ppm.
HRMS (ESI-TOF): calc'd for C₁₉H₂₀O [M+H]⁺: 265.1587, not found.

MS (GCMS, EI): m/z = 264 (0.2%), 173 (2%), 155 (16%), 115 (30%), 91 (100%).

TLC: $R_f = 0.54$ (10:1 hexanes : ethyl acetate).

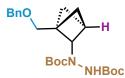
Compound 87

2-(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)-3-bromoquinoxaline (87)

A screw-capped 13×100 mm pyrex culture tube was charged with BCP BF₃K **80** (29.4 mg, 0.1 mmol, 1.0 equiv.), 2-bromoquinoxaline (62.4 mg, 0.3 mmol, 3.0 equiv.) and Mn(OAc)₃•2H₂O(80.4 mg, 0.3 mmol, 3.0 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of acetic acid/water (1.0 mL, 0.1 M, 1:1) solvent via a syringe. Next, trifluoroacetic acid (23 µL, 0.5 mmol, 5.0 equiv.) was added into the reaction. Then the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was stirred at 50 °C for 18 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was concentrated under high vacuum to remove excess acetic acid, quenched with K₂CO₃ solution, extracted with ethyl acetate, dried with Na₂SO₄, and

concentrated under high vacuum. The crude residue was purified by pTLC (hexanes: diethyl ether, 5:1) on silica gel to obtain 12.1 mg (31%) of the desired coupling product **87**. ¹⁰

Physical State: red oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 8.00 (dd, *J* = 7.7, 2.0 Hz, 2H), 7.78 – 7.70 (m, 2H), 7.29 – 7.27 (m, 4H), 7.23 (dq, *J* = 7.8, 2.6 Hz, 1H), 4.59 (d, *J* = 12.2 Hz, 1H), 4.53 (d, *J* = 12.2 Hz, 1H), 3.93 (d, *J* = 10.6 Hz, 1H), 3.82 (d, *J* = 10.6 Hz, 1H), 3.72 (d, *J* = 6.2 Hz, 1H), 3.16 (s, 1H), 2.38 (dd, *J* = 9.8, 2.9 Hz, 1H), 2.05 – 1.98 (m, 1H), 1.92 (d, *J* = 1.9 Hz, 1H), 1.87 (dd, *J* = 6.2, 2.9 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 154.97, 141.81, 141.52, 138.75, 130.21, 130.10, 129.27, 128.39, 128.28, 127.82, 127.64, 127.54, 73.19, 69.30, 63.69, 48.32, 48.09, 46.13, 33.54 ppm.

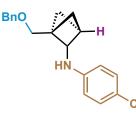
HRMS (ESI-TOF): calc'd for C₂₁H₁₉BrN₂O [M+H]⁺: 395.0754, found: 395.0750.

TLC: $R_f = 0.43$ (10:1 hexanes: ethyl acetate).

Compound 88

di-tert-butyl 1-(2-((benzyloxy)methyl)cyclobutyl)hydrazine-1,2-dicarboxylate (88)

A screw-capped 20×150 mm pyrex culture tube was added boronic acid **81** (116 mg, 0.5 mmol), TBC (30 mol%), DBAD (1.0 mmol) and toluene (2.5 mL). The headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir at 70 °C for 2 h. The solvent was concentrated, and the residue was directly purified by flash column chromatography (hexanes: ethyl acetate, 10:1) on silica gel to give 199 mg (95%) of the desired product **88**.⁸


Physical State: colorless oil.

¹H NMR (600 MHz, CDCl₃): δ 7.35 – 7.26 (m, 5H), 6.99 (br., 0.5H), 6.51 (br., 0.5H), 4.50 (s, 2H), 3.82 (br., 1H), 3.43 (br., 2H), 2.97 – 2.60 (m, 1H), 2.39 – 2.29 (m, 1H), 1.90 – 1.68 (m, 2H), 1.54 – 1.38 (m, 19H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 138.21, 128.51, 127.92, 127.77, 81.16 (br.), 73.48 (br.), 73.08 (br.), 69.32 (br.), 44.87, 28.40, 28.37 ppm. *Note: bridge-head CH and C, bridge* NCH *and CH*₂ BocNNC(O)OtBu *and* BocHNNC(O)OtBu *were not observed*.

HRMS (ESI-TOF): calc'd for $C_{23}H_{34}N_2O_5$ [M+H]⁺: 419.2541, found: 419.2541. TLC: $R_f = 0.39$ (2:1 hexanes: ethyl acetate).

Compound 89

4-((1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)amino)benzonitrile (89)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with boronic acid **81** (23.2 mg, 0.1 mmol), 4-nitrobenzonitrile (14.8 mg, 0.1 mmol) and 1,2,2,3,4,4 hexamethylphosphetane 1-oxide (15 mol%) under argon atmosphere, followed by addition of m-xylene (0.2 mL) and PhSiH₃ (0.2 mmol). The reaction mixture was stirred at 120 °C for 8 hours. The mixture was directly purified by flash column chromatography (hexanes: ethyl acetate, 10:1) on silica gel to give 20.0 mg (66%) of the desired product **89**.¹⁴

Physical State: colorless oil.

¹**H** NMR (600 MHz, CDCl₃): δ 7.40 – 7.35 (m, 4H), 7.32 (td, J = 6.7, 6.3, 1.7 Hz, 3H), 6.59 – 6.54 (m, 2H), 5.29 (br., 1H), 4.50 (s, 2H), 3.60 (d, J = 6.3 Hz, 1H), 3.51 (d, J = 10.3 Hz, 1H), 3.47 (d, J = 10.3 Hz, 1H), 2.77 (s, 1H), 2.56 (dd, J = 9.8, 2.9 Hz, 1H), 1.83 – 1.78 (m, 2H), 1.61 (dd, J = 9.7, 2.7 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 151.62, 138.21, 133.76, 128.64, 127.96, 127.64, 120.78, 112.25, 98.53, 73.50, 70.09, 68.50, 47.23, 44.82, 43.47, 33.23 ppm.

HRMS (ESI-TOF): calc'd for C₂₀H₂₀N₂O [M+H]⁺: 305.1648, found: 305.1684.

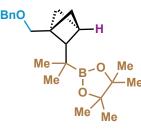
TLC: $R_f = 0.46$ (10:1 hexanes: ethyl acetate).

Compound 90

1-((benzyloxy)methyl)-N-(p-tolyl)bicyclo[1.1.1]pentan-2-amine (90)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with boronic acid **81** (23.2 mg, 0.1 mmol), 4-nitrotoluene (13.7 mg, 0.1 mmol) and 1,2,2,3,4,4 hexamethylphosphetane 1-oxide (15 mol%) under argon atmosphere, followed by addition of m-xylene (0.2 mL) and PhSiH₃ (0.2 mmol). The reaction mixture was stirred at 120 °C for 8 hours. The mixture was directly purified by flash column chromatography (hexanes: ethyl acetate, 10:1) on silica gel to give 18.0 mg (61%) of the desired product **90**.¹⁴

Physical State: red oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.42 – 7.28 (m, 5H), 7.01 – 6.96 (m, 2H), 6.59 – 6.54 (m, 2H), 4.53 (d, *J* = 12.1 Hz, 1H), 4.50 (d, *J* = 12.1 Hz, 1H), 3.60 (d, *J* = 6.2 Hz, 1H), 3.48 (s, 2H), 2.72 (s, 1H), 2.61 (dd, *J* = 9.7, 2.6 Hz, 1H), 2.25 (s, 3H), 1.79 (dd, *J* = 6.3, 2.6 Hz, 1H), 1.76 (d, *J* = 2.5 Hz, 1H), 1.58 (dd, *J* = 9.7, 2.5 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 146.16, 138.55, 129.81, 128.55, 127.73, 127.61, 126.22, 112.66, 73.32, 69.83, 69.76, 47.46, 44.80, 43.54, 33.29, 20.53 ppm.

HRMS (ESI-TOF): calc'd for C₂₀H₂₃NO [M+H]⁺: 294.1852, found: 294.1856.

TLC: $R_f = 0.68$ (5:1 hexanes: ethyl acetate).

Compound 91

2-(2-(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)propan-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (91)

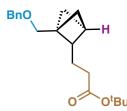
A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronic acid **81** (23.2 mg, 0.1 mmol, 1.0 equiv.) and sulfonyl hydrazone **17** (30.5 mg, 0.12 mmol, 1.0 equiv.), and cesium carbonate (97.5 mg, 0.3 mmol, 3.0 equiv.) Then the tube was evacuated and backfilled with argon for three times, followed by addition of chlorobenzene (1.0 mL) via a syringe. After stirring for at 100 °C for 2 hours, the reaction mixture was cooled to room temperature. Next, pinacol (118 mg, 1.0 mmol, 5.0 equiv.) was added, and the reaction was stirred at 100 °C for another 1 hour. The suspended solution was then filtered over Celite and washed with diethyl ether.

The solvent was removed under high vacuum, and the crude residue was purified by chromatography (hexanes: ethyl acetate, 15:1) on silica gel to afford 22.1 mg (62%) of the desired product $91.^{7}$

Physical State: white solid.

m.p.: 27-29 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.37 – 7.31 (m, 4H), 7.29 – 7.24 (m, 1H), 4.52 (s, 2H), 3.56 (d, *J* = 10.6 Hz, 1H), 3.52 (d, *J* = 10.6 Hz, 1H), 2.51 (s, 1H), 2.07 (dd, *J* = 9.9, 3.3 Hz, 1H), 1.86 (d, *J* = 7.1 Hz, 1H), 1.76 (dd, *J* = 7.2, 3.2 Hz, 1H), 1.71 (d, *J* = 1.6 Hz, 1H), 1.46 (dd, *J* = 9.9, 1.7 Hz, 1H), 1.21 (s, 6H), 1.20 (s, 6H), 0.97 (s, 3H), 0.95 (s, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 139.12, 128.39, 127.60, 127.44, 82.96, 73.20, 73.07, 69.87, 48.13, 47.65, 47.08, 31.84, 27.12, 26.43, 24.86, 24.84 ppm.

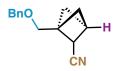
¹¹**B NMR (128 MHz, CDCl₃)**: δ 34.77 ppm.

HRMS (ESI-TOF): calc'd for C₂₂H₃₃BO₃ [M+H]⁺: 357.2596, found: 357.2597.

TLC: $R_f = 0.50$ (10:1 hexanes: ethyl acetate).

Compound 92

tert-butyl 3-(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)propanoate (92)


A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate **36** (31.4 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (0.2 mL, 0.5 M) solvent via a syringe. Next, PhLi (68 µL, 1.75 M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzIPn (3.9 mg, 0.005 mmol, 0.05 equiv.), tert-butylacrylate (29 µL, 0.2 mmol, 2.0 equiv.) and tert-butanol (28 µL, 0.3 mmol, 3.0 equiv.) in acetonitrile (1.0 mL) was added into the reaction mixture. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. The reaction mixture was concentrated under

high vacuum and the crude residue was purified by chromatography on silica gel to give 28.8 mg (91%) of the desired product **92**.

Physical State: colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.31 – 7.16 (m, 5H), 4.42 (s, 2H), 3.27 (s, 2H), 2.32 (s, 1H), 2.23 (dd, J = 9.8, 2.9 Hz, 1H), 2.16 (ddd, J = 8.4, 6.9, 5.2 Hz, 2H), 2.01 (dt, J = 7.8, 6.2 Hz, 1H), 1.87 – 1.70 (m, 2H), 1.69 – 1.64 (m, 2H), 1.48 (dd, J = 9.8, 1.7 Hz, 1H), 1.37 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 173.38, 138.79, 134.87, 128.45, 127.57, 80.10, 73.12, 69.51, 60.31, 48.89, 46.38, 45.36, 34.94, 31.12, 28.26, 21.25 ppm. HRMS (ESI-TOF): calc'd for C₂₀H₂₈O₃ [M+H]⁺: 317.2111, found: 317.2113. TLC: R_f = 0.54 (10:1 hexanes: ethyl acetate).

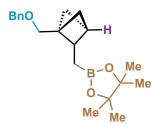
Compound 93

1-((benzyloxy)methyl)bicyclo[1.1.1]pentane-2-carbonitrile (93)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate **36** (31.4 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (0.2 mL, 0.5 M) solvent via a syringe. Next, PhLi (68 μ L, 1.75 M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzlPn (3.9 mg, 0.005 mmol, 0.05 equiv.) and TsCN (36 mg, 0.2 mmol, 2.0 equiv.) in acetonitrile (1.0 mL) was added into the reaction mixture. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. The reaction mixture was concentrated under high vacuum and the crude residue was purified by chromatography on silica gel to give 14 mg (66%) of the desired product **93**.

Physical State: colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.42 – 7.26 (m, 5H), 4.55 (d, *J* = 12.4 Hz, 1H), 4.51 (d, *J* = 12.4 Hz, 1H), 3.50 (d, *J* = 11.0 Hz, 1H), 3.45 (d, *J* = 11.0 Hz, 1H), 2.91 (s, 1H), 2.76 (d, *J* = 7.6 Hz, 1H), 2.53 (dd, *J* = 9.9, 3.4 Hz, 1H), 1.94 (dd, *J* = 7.6, 3.4 Hz, 1H), 1.87 (dd, *J* = 9.9, 2.7 Hz, 1H),


1.81 (d, *J* = 2.7 Hz, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ 138.11, 128.58, 127.86, 127.63, 119.43, 73.40, 68.17, 48.49, 48.32, 47.87, 45.90, 33.10 ppm.

HRMS (ESI-TOF): calc'd for C₁₄H₁₅NO [M+H]⁺: 214.1226, found: 214.1235.

TLC: $R_f = 0.63$ (2:1 hexanes: ethyl acetate).

Compound 94

2-((1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)methyl)-4,4,5,5-tetramethyl-1,3,2-dioxa borolane (94)

BCP boronate **36** (31.4 mg, 0.1 mmol, 1.0 equiv.) and bromoiodomethane (15 μ L, 0.2 mmol, 2.0 eq.) were dissolved in anhydrous THF (1.0 mL) and cooled to -78 °C. *n*-BuLi (2.5 M in n-hexane, 0.08 mL, 0.2 mmol, 2.0 equiv.) was added dropwise and the solution was stirred 10 minutes at -78 °C, and then warmed up to room temperature and stir overnight. The reaction mixture was quenched with saturated NH4Cl solution and dissolved in ethyl acetate. The aqueous phase was extracted with ethyl acetate twice. The combined organic phase was washed with brine, dried over Na₂SO₄ and evaporated to afford the crude residue, which was purified by flash chromatography (hexane: ethyl acetate, 20:1) on silica gel to give 28.0 mg (85%) of the desired product **94**.¹¹

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.35 – 7.30 (m, 4H), 7.29 – 7.24 (m, 1H), 4.52 – 4.46 (m, 2H), 3.34 (s, 2H), 2.36 (s, 1H), 2.32 – 2.24 (m, 2H), 1.79 (d, *J* = 1.7 Hz, 1H), 1.73 (dd, *J* = 6.3, 2.9 Hz, 1H), 1.60 (dd, *J* = 9.8, 1.7 Hz, 1H), 1.22 (s, 12H), 1.09 – 10.6 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 138.95, 128.39, 127.48, 127.46, 83.04, 72.99, 69.35, 55.93, 49.10, 46.79, 45.04, 32.56, 24.95, 24.94 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 33.77 ppm.

HRMS (ESI-TOF): calc'd for C₂₀H₂₉BO₃ [M+H]⁺: 329.2283, found: 329.2289.

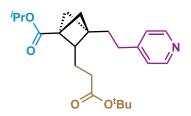
TLC: $R_f = 0.50$ (10:1 hexanes: ethyl acetate).

Experimental Procedures and Characterization of C1, C2, C3-trisubstituted BCPs (96-105) Compound 96

tert-butyl 3-(1-((benzyloxy)methyl)-3-cyanobicyclo[1.1.1]pentan-2-yl)propanoate (96)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate **42** (33.9 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (0.2 mL, 0.5 M) solvent via a syringe. Next, PhLi (68 µL, 1.75 M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzlPn (3.9 mg, 0.005 mmol, 0.05 equiv.), tert-butylacrylate (29 µL, 0.2 mmol, 2.0 equiv.) and tert-butanol (28 µL, 0.3 mmol, 3.0 equiv.) in acetonitrile (1.0 mL) was added into the reaction mixture. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. The reaction mixture was concentrated under high vacuum and the crude residue was purified by chromatography on silica gel to give 15 mg (44%) of the desired product **96**.

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.38 – 7.32 (m, 2H), 7.32 – 7.26 (m, 3H), 4.47 (d, J = 12.2 Hz, 1H), 4.45 (d, J = 12.2 Hz, 1H), 3.39 – 3.34 (m, 2H), 2.70 (dd, J = 9.7, 3.1 Hz, 1H), 2.48 (q, J = 6.7 Hz, 1H), 2.43 – 2.27 (m, 2H), 2.18 – 2.15 (m, 2H), 2.07 – 1.83 (m, 3H), 1.45 (s, 9H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 172.44, 138.04, 128.58, 127.90, 127.67, 117.47, 80.67, 73.39, 67.76, 64.28, 53.00, 49.28, 45.51, 33.53, 28.25, 26.98, 20.43 ppm.

HRMS (ESI-TOF): calc'd for C₂₁H₂₇NO₃ [M+H]⁺: 342.2064, found: 342.2061.

TLC: $R_f = 0.29$ (10:1 hexanes: ethyl acetate).

Compound 97

isopropyl 2-(3-(tert-butoxy)-3-oxopropyl)-3-(2-(pyridin-4-yl)ethyl)bicyclo[1.1.1]pentane-1carboxylate (97)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate **54** (41.9 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (0.2 mL, 0.5 M) solvent via a syringe. Next, PhLi (68 µL, 1.75 M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzlPn (3.9 mg, 0.005 mmol, 0.05 equiv.), tert-butylacrylate (29 µL, 0.2 mmol, 2.0 equiv.) and tert-butanol (28 µL, 0.3 mmol, 3.0 equiv.) in acetonitrile (1.0 mL) was added into the reaction mixture. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. The reaction mixture was concentrated under high vacuum and the crude residue was purified by chromatography on silica gel to give 36 mg (85%) of the desired product **97**.

Physical State: colorless oil.

¹**H NMR (400 MHz, CDCl₃)**: δ 8.49 – 8.43 (m, 2H), 7.13 – 7.06 (m, 2H), 4.95 (hept, *J* = 6.3 Hz, 1H), 2.56 – 2.47 (m, 2H), 2.41 – 2.13 (m, 4H), 1.98 – 1.77 (m, 4H), 1.75 (ddd, *J* = 8.0, 6.9, 2.5 Hz, 2H), 1.67 (dd, *J* = 9.7, 1.7 Hz, 1H), 1.43 (s, 9H), 1.20 (d, *J* = 6.2 Hz, 6H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 172.93, 169.43, 151.09, 149.73, 123.85, 80.34, 67.77, 62.08, 51.21, 46.61, 42.50, 41.04, 34.23, 31.90, 30.07, 28.22, 21.90, 20.40 ppm.

HRMS (ESI-TOF): calc'd for C₂₃H₃₃NO₄ [M+H]⁺: 388.2482, found: 388.2513.

TLC: $R_f = 0.17$ (2:1 hexanes: ethyl acetate).

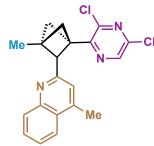
Compound SI-24

3,5-dichloro-2-(3-methyl-2-(trifluoro- λ 4-boraneyl)bicyclo[1.1.1]pentan-1-yl)pyrazine, potassium salt (SI-24)

BCP boronate 77 (355 mg, 1.0 mmol) was suspended in methanol (5 mL), and a saturated aqueous solution of KHF₂ (1 mL, 4 mmol) was added dropwise. The suspended solution was stirred at room temperature for 2 hours and then concentrated to dryness. The residue was extracted with hot acetone (3×20 mL), and the combined filtered extracts were concentrated. Methylene chloride was added, and the resultant precipitate was collected and dried to afford the 245 mg (73%) of the potassium trifluoroborate **SI-24**.

Physical State: white solid.

m.p.: >200 °C.


¹**H NMR (600 MHz, Acetone-***d*⁶): δ 8.52 (s, 1H), 2.82 (d, *J* = 9.5 Hz, 1H), 2.09 (dd, *J* = 9.7, 2.6 Hz, 1H), 1.88 (t, *J* = 6.3 Hz, 2H), 1.80 (dq, *J* = 11.2, 5.8 Hz, 1H), 1.19 (s, 3H) ppm.

¹³C NMR (151 MHz, Acetone-*d*⁶): δ 154.86, 146.56, 143.79, 142.24, 58.90, 50.70, 43.69 (q, *J* = 3.3 Hz), 39.67 (q, *J* = 2.8 Hz), 18.61 ppm.

¹⁹F NMR (376 MHz, Acetone-*d*⁶): δ -136.10 ppm.

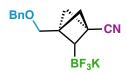
¹¹**B NMR (128 MHz, Acetone-***d*₆): δ 3.63 ppm.

Compound 98

2-(1-(3,5-dichloropyrazin-2-yl)-3-methylbicyclo[1.1.1]pentan-2-yl)-4-methylquinoline (98)

A screw-capped 13×100 mm pyrex culture tube was charged with BCP BF₃K **SI-24** (31.9 mg, 0.1 mmol, 1.0 equiv.), lepidine (40 µL, 0.3 mmol, 3.0 equiv.) and Mn(OAc)₃•2H₂O(80.4 mg, 0.3 mmol,

3.0 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of acetic acid/water (1.0 mL, 0.1 M, 1:1) solvent via a syringe. Next, trifluoroacetic acid (23 μ L, 0.5 mmol, 5.0 equiv.) was added into the reaction. Then the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was stirred at 50 °C for 18 hours. Then the reaction mixture was concentrated under high vacuum to remove excess acetic acid, quenched with Na₂CO₃ solution, extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under high vacuum. The crude residue was purified by pTLC (hexanes: diethyl ether, 5:1) on silica gel to obtain 11.0 mg (30%) of the desired coupling product **98**. ¹⁰


Physical State: pale yellow solid.

m.p.: 49-51 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.47 (s, 1H), 7.92 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 6.95 (s, 1H), 4.08 (d, *J* = 6.8 Hz, 1H), 2.73 (dd, *J* = 9.8, 2.8 Hz, 1H), 2.62 (s, 3H), 2.42 (dd, *J* = 9.8, 1.5 Hz, 1H), 2.26 (dd, *J* = 6.9, 2.8 Hz, 1H), 2.12 (s, 1H), 1.49 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 158.81, 150.73, 147.81, 146.56, 144.83, 143.60, 141.63, 130.08, 128.97, 126.91, 125.78, 123.64, 121.85, 68.15, 53.90, 49.43, 44.81, 42.43, 18.98, 16.66 ppm. HRMS (ESI-TOF): calc'd for C₂₀H₁₇Cl₂N₃ [M+H]⁺: 370.0872, found: 370.0870. TLC: R_f = 0.55 (5:1 hexanes: ethyl acetate).

Compound SI-25

3-((benzyloxy)methyl)-2-(trifluoro- λ^4 -boraneyl)bicyclo[1.1.1]pentane-1-carbonitrile, potassium salt (SI-25)

BCP boronate 42 (678 mg, 2.0 mmol) was suspended in methanol (10 mL), and a saturated aqueous solution of KHF₂ (2 mL, 8 mmol) was added dropwise. The suspended solution was stirred at room temperature for 2 hours and then concentrated to dryness. The residue was extracted with hot acetone (3×30 mL), and the combined filtered extracts were concentrated. Methylene chloride was added, and the resultant precipitate was collected and dried to afford the 517 mg (81%) of the

potassium trifluoroborate SI-25.

Physical State: white solid.

m.p.: 122-124 °C.

¹**H NMR (600 MHz, Acetone-***d*⁶): δ 7.35 – 7.29 (m, 4H), 7.28 – 7.21 (m, 1H), 4.49 (d, *J* = 12.2 Hz, 1H), 4.45 (d, *J* = 12.3 Hz, 1H), 3.50 (d, *J* = 10.8 Hz, 1H), 3.42 (d, *J* = 10.9 Hz, 1H), 2.85 (d, *J* = 9.2 Hz, 1H), 2.09 (s, 1H), 1.95 (d, *J* = 8.1 Hz, 1H), 1.91 (d, *J* = 9.3 Hz, 1H), 1.59 (dq, *J* = 10.2, 5.2 Hz, 1H) ppm.

¹³C NMR (151 MHz, Acetone-*d*⁶): δ 140.18, 128.92, 128.11, 127.92, 120.54, 73.12, 70.53, 57.40, 51.52, 45.32 (q, *J* = 2.2 Hz), 26.47 (q, *J* = 3.4 Hz) ppm.

¹⁹F NMR (376 MHz, Acetone-*d*⁶): δ -137.30 ppm.

¹¹**B NMR (128 MHz, Acetone**-*d*₆): δ 2.94 (q, *J* = 62.8 Hz) ppm.

Compound 99

3-((benzyloxy)methyl)-2-(3,5-dichloropyrazin-2-yl)bicyclo[1.1.1]pentane-1-carbonitrile (99)

A screw-capped 13×100 mm pyrex culture tube was charged with BCP BF₃K **SI-25** (31.9 mg, 0.1 mmol, 1.0 equiv.), 2,6-dichloropyrazine (44.7 mg, 0.3 mmol, 3.0 equiv.) and Mn(OAc)₃•2H₂O(80.4 mg, 0.3 mmol, 3.0 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of acetic acid/water (1.0 mL, 0.1 M, 1:1) solvent via a syringe. Next, trifluoroacetic acid (23 µL, 0.5 mmol, 5.0 equiv.) was added into the reaction. Then the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was stirred at 50 °C for 18 hours. Then the reaction mixture was concentrated under high vacuum to remove excess acetic acid, quenched with K₂CO₃ solution, extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under high vacuum. The crude residue was purified by pTLC (hexanes: diethyl ether, 5:1) on silica gel to obtain 9.3 mg (28%) of the desired coupling product **99**.¹⁰

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 8.51 (s, 1H), 7.36 – 7.26 (m, 3H), 7.23 – 7.18 (m, 2H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.41 (d, *J* = 11.9 Hz, 1H), 3.92 (d, *J* = 6.4 Hz, 1H), 3.63 (d, *J* = 10.7 Hz, 1H), 3.59 (d, *J* = 10.7 Hz, 1H), 2.80 (dd, *J* = 9.7, 3.1 Hz, 1H), 2.33 (dd, *J* = 9.8, 2.3 Hz, 1H), 2.29 (d, *J* = 2.3 Hz, 1H), 2.25 (dd, *J* = 6.5, 3.1 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 148.50, 148.32, 146.22, 141.56, 137.80, 128.53, 127.96, 127.77, 116.76, 73.51, 67.83, 64.18, 51.67, 50.03, 48.17, 28.12 ppm.

HRMS (ESI-TOF): calc'd for C₁₈H₁₅Cl₂N₃O [M+H]⁺: 360.0665, found: 360.0671.

TLC: $R_f = 0.36$ (5:1 hexanes: ethyl acetate).

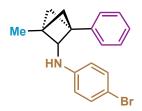
Compound SI-26

trifluoro(1-methyl-3-phenylbicyclo[1.1.1]pentan-2-yl)- λ^4 -borane, potassium salt (SI-26)

BCP boronate **65** (284 mg, 1.0 mmol) was suspended in methanol (5 mL), and a saturated aqueous solution of KHF₂ (1 mL, 4 mmol) was added dropwise. The suspended solution was stirred at room temperature for 2 hours and then concentrated to dryness. The residue was extracted with hot acetone (3×20 mL), and the combined filtered extracts were concentrated. Methylene chloride was added, and the resultant precipitate was collected and dried to afford the 201 mg (76%) of the potassium trifluoroborate **SI-26**.

Physical State: white solid.

m.p.: 191-193 °C.


¹**H NMR (600 MHz, Acetone**-*d*⁶): δ 7.34 – 7.29 (m, 2H), 7.14 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.06 – 7.00 (m, 1H), 2.74 (d, *J* = 9.5 Hz, 1H), 1.78 (s, 1H), 1.63 (d, *J* = 9.4 Hz, 1H), 1.57 (d, *J* = 8.0 Hz, 1H), 1.27 (dd, *J* = 7.7, 5.7 Hz, 1H), 1.18 (s, 3H) ppm.

¹³C NMR (151 MHz, Acetone-*d*⁶): δ 145.49, 128.03, 127.66, 125.51, 58.94, 52.08, 44.22 (q, *J* = 2.8 Hz), 37.47 (q, *J* = 2.9 Hz), 18.95 ppm.

¹⁹F NMR (376 MHz, Acetone-*d*⁶): δ -134.94 ppm.

¹¹**B** NMR (128 MHz, Acetone- d_6): δ 4.01 (q, J = 65.8 Hz) ppm.

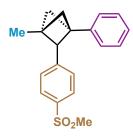
Compound 100

N-(4-bromophenyl)-1-methyl-3-phenylbicyclo[1.1.1]pentan-2-amine (100)

A screw-capped 13×100 mm pyrex culture tube was charged with SI-26 (132 mg, 0.5 mmol) and water (2.5 mL), followed by addition of silica gel (250 mg) under argon atmosphere. The mixture was stirred at room temperature for 1 hour. Ethyl ether (5 mL) was added, and the suspended solution was filtered by Celite. The organic phase was separated, and the water phase was extracted with diethyl ether (3 × 2 mL). The combined organic solvent was washed with brine and dried by anhydrous MgSO₄. The solvent was removed under vacuum to afford the desire boronic acid without further purification.

A flame dried screw-capped culture tube was charged with boronic acid (20.2 mg, 0.1 mmol), 1bromo-4-nitrobenzene (20.2 mg, 0.1 mmol) and 1,2,2,3,4,4-hexamethylphosphetane-1-oxide (15 mol%) under argon atmosphere, followed by addition of m-xylene (0.2 mL) and PhSiH₃ (0.2 mmol) were added. The reaction mixture was stirred at 120 °C for 8 hours. The mixture was directly purified by flash column chromatography (hexanes: ethyl acetate, 10:1) on silica gel to give 14.1 mg (43%) of the desired product **100**.¹⁴

Physical State: red oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.28 (dd, *J* = 8.1, 6.8 Hz, 2H), 7.25 – 7.19 (m, 1H), 7.16 (ddd, *J* = 10.2, 7.5, 1.8 Hz, 4H), 6.45 – 6.40 (m, 2H), 3.64 (d, *J* = 6.3 Hz, 1H), 2.65 (dd, *J* = 9.8, 2.7 Hz, 1H), 1.91 (dd, *J* = 6.3, 2.7 Hz, 1H), 1.89 (d, *J* = 2.4 Hz, 1H), 1.84 (dd, *J* = 9.8, 2.5 Hz, 1H), 1.25 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 147.23, 138.46, 131.88, 128.48, 126.93, 126.54, 114.47, 108.89, 72.32, 49.00, 47.00, 46.95, 40.85, 15.98 ppm.

HRMS (ESI-TOF): calc'd for C₁₈H₁₈BrN [M+H]⁺: 328.0695, found: 328.0694.

TLC: $R_f = 0.27$ (5:1 hexanes: ethyl acetate).

Compound 101

1-methyl-2-(4-(methylsulfonyl)phenyl)-3-phenylbicyclo[1.1.1]pentane (101)

On the benchtop, BCP BF₃K **SI-26** (14.7 mg, 0.05 mmol, 1.0 equiv.), 4-bromophenyl methyl sulfone (47 mg, 0.2 mmol, 4.0 equiv.), $(Ir[dF(CF_3)ppy]_2(dtbbpy))PF_6$ (2.8 mg, 0.0025 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (4.0 mg, 0.01 mmol, 0.20 equiv.) and Cs₂CO₃ (100 mg, 0.3 mmol, 6.0 equiv.) were added to a flame-dried 13×100 mm pyrex culture tube equipped with a stir bar. The test tube was evacuated and backfilled with argon three times. Then dried dioxane (0.5 mL) was added into the tube. Then the tube was purged with a gentle stream of argon for 10 seconds, then sealed and stirred at room temperature in 450-nm photoreactor for 24 hours. Next, the reaction mixture was quenched with water (1.0 mL) and extracted with diethyl ether (1.0 mL) three times. The combined organic layers were dried over Na₂SO₄, filtered through Celite, concentrated under reduced pressure, and purified by pTLC (hexanes: diethyl ether, 10:1) on silica gel to obtain 8.1 mg (52%) of the desired coupling product **96**. ¹³

Physical State: colorless oil.

¹**H** NMR (600 MHz, CDCl₃): δ 7.81 – 7.77 (m, 2H), 7.35 – 7.29 (m, 2H), 7.29 – 7.23 (m, 3H), 7.21 – 7.16 (m, 2H), 3.52 (d, J = 6.7 Hz, 1H), 3.02 (s, 3H), 2.35 (dd, J = 9.8, 2.8 Hz, 1H), 2.05 (dd, J = 9.8, 1.8 Hz, 1H), 2.02 (dd, J = 6.8, 2.8 Hz, 1H), 2.00 – 1.94 (m, 1H), 1.37 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 146.42, 139.35, 138.05, 129.76, 128.53, 127.08, 126.83, 126.59, 65.08, 55.55, 47.75, 45.40, 44.68, 39.71, 16.71 ppm.

HRMS (ESI-TOF): calc'd for $C_{19}H_{20}O_2S$ [M+H]⁺: 313.1257, found: 313.1258. TLC: $R_f = 0.58$ (2:1 hexanes: ethyl acetate).

Compound SI-27

O BF₃K

isopropyl 3-(4-(methylsulfonyl)phenyl)-2-(trifluoro-λ4-boraneyl)bicyclo[1.1.1]pentane-1carboxylate, potassium salt (SI-27)

BCP boronate **56** (217 mg, 0.5 mmol) was suspended in methanol (3 mL), and a saturated aqueous solution of KHF₂ (0.7 mL, 2.8 mmol) was added dropwise. The suspended solution was stirred at room temperature for 2 hours and then concentrated to dryness. The residue was extracted with hot acetone (3×10 mL), and the combined filtered extracts were concentrated. Methylene chloride was added, and the resultant precipitate was collected and dried to afford the 147 mg (71%) of the potassium trifluoroborate **SI-27**.

Physical State: white solid.

m.p.: >200 °C.

¹**H NMR (600 MHz, DMSO-***d*₆): δ 7.79 – 7.75 (m, 2H), 7.50 – 7.45 (m, 2H), 4.83 (hept, *J* = 6.3 Hz, 1H), 3.14 (s, 3H), 2.91 (d, *J* = 9.2 Hz, 1H), 2.06 (s, 1H), 2.01 (d, *J* = 9.2 Hz, 1H), 1.88 (d, *J* = 7.9 Hz, 1H), 1.64 (dq, *J* = 10.1, 5.2 Hz, 1H), 1.15 (d, *J* = 6.2 Hz, 6H) ppm.

¹³C NMR (151 MHz, DMSO-*d*₆): δ 170.71, 148.80, 138.11, 127.59, 126.53, 66.17, 56.94, 48.83, 43.84, 42.87, 21.79, 21.76 ppm.

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -133.31 ppm.

¹¹**B NMR (128 MHz, DMSO-***d*₆): δ 2.57 ppm.

Compound 102

isopropyl 2-(4-(ethoxycarbonyl)phenyl)-3-(4-(methylsulfonyl)phenyl)bicyclo[1.1.1]pentane-1carboxylate (102)

On the benchtop, BCP BF₃K **SI-27** (20.1 mg, 0.05 mmol, 1.0 equiv.), ethyl 4-bromobenzoate (49 μ L, 0.3 mmol, 6.0 equiv.), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2.8 mg, 0.0025 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (4.0 mg, 0.01 mmol, 0.20 equiv.) and Cs₂CO₃ (100 mg, 0.3 mmol, 6.0 equiv.) were added to a flame-dried 13×100 mm pyrex culture tube equipped with a stir bar. The test tube was evacuated and backfilled with argon three times. Then dried THF (0.5 mL) was added into the tube.

Then the tube was purged with a gentle stream of argon for 10 seconds, then sealed and stirred at room temperature in 450-nm photoreactor for 24 hours. Next, the reaction mixture was quenched with water (1.0 mL) and extracted with diethyl ether (1.0 mL) three times. The combined organic layers were dried over Na₂SO₄, filtered through Celite, concentrated under reduced pressure, and purified by pTLC (hexanes: diethyl ether, 2:1) on silica gel to obtain 4.1 mg (18%) of the desired coupling product **102**. ¹³

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.92 (d, J = 3.0 Hz, 2H), 7.90 (d, J = 2.9 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 5.11 (hept, J = 6.3 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 4.03 (d, J = 6.7 Hz, 1H), 3.07 (s, 3H), 2.76 (dd, J = 9.6, 2.9 Hz, 1H), 2.51 (dd, J = 9.6, 1.8 Hz, 1H), 2.40 (dd, J = 6.8, 2.8 Hz, 1H), 2.35 (d, J = 1.8 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.30 (d, J = 4.1 Hz, 3H), 1.29 (d, J = 4.0 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 168.86, 166.52, 144.42, 142.00, 139.50, 129.51, 129.18, 128.66, 127.84, 127.79, 68.73, 67.51, 61.10, 53.78, 47.12, 45.07, 44.67, 41.09, 21.98, 21.96, 14.45 ppm. HRMS (ESI-TOF): calc'd for C₂₅H₂₈O₆S [M+H]⁺: 457.1679, found: 457.1677.

TLC: $R_f = 0.35$ (2:1 hexanes: ethyl acetate).

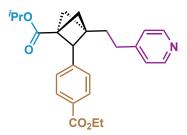
Compound SI-28

isopropyl 3-(2-(pyridin-4-yl)ethyl)-2-(trifluoro- λ^4 -boraneyl)bicyclo[1.1.1]pentane-1-carboxylate, potassium salt (SI-28)

BCP boronate 54 (385 mg, 1.0 mmol) was suspended in methanol (5 mL), and a saturated aqueous solution of KHF₂ (1 mL, 4 mmol) was added dropwise. The suspended solution was stirred at room temperature for 2 hours and then concentrated to dryness. The residue was extracted with hot acetone (3×40 mL), and the combined filtered extracts were concentrated. Methylene chloride was added, and the resultant precipitate was collected and dried to afford the 274 mg (75%) of the potassium trifluoroborate SI-28.

Physical State: white solid.

m.p.: >200 °C.


¹**H NMR (600 MHz, DMSO-***d*₆): δ 8.42 – 8.38 (m, 2H), 7.20 – 7.16 (m, 2H), 4.75 (hept, *J* = 6.3 Hz, 1H), 2.54 – 2.50 (m, 2H), 2.44 (d, *J* = 9.3 Hz, 1H), 1.69 (td, *J* = 7.2, 1.6 Hz, 2H), 1.57 (s, 1H), 1.53 (d, *J* = 9.3 Hz, 1H), 1.44 (d, *J* = 7.9 Hz, 1H), 1.22 (dq, *J* = 10.3, 5.3 Hz, 1H), 1.10 (d, *J* = 6.3 Hz, 6H) ppm.

¹³C NMR (151 MHz, DMSO-*d*₆): δ 170.87, 151.89, 149.37, 123.89, 65.80, 55.34, 46.90, 40.96, 40.94, 31.96, 31.65, 21.79, 21.76 ppm.

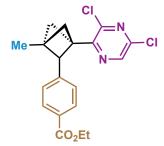
¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -133.29 ppm.

¹¹**B NMR (128 MHz, DMSO-***d*₆): δ 2.99 ppm.

Compound 103

ethyl 4-(1-((benzyloxy)methyl)bicyclo[1.1.1]pentan-2-yl)benzoate (103)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate **54** (31.4 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (0.5 mL, 0.2 M) solvent via a syringe. Next, PhLi (68 μ L, 1.75 M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzIPn (3.9 mg, 0.005 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (8.0 mg, 0.02 mmol, 0.2 equiv.) and ethyl 4-bromobenzoate (49 μ L, 0.3 mmol, 3.0 equiv.) in DMA (0.5 mL) was added into the reaction mixture. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was quenched with water, extracted with diethyl ether, washed by saturated brine, dried with Na₂SO₄ and concentrated under high vacuum and the crude residue was purified by pTLC on silica gel (hexane: acetone, 3:1) to give 10.2 mg (25%) of the desired product **103**.


On the benchtop, BCP BF₃K SI-27 (18.3 mg, 0.05 mmol, 1.0 equiv.), ethyl 4-bromobenzoate (48

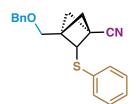
 μ L , 0.3 mmol, 4.0 equiv.), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2.8 mg, 0.0025 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (4.0 mg, 0.01 mmol, 0.20 equiv.) and Cs₂CO₃ (100 mg, 0.3 mmol, 6.0 equiv.) were added to a flame-dried 13×100 mm pyrex culture tube equipped with a stir bar. The test tube was evacuated and backfilled with argon three times. Then dried THF (0.5 mL) was added into the tube. Then the tube was purged with a gentle stream of argon for 10 seconds, then sealed and stirred at room temperature in 450-nm photoreactor for 24 hours. Next, the reaction mixture was quenched with water (1.0 mL) and extracted with diethyl ether (1.0 mL) three times. The combined organic layers were dried over Na₂SO₄, filtered through Celite, concentrated under reduced pressure, and purified by pTLC (hexanes: diethyl ether, 1:3) on silica gel to obtain 4.8 mg (24%) of the desired coupling product **103**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.50 (d, J = 5.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 5.0 Hz, 2H), 5.06 (hept, J = 6.2 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.60 (d, J = 6.6 Hz, 1H), 2.63 (qdd, J = 14.2, 10.3, 6.1 Hz, 2H), 2.33 (dd, J = 9.7, 3.0 Hz, 1H), 2.01 – 1.94 (m, 3H), 1.94 – 1.86 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.25 (dd, J = 7.7, 6.3 Hz, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ 169.13, 166.65, 151.19, 149.56, 143.16, 129.57, 128.83, 128.68, 123.98, 68.34, 65.00, 61.08, 51.04, 47.02, 43.75, 41.46, 31.91, 30.20, 21.95, 14.49 ppm. **HRMS (ESI-TOF):** calc'd for C₂₅H₂₉NO₄ [M+H]⁺: 408.2169, found: 408.2167. **TLC:** R_f = 0.13 (2:1 hexanes: ethyl acetate).

Compound 104

ethyl 4-(1-(3,5-dichloropyrazin-2-yl)-3-methylbicyclo[1.1.1]pentan-2-yl)benzoate (104)


A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with BCP boronate 77 (35.5 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon for three times, followed by addition of THF (0.5 mL, 0.2 M) solvent via a syringe. Next, PhLi (68 μ L, 1.75

M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzlPn (3.9 mg, 0.005 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (8.0 mg, 0.02 mmol, 0.2 equiv.) and ethyl 4-bromobenzoate (49 μ L, 0.3 mmol, 3.0 equiv.) in DMA (0.5 mL) was added into the reaction mixture. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was quenched with water, extracted with diethyl ether, washed by saturated brine, dried with Na₂SO₄ and concentrated under high vacuum and the crude residue was purified by chromatography on silica gel to give 8.2 mg (22%) of the desired product **104**.

Physical State: red oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.46 (s, 1H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.95 (d, *J* = 6.7 Hz, 1H), 2.59 (dd, *J* = 9.8, 3.0 Hz, 1H), 2.36 (dd, *J* = 9.8, 1.7 Hz, 1H), 2.24 (dt, *J* = 7.4, 3.7 Hz, 1H), 2.14 (d, *J* = 1.6 Hz, 1H), 1.42 – 1.32 (m, 6H) ppm. ¹³**C NMR (151 MHz, CDCl₃)**: δ 166.68, 149.87, 146.46, 145.42, 143.96, 141.99, 129.47, 128.59, 128.52, 66.18, 60.99, 54.18, 48.84, 44.58, 41.70, 16.40, 14.47 ppm. **HRMS (ESI-TOF):** calc'd for C₁₉H₁₈Cl₂N₂O₂ [M+H]⁺: 377.0818, found: 377.0816. **TLC:** R_f = 0.46 (10:1 hexanes: ethyl acetate).

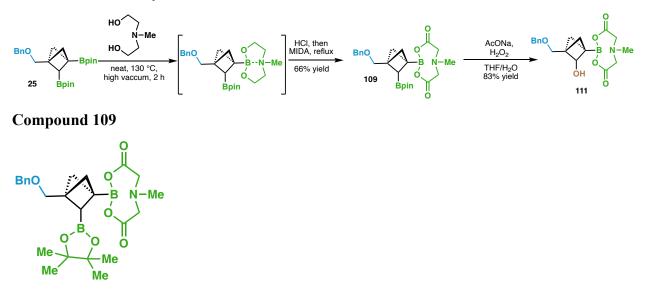
Compound 105

3-((benzyloxy)methyl)-2-(phenylthio)bicyclo[1.1.1]pentane-1-carbonitrile (105)

A screw-capped 13×100 mm pyrex culture tube was charged with BCP Bpin **42** (17.0 mg, 0.05 mmol, 1.0 equiv.), PhSO₂SPh (50.0 mg, 0.2 mmol, 4.0 equiv.) and tert-butylcatechol (2.5 mg, 0.015 mmol, 0.3 equiv.). Then the tube or the flask was evacuated and backfilled with argon for three times, followed by addition of MeOBcat (0.05 mmol, 1.0 equiv.) and toluene (0.25 mL, 0.2 M) via syringes. Next, the headspace of the tube was purged with a gentle stream of argon for

approximately 10 seconds and the reaction was stirred at 80 °C for 24 hours. Then the reaction mixture was concentrated under high vacuum to remove excess solvent and purified by pTLC (hexanes: methylene chloride, 1:1) on silica gel to obtain 14.9 mg (93%) of the desired coupling product **105**. ⁸

Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.52 – 7.47 (m, 2H), 7.39 – 7.24 (m, 8H), 4.49 (s, 2H), 3.90 (d, *J* = 7.6 Hz, 1H), 3.52 (d, *J* = 11.0 Hz, 1H), 3.46 (d, *J* = 11.0 Hz, 1H), 2.94 (dd, *J* = 9.8, 3.1 Hz, 1H), 2.40 (d, *J* = 2.6 Hz, 1H), 2.26 (dd, *J* = 7.6, 3.1 Hz, 1H), 2.20 (dd, *J* = 9.7, 2.6 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 137.90, 134.28, 131.63, 129.31, 128.58, 127.95, 127.68, 127.49, 116.34, 73.46, 70.61, 66.47, 51.68, 50.80, 48.75, 30.94 ppm.

HRMS (ESI-TOF): calc'd for C₂₀H₁₉NOS [M+H]⁺: 322.1260, found: 322.1275.

TLC: $R_f = 0.41$ (5:1 hexanes: ethyl acetate).

Reverse Reactivity of BCP Bis-boronates

2-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (109)

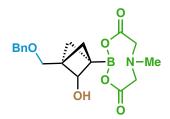
A flame-dried reaction flask was charged with **25** (880 mg, 2.0 mmol, 1.0 equiv.) and methyl diethanolamine (0.35 mL, 3.0 mmol, 1.5 equiv.). Then the mixture was stirred at 140 °C for 2 hours under high vaccum (*note: pinacol was removed under high vaccum to drive the reaction forward*). It was confirmed that starting material **25** was totally consumed through NMR analysis, the reaction was cooled to room temperature, the reaction was quenched with 1 M HCl, extracted with diethyl ether, dried with Na₂SO₄, and concentrated under high vacuum. Methyliminodiacetic acid (441 mg, 3 mmol, 1.5 equiv.) was added into the reaction crude, followed by toluene (10 mL) and DMSO (1 mL). The reaction mixture was stirred at reflux using dean stark apparatus to remove water for 2 hours. After it was confirmed that boronic acid was totally consumed through TLC analysis, the reaction was cooled to room temperature and quenched with water, extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under high vacuum. The reaction crude was finally purified by column chromatography (pure ethyl acetate) on silica gel to obtain 619.4 mg (66%) of the desired coupling product **109**.

Physical State: white solid.

m.p.: 103-105 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.35 – 7.29 (m, 4H), 7.29 – 7.23 (m, 1H), 4.55 (d, J = 12.4 Hz, 1H), 4.52 (d, J = 12.3 Hz, 1H), 3.87 (d, J = 15.8 Hz, 1H), 3.83 (d, J = 16.2 Hz, 1H), 3.75 (dd, J = 16.0, 2.7 Hz, 2H), 3.45 (d, J = 10.7 Hz, 1H), 3.40 (d, J = 10.7 Hz, 1H), 3.04 (s, 3H), 2.17 (dd, J =

9.8, 2.4 Hz, 1H), 1.87 (d, *J* = 1.6 Hz, 1H), 1.83 (dd, *J* = 8.7, 2.1 Hz, 2H), 1.57 (d, *J* = 8.4 Hz, 1H), 1.21 (s, 12H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 167.37, 167.07, 138.99, 128.38, 127.57, 127.49, 83.51, 73.03, 70.96, 62.80, 62.29, 53.46, 49.21, 46.33, 45.86, 25.26, 24.52 ppm.

¹¹**B NMR (128 MHz, CDCl₃)** δ 32.71, 10.07 ppm.

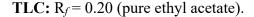
HRMS (ESI-TOF): calc'd for C₂₄H₃₃B₂NO₇ [M+H]⁺: 470.2516, found: 470.2532.

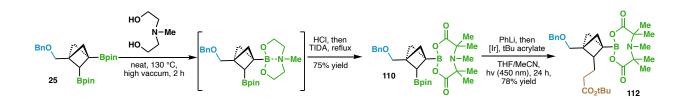
TLC: $R_f = 0.33$ (pure ethyl acetate).

Compound 111

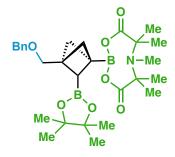
2-(3-((benzyloxy)methyl)-2-hydroxybicyclo[1.1.1]pentan-1-yl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (111)

To a solution of **109** (24 mg, 0.05 mmol) and NaOAc (16.4 mg, 0.2 mmol) in THF (0.5 mL) at 0 °C was added H_2O_2 (50 wt.% in water, 0.05 mL) dropwise. The resulting mixture was stirred at 0 °C for 3 hours. Na₂S₂O₃ was added and the mixture was stirred at 0 °C for 10 min. Ethyl acetate was added, the layers were separated, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, concentrated, and purified by column chromatography (pure ethyl acetate) on silica gel to obtain the 15.3 mg (83%) of alcohol **111**.


Physical State: colorless oil.


¹**H NMR (600 MHz, CDCl₃)**: δ 7.36 – 7.30 (m, 2H), 7.31 – 7.26 (m, 3H), 4.47 (s, 2H), 4.00 (d, J = 6.1 Hz, 1H), 3.92 – 3.81 (m, 3H), 3.65 (d, J = 16.7 Hz, 1H), 3.39 (d, J = 2.0 Hz, 2H), 3.17 (br., 1H), 3.03 (s, 3H), 2.56 (dd, J = 9.8, 2.4 Hz, 1H), 1.76 (dd, J = 6.3, 2.4 Hz, 1H), 1.65 (d, J = 2.9 Hz, 1H), 1.28 – 1.21 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 168.81, 167.98, 138.42, 128.57, 127.82, 127.72, 82.01, 73.32, 69.48, 62.10, 61.45, 49.01, 46.44, 43.13, 40.49 ppm.


¹¹**B** NMR (128 MHz, CDCl₃) δ 10.08 ppm.

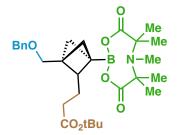
HRMS (ESI-TOF): calc'd for C₁₈H₂₂BNO₆ [M+Na]⁺: 382.1432, found: 382.1441.

Compound 110

2-(3-((benzyloxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentan-1-yl)-5,5,6,7,7-pentamethyl-1,3,6,2-dioxazaborocane-4,8-dione (110)

A flame-dried reaction flask was charged with **25** (880 mg, 2.0 mmol, 1.0 equiv.) and methyl diethanolamine (0.35 mL, 3.0 mmol, 1.5 equiv.). Then the mixture was stirred at 140 °C for 2 hours under high vaccum (*note: pinacol was removed under high vaccum to drive the reaction forward*). It was confirmed that starting material **25** was totally consumed through NMR analysis, the reaction was cooled to room temperature, the reaction was quenched with 1 M HCl, extracted with diethyl ether, dried with Na₂SO₄, and concentrated under high vacuum. 2,2'- (Methylazanediyl)bis(2-methylpropanoic acid) (609 mg, 3 mmol, 1.5 equiv.) prepared via Burke's procedure¹⁵ was added into the reaction crude, followed by toluene (10 mL) and DMSO (1 mL). The reaction mixture was stirred at reflux using dean stark apparatus to remove water for 2 hours. After it was confirmed that boronic acid was totally consumed through TLC analysis, the reaction was cooled to room temperature and quenched with water, extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under high vacuum. The reaction crude was finally purified by column chromatography (pure ethyl acetate) on silica gel to obtain 790 mg (75%) of the desired coupling product **110**.

Physical State: white solid. m.p.: 115-117 °C. ¹**H NMR (600 MHz, CDCl₃)**: δ 7.34 – 7.29 (m, 4H), 7.26 – 7.22 (m, 1H), 4.53 (d, *J* = 12.4 Hz, 1H), 4.50 (d, *J* = 12.3 Hz, 1H), 3.41 (d, *J* = 10.6 Hz, 1H), 3.37 (d, *J* = 10.6 Hz, 1H), 2.62 (s, 3H), 2.49 – 2.44 (m, 1H), 1.81 – 1.78 (m, 2H), 1.76 (dd, *J* = 8.2, 2.0 Hz, 1H), 1.69 (s, 3H), 1.67 (s, 3H), 1.57 (s, 3H), 1.55 (s, 3H), 1.54 (d, *J* = 8.1 Hz, 1H), 1.23 (s, 6H), 1.21 (s, 6H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 174.49, 174.07, 138.99, 128.35, 127.54, 127.43, 83.09, 72.96, 71.09, 54.23, 48.91, 47.90(*br*.), 44.28, 36.51, 25.26, 24.63 ppm. *Note:* BC, NCMe₂ were not detected.

¹¹B NMR (128 MHz, CDCl₃) δ 31.53, 8.41 ppm.

HRMS (ESI-TOF): calc'd for C₂₈H₄₁B₂NO₇ [M+H]⁺: 526.3142, found: 526.3154.

TLC: $R_f = 0.45$ (pure ethyl acetate).

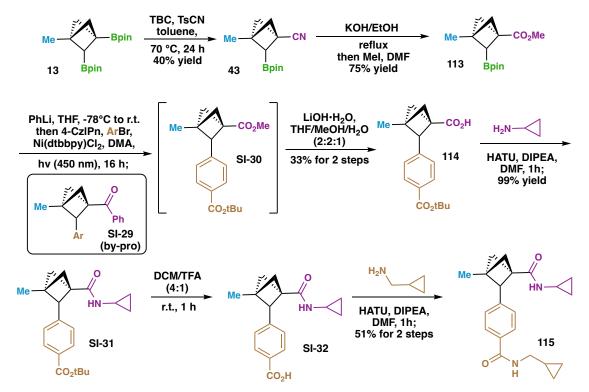
Compound 112

tert-butyl 3-(1-((benzyloxy)methyl)-3-(5,5,6,7,7-pentamethyl-4,8-dioxo-1,3,6,2-dioxaza borocan-2-yl)bicyclo[1.1.1]pentan-2-yl)propanoate (112)

A flame-dried screw-capped 13×100 mm pyrex culture tube was charged with **110** (52.5 mg, 0.1 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (0.5 mL, 0.2 M) solvent via a syringe. Next, PhLi (68 µL, 1.75 M in hexanes, 0.12 mmol, 1.2 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. A solution of 4-CzlPn (3.9 mg, 0.005 mmol, 0.05 equiv.), tert-BuOH (28 µL, 3.0 equiv.) and tert-butylacrylate (29 µL, 0.2 mmol, 2.0 equiv.) in acetonitrile (0.5 mL) was added into the reaction mixture. Next, the headspace of the tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was allowed to stir in a 450-nm photoreactor for 12 hours. The reaction mixture was concentrated under high vacuum and the crude residue was purified by chromatography on silica gel to give 41.1 mg (78%) of the desired product **112**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.35 – 7.28 (m, 4H), 7.28 – 7.24 (m, 1H), 4.49 (d, *J* = 12.2 Hz, 1H), 4.46 (d, *J* = 12.2 Hz, 1H), 3.30 (d, *J* = 1.8 Hz, 2H), 2.54 (s, 3H), 2.36 – 2.21 (m, 3H), 2.09 – 2.03 (m, 1H), 1.94 – 1.87 (m, 2H), 1.71 – 1.63 (m, 2H), 1.70 (s, 3H), 1.67 (s, 3H), 1.58 – 1.53 (m, 1H), 1.56 (s, 3H), 1.55 (s, 3H), 1.43 (s, 9H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 174.31, 173.54, 138.67, 128.44, 127.61, 127.59, 79.97, 73.20, 73.07, 71.09, 69.79, 61.28, 50.38, 45.83, 45.39, 36.48, 36.36, 34.91, 28.28, 21.30 ppm.

¹¹**B** NMR (128 MHz, CDCl₃) δ 8.19 ppm.


HRMS (ESI-TOF): calc'd for C₂₉H₄₂NO₇ [M+H]⁺: 528.3127, found: 528.3128.

TLC: $R_f = 0.52$ (pure ethyl acetate).

Experimental Procedures and Characterization Data of BCP Analogue 115 and Bioactive Arene 116

Compound 113

methyl-3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)bicyclo[1.1.1]pentane-1-carboxylate (113)

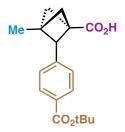
A 50 mL flask was charged with BCP **13** (3.34 g, 10.0 mmol, 1.0 equiv.). EtOH (20.0 mL) was added into the reaction, followed by addition of KOH (5 mL, 6N in H₂O). Then the reaction was stirred at 90 °C for 24 hours. The reaction mixture was acidified by 1 M HCl to pH < 1, extracted by Et₂O and dried by Na₂SO₄. The mixture was filtered and concentrated under vacuum to give the crude residue that was used directly without further purification.

In a 50 mL flask was added the crude carboxylic acid, K₂CO₃ (2.76 g, 20 mmol, 2.0 equiv.) and

DMF (20 mL) under argon atmosphere. MeI (1.25 mL, 20 mmol, 2.0 equiv.) was added and the mixture was stirred at room temperature for 12h. Et₂O and H₂O were added, and the organic layer was washed by H₂O, Brine and dried by Na₂SO₄. The mixture was filtered and concentrated under vacuum. The crude residue was purified by column chromatography (hexanes: diethyl ether, 10:1) on silica gel to obtain 2.0 g (75%) of the desired ester **113**.

Physical State: colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 3.64 (s, 3H), 2.54 (dd, *J* = 9.5, 2.0 Hz, 1H), 1.95 – 1.90 (m, 2H), 1.87 (dd, *J* = 8.2, 2.0 Hz, 1H), 1.72 (d, *J* = 8.1 Hz, 1H), 1.25 (s, 12H), 1.20 (s, 3H) ppm.


¹³C NMR (151 MHz, CDCl₃): δ 170.78, 83.23, 57.26, 52.11, 51.59, 39.68, 39.27, 24.94, 24.86, 18.22 ppm.

¹¹**B NMR (128 MHz, CDCl₃)**: δ 31.68 ppm.

HRMS (ESI-TOF): calc'd for C₈H₁₁O₂ [M+H]⁺: 267.1762, found: 267.1777.

TLC: $R_f = 0.50$ (5:1 hexanes: ethyl acetate).

Compound 114

2-(4-(tert-butoxycarbonyl)phenyl)-3-methylbicyclo[1.1.1]pentane-1-carboxylic acid (114)

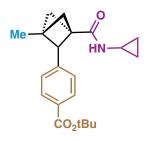
A flame-dried screw-capped 20×150 mm pyrex culture tube was charged with BCP boronate **113** (470 mg, 1.8 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of THF (5.0 mL, 0.36 M) solvent via a syringe. Next, PhLi (1.2 mL, 175 M in hexanes, 2.1 mmol, 1.17 equiv.) was added into the reaction mixture at -78 °C and the reaction was allowed to stir at -78 °C for 30 minutes. Then the mixture was allowed to warm up to room temperature and stir for another 30 minutes. Next, the THF solvent was removed under high vacuum and DMA (5.0 mL) was added into the reaction to dissolve the reaction crude. The crude solution of BCP ate complex in DMA (5.0 mL) was added into another flame-dried screw-capped culture tube charged with 4-CzlPn (71.0 mg, 0.09 mmol, 0.05 equiv.), Ni(dtbbpy)Cl₂ (143.4 mg, 0.36 mmol, 0.2 equiv.) and ethyl 4-bromobenzoate (1.29 g, 5.4 mmol, 3.0 equiv.). The first tube

containing BCP ate complex was then rinsed with DMA (2.0 mL) twice and the DMA solutions were transferred into the reaction tube. Next, the headspace of the reaction tube was purged with a gentle stream of argon for approximately 10 seconds and the reaction was irradiated under a 40 W Kessil blue LED lamp (468 nm) for 16 hours.

After it is confirmed that the starting material was consumed totally, the reaction mixture was quenched with water (50 mL), extracted with diethyl ether (20 mL \times 3), washed by saturated brine (50 mL), dried with Na₂SO₄ and concentrated under high vacuum. The crude residue was purified by chromatography on silica gel to remove the rest aryl bromide and obtain a mixture of compound **SI-30** and **SI-29** (310 mg, 1:4). The mixture of **SI-29** and **SI-30** was used without further purification.

The mixture of **SI-29** and **SI-30** (310 mg) was dissolved in THF/MeOH/H₂O (5.0 mL, 2:2:1) and LiOH•H₂O (84 mg, 2 mmol) was added into the solution. The reaction mixture was stirred at room temperature for 2.5 hours. The solvent was evaporated, and the reaction crude was dissolved in water (50 mL) and extracted with diethyl ether (20 mL) twice. Then 1 M HCl (2.5 mL) was added into the water phase which was then extracted with methylene chloride (20 mL \times 3). The combined methylene chloride phase was dried with Na₂SO₄ and concentrated under high vacuum, affording the pure carboxylic acid (180 mg, 33% yield) without further purification.

Physical State: white solid.


m.p.: 123-125 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 3.56 (d, *J* = 6.7 Hz, 1H), 2.38 (dd, *J* = 9.7, 2.9 Hz, 1H), 2.08 (s, 1H), 2.05 (dd, *J* = 9.7, 1.7 Hz, 1H), 1.98 (dd, *J* = 6.8, 2.9 Hz, 1H), 1.59 (s, 9H), 1.27 (s, 3H) ppm.

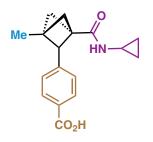
¹³C NMR (151 MHz, CDCl₃): δ 175.63, 165.93, 142.86, 130.24, 129.44, 128.42, 81.05, 66.03, 53.40, 48.68, 41.11, 40.83, 28.34, 16.31 ppm.

HRMS (ESI-TOF): calc'd for C₁₈H₂₂O₄ [M+H]⁺: 303.1591, found: 303.1605.

TLC: $R_f = 0.23$ (1:1 hexanes: ethyl acetate).

tert-butyl 4-(1-(cyclopropylcarbamoyl)-3-methylbicyclo[1.1.1]pentan-2-yl)benzoate (SI-31)

A screw-capped 20×150 mm pyrex culture tube was charged with BCP **107** (150 mg, 0.5 mmol, 1.0 equiv.), cyclopropylamine (52 μ L, 0.75 mmol, 1.5 equiv.) and HATU (285.2 mg, 0.75 mmol, 1.5 equiv.). Next, DMF (2.5 mL, 0.2 M) was added into the reaction to dissolve the solids, followed by dropwise addition of DIPEA (0.17 mL, 1.0 mmol, 2.0 equiv.). Then the reaction was allowed to stir at room temperature for 2 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was quenched with water (50 mL), extracted with diethyl ether (20 mL × 3), washed by saturated brine (50 mL), dried with Na₂SO₄ and concentrated under high vacuum. The crude residue was purified by column chromatography (hexanes: ethyl acetate, 2:1) on silica gel to obtain 169.2 mg (99%) of the desired amide **SI-31**.


Physical State: colorless foam.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.95 – 7.90 (m, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 5.58 (br., 1H), 3.46 (d, *J* = 6.7 Hz, 1H), 2.71 (tq, *J* = 7.2, 3.7 Hz, 1H), 2.24 (dd, *J* = 9.7, 2.6 Hz, 1H), 1.95 (dd, *J* = 9.7, 1.8 Hz, 1H), 1.93 (s, 1H), 1.84 (dd, *J* = 6.8, 2.6 Hz, 1H), 1.58 (s, 9H), 1.27 (s, 3H), 0.81 – 0.73 (m, 2H), 0.52 – 0.44 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 170.88, 165.88, 143.23, 130.21, 129.40, 128.48, 81.03, 65.43, 52.94, 47.82, 42.89, 39.64, 28.33, 22.57, 16.48, 6.82, 6.78 ppm.

HRMS (ESI-TOF): calc'd for C₂₁H₂₇NO₃ [M+H]⁺: 342.2063, found: 342.2068.

TLC: $R_f = 0.38$ (1:1 hexanes: ethyl acetate).

4-(1-(cyclopropylcarbamoyl)-3-methylbicyclo[1.1.1]pentan-2-yl)benzoic acid (SI-32)

A screw-capped 20×150 mm pyrex culture tube was charged with BCP **SI-31** (136.4 mg, 0.4 mmol, 1.0 equiv.), and then methylene chloride (1.6 mL) and TFA (0.40 mL) was added into the reaction. Then the reaction was allowed to stir at room temperature for 2 hours. Then the reaction mixture was concentrated under high vacuum to remove excess solvent, affording 114.2 mg (100%) of the desired carboxylic acid **SI-32** without further purification.

Physical State: white solid.

m.p.: 177-179 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 12.08 (br., 1H), 8.05 – 7.98 (m, 2H), 7.29 (d, J = 8.1 Hz, 2H), 6.05 (br., 1H), 3.52 (d, J = 6.6 Hz, 1H), 2.75 (tq, J = 7.2, 3.7 Hz, 1H), 2.27 (dd, J = 9.7, 2.7 Hz, 1H), 2.00 (dd, J = 9.8, 1.8 Hz, 1H), 1.96 (s, 1H), 1.88 (dd, J = 6.9, 2.7 Hz, 1H), 1.29 (s, 3H), 0.79 (qd, J = 5.6, 5.1, 3.4 Hz, 2H), 0.53 (ddd, J = 6.6, 5.0, 3.8 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 172.39, 171.68, 144.35, 130.24, 128.61, 127.76, 65.58, 53.05, 47.74, 42.75, 39.86, 22.91, 16.37, 6.83, 6.76 ppm.

HRMS (ESI-TOF): calc'd for C₁₇H₁₉NO₃ [M+H]⁺: 286.1438, found: 286.1447.

TLC: $R_f = 0.15$ (1:2 hexanes: ethyl acetate).

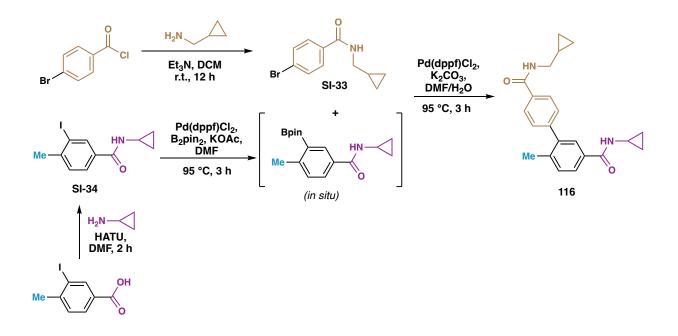
Compound 115

Ν

N-cyclopropyl-2-(4-((cyclopropylmethyl)carbamoyl)phenyl)-3-methylbicyclo[1.1.1]pentane-1-carboxamide (115)

A screw-capped 13×100 mm pyrex culture tube was charged with BCP **SI-32** (100 mg, 0.35 mmol, 1.0 equiv.), cyclopropylmethylamine (43 µL, 0.52 mmol, 1.5 equiv.) and HATU (197.6 mg, 0.52 mmol, 1.5 equiv.). Next, DMF (1.5 mL, 0.2 M) was added into the reaction to dissolve the solids, followed by dropwise addition of DIPEA (0.17 mL, 1.0 mmol, 3.0 equiv.). Then the reaction was allowed to stir at room temperature for 2 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was quenched with water (10 mL), extracted with diethyl ether (5 mL \times 3), washed by saturated brine (5 mL), dried with Na₂SO₄ and concentrated under high vacuum. The crude residue was purified by column chromatography (hexanes: ethyl acetate, 2:1) on silica gel to obtain 60.0 mg (51%) of the desired amide **115**.

Physical State: white solid.


m.p.: 158-160 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 7.7 Hz, 2H), 6.19 (br., 1H), 5.55 (br., 1H), 3.46 (d, *J* = 6.7 Hz, 1H), 3.32 (dd, *J* = 7.2, 5.4 Hz, 2H), 2.72 (tq, *J* = 7.1, 3.7 Hz, 1H), 2.25 (dd, *J* = 9.7, 2.7 Hz, 1H), 1.96 (dd, *J* = 9.7, 1.7 Hz, 1H), 1.94 (s, 1H), 1.85 (dd, *J* = 6.8, 2.6 Hz, 1H), 1.28 (s, 3H), 1.12 – 1.00 (m, 1H), 0.83 – 0.75 (m, 2H), 0.59 – 0.52 (m, 2H), 0.50 – 0.45 (m, 2H), 0.28 (dt, *J* = 6.0, 4.6 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 170.91, 167.45, 142.09, 132.94, 128.85, 126.89, 65.35, 52.92, 47.87, 45.07, 42.90, 39.61, 22.58, 16.51, 10.89, 6.86, 6.81, 3.63 ppm.

HRMS (ESI-TOF): calc'd for $C_{21}H_{26}N_2O_2$ [M+H]⁺: 339.2067, found: 339.2073.

TLC: $R_f = 0.15$ (1:2 hexanes: ethyl acetate).

NH B

4-bromo-N-(cyclopropylmethyl)benzamide (SI-33)

A reaction flask was charged with 4-bromobenzoyl chloride (5.0 g, 22.8 mmol, 1.0 equiv.) and cyclopropylmethylamine (1.62 g, 22.8 mmol, 1.0 equiv.), followed by addition of THF (40 mL). Next, triethylamine (3.5 mL, 25 mmol, 1.1 equiv.) was added dropwise to the reaction. Then the reaction was allowed to stir at room temperature for 12 hours. After it was confirmed that starting materials was totally consumed through TLC analysis, the reaction was concentrated under high vacuum. The reaction crude was then purified by column chromatography (hexanes: diethyl ether, 5:1) on silica gel to obtain 5.0 g (86%) of the desired coupling product **SI-33**.

Physical State: white solid.

m.p.: 89-91 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.68 – 7.63 (m, 2H), 7.59 – 7.54 (m, 2H), 6.20 (br., 1H), 3.30 (dd, *J* = 7.2, 5.3 Hz, 2H), 1.05 (tt, *J* = 7.6, 4.8 Hz, 1H), 0.60 – 0.52 (m, 2H), 0.27 (dt, *J* = 6.3, 4.6 Hz, 2H) ppm.

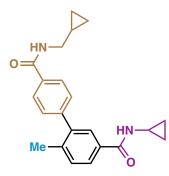
¹³C NMR (151 MHz, CDCl₃): δ 166.56, 133.68, 131.90, 128.67, 126.14, 45.21, 10.80, 3.68 ppm.

N-cyclopropyl-3-iodo-4-methylbenzamide (SI-34)

A reaction flask was charged with 3-iodo-4-methylbenzoic acid (1.3 g, 5.0 mmol, 1.0 equiv.), cyclopropylamine (360 mg, 6.0 mmol, 1.2 equiv.), HOBt (675 mg, 5.0 mmol, 1.0 equiv.) and HATU (2.28 g, 6.0 mmol, 1.2 equiv.). Next, DMF (6.5 mL) was added into the reaction to dissolve the solids, followed by dropwise addition of DIPEA (0.65 mL, 15 mmol, 3.0 equiv.) . Then the reaction was allowed to stir at room temperature for 12 hours. After it is confirmed that the starting material was consumed totally, the reaction mixture was quenched with water (50 mL), extracted with diethyl ether (20 mL \times 3), washed by saturated brine (20 mL), dried with Na₂SO₄ and concentrated under high vacuum. The crude residue was purified by column chromatography (hexanes: ethyl acetate, 2:1) on silica gel to obtain 1.08 g (72%) of the desired amide SI-34.

Physical State: white solid.

m.p.: 102-104 °C.


¹**H NMR (600 MHz, CDCl₃)**: δ 8.14 (d, *J* = 1.9 Hz, 1H), 7.61 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.26 (d, *J* = 7.9 Hz, 1H), 6.21 (s, 1H), 2.88 (tq, *J* = 7.1, 3.6 Hz, 1H), 2.45 (s, 3H), 0.91 – 0.82 (m, 2H), 0.65 – 0.59 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 167.30, 145.33, 137.39, 133.68, 129.79, 126.85, 101.02, 28.28, 23.30, 6.95 ppm.

HRMS (ESI-TOF): calc'd for C₁₁H₁₂INO [M+H]⁺: 302.0036, found: 302.0043.

TLC: $R_f = 0.65$ (1:1 hexanes: ethyl acetate).

Compound 116

N^3 -cyclopropyl- N^4 '-(cyclopropylmethyl)-6-methyl-[1,1'-biphenyl]-3,4'-dicarboxamide (116)

A flame-dried screw-capped culture tube was charged with **SI-34** (301 mg, 1.0 mmol, 1.0 equiv.), B_2pin_2 (305 mg, 2.4 mmol, 1.2 equiv.), $PdCl_2(dppf)$ (36.6 mg, 0.05 mmol, 0.05 equiv.) and KOAc (295 mg, 3.0 mmol, 3.0 equiv.). Then the tube was evacuated and backfilled with argon three times, followed by addition of DMF (3.0 mL) solvent via a syringe. Next, the reaction was allowed to stir at 95 °C for 3 hours. After it was confirmed that starting materials was totally consumed through TLC analysis and the reaction was cooled to room temperature, **SI-34** (254 mg, 1.0 mmol, 1.0 equiv.) and K₂CO₃ (414.6 mg, 3.0 mmol, 3.0 equiv.) was added into the reaction. the reaction was allowed to stir at 95 °C for another 3 hours. The reaction was quenched with water, extracted with diethyl ether, dried with Na₂SO₄, and concentrated under high vacuum. The reaction crude was then purified by pTLC (hexanes: diethyl ether, 1:1) on silica gel to obtain 35 mg (10%) of the desired coupling product **116**.

Note: This synthetic route for preparation of **116** *was conducted without any further optimization. Previous synthesis of* **116** *see ref.* 16.

Physical State: white solid.

m.p.: 171-173 °C.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.87 – 7.82 (m, 2H), 7.65 (dd, J = 7.9, 2.0 Hz, 1H), 7.58 (d, J = 1.9 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.32 (d, J = 7.9 Hz, 1H), 6.45 – 6.19 (*br*., 2H), 3.34 (dd, J = 7.3, 5.3 Hz, 2H), 2.90 (tq, J = 7.1, 3.6 Hz, 1H), 2.27 (s, 3H), 1.13 – 1.03 (m, 1H), 0.86 (td, J = 7.0, 5.2 Hz, 2H), 0.64 – 0.59 (m, 2H), 0.59 – 0.55 (m, 2H), 0.29 (dt, J = 6.1, 4.5 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 168.66, 167.26, 144.29, 141.26, 139.33, 133.70, 132.23, 130.85, 129.45, 128.17, 127.03, 126.23, 45.16, 23.26, 20.59, 10.89, 6.93, 3.67 ppm.

HRMS (ESI-TOF): calc'd for C₂₂H₂₄N₂O₂ [M+H]⁺: 349.1911, found: 349.1916.

TLC: $R_f = 0.28$ (1:1 hexanes: ethyl acetate).

ADME Protocols of BCP 115 & Arene 116

HT HPLC log D (pH 7) Determination

The high throughput (HT) HPLC log D (pH 7) value was determined by the following method.

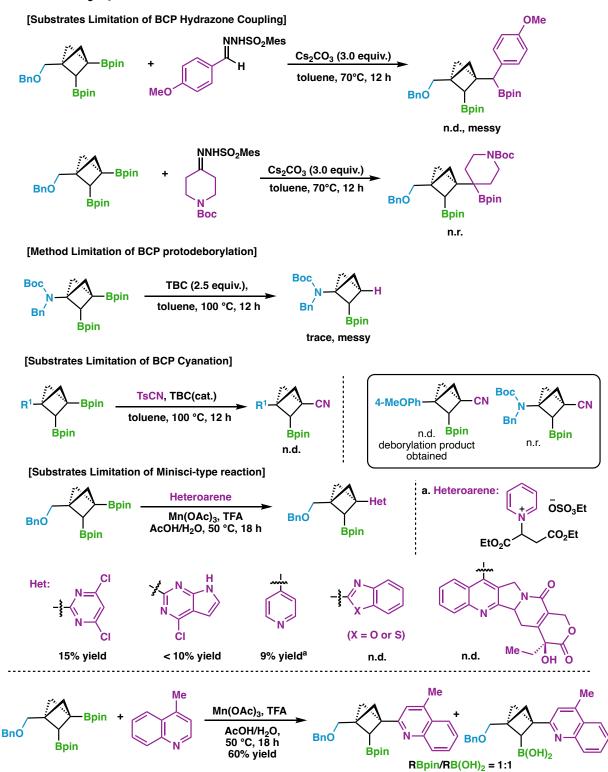
The chromatographic system consists of an Agilent 1290 UPLC/DAD system and ChemStation software, both from Agilent Technologies, USA.

The separations are carried out on a Supelco Ascentis Express C18, 30 mm x 3.0 mm I.D., 2.7 μ m (Sigma-Aldrich, USA). The mobile phase consists of 10 mM Potassium phosphate buffered at pH 7 (mobile phase A) and acetonitrile (mobile phase B). The column oven temperature is set to 30°C. The HPLC analysis consists of a gradient. The injection cycle time is 1.6 minutes. The injection volume is 2 μ L and the spectrophotometric detection is set to 215 and 238 nm.

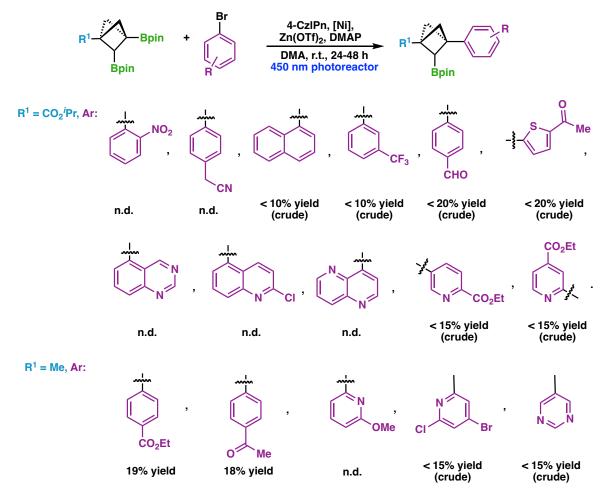
The chromatographic system is calibrated with a set of standards with published shake-flask log D (pH 7) values. Linear regression is used to determine the calibration line relating the retention time to log D for the calibration standards. This best-fit line is then used to determine the HT HPLC log D (pH 7) value of API (active pharmaceutical ingredient) from its measured retention time by the HPLC/DAD analysis of a solution of the API.

High-Throughput (HT) Solubility Determination

The chromatographic system consists of an Agilent 1290 UPLC/DAD system and ChemStation software, both from Agilent Technologies, USA. The separations are carried out on a Supelco Ascentis Express C18, 30 mm x 3.0 mm I.D., 2.7 μ m HPLC column. The mobile phase consists of 10 mM Potassium phosphate buffered at pH 7 (mobile phase A) and acetonitrile (mobile phase B). The column oven temperature is set to 30°C and the UPLC analysis consists of a gradient. The injection volume is 2 μ L and the spectrophotometric detection is set to 215 and 238 nm.

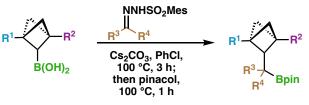

A 10 mM stock solution of the compound in DMSO is supplied for analysis. From the DMSO stock solution a single standard solution at 100 μ M is created. The solubility solutions are created in phosphate buffered saline (PBS) (pH 7), phosphate buffered saline (PBS) (pH 2), and FaSSIF (pH 6.5). Based on the dilution

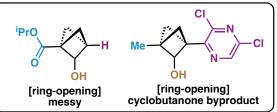
factor that was used to create the solubility solutions, the maximum attainable solubility is about 200 μ M. The solubility solutions equilibrate with shaking in a stability chamber for 24 hours at 25°C. The equilibrated solubility solutions are filtered by centrifugation using a filter (0.45 μ m, polypropylene). Analysis of the standard solution and the filtered equilibrated solubility solutions occurs by UPLC/DAD. The solubility is calculated based on the ratio of peak area of the sample solution to the standard solution then multiplied by the concentration of the standard solution.

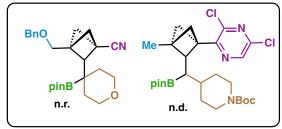

Current Methods and Substrates Limitation of BCP Bisboronates Functionali-

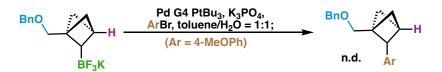
zations

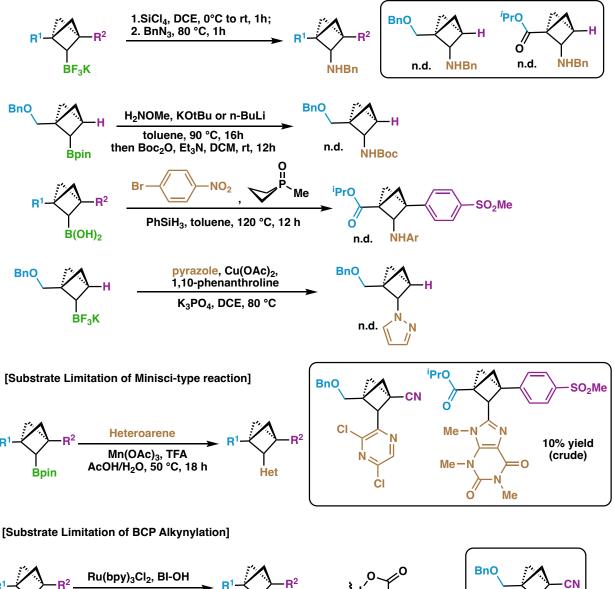
I. Selective C₃-Bpin Functionalization

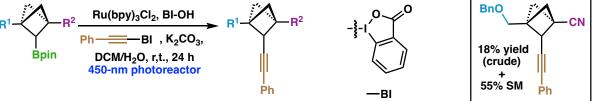

[Substrates Limitation of BCP Cross-Coupling]



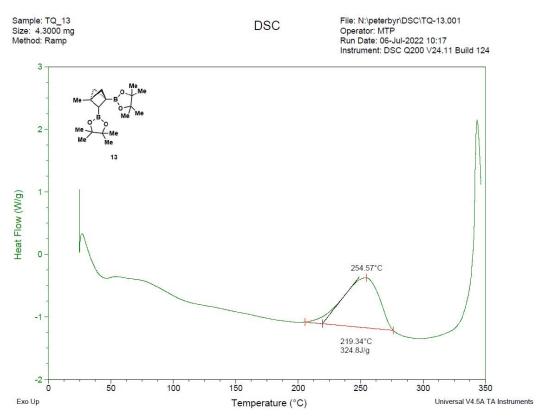

II. Late-stage C₂-Functionalization


[Substrate Limitation of BCP Hydrazone Coupling]

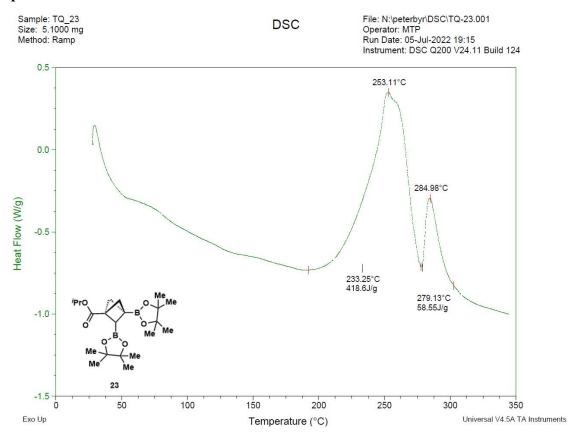


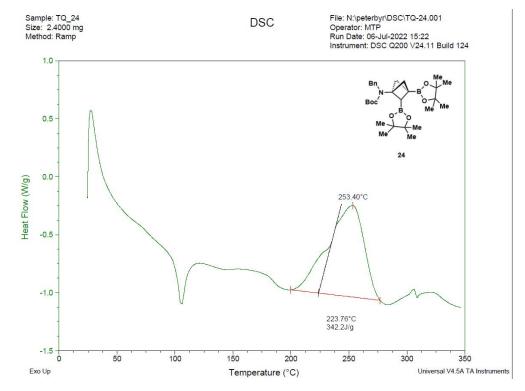


[Method Limitation of BCP C2-Cross-Coupling]

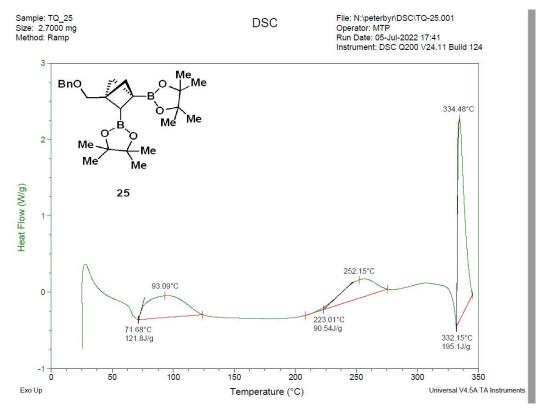


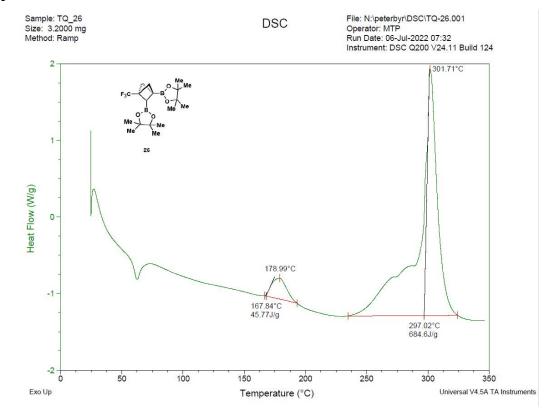
[Method Limitation of BCP Amination]

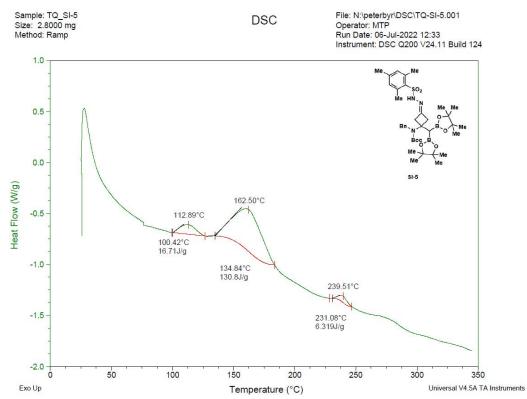


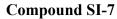


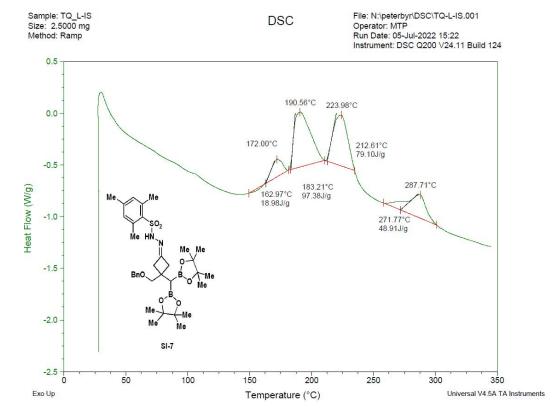
Differential Scanning Calorimetry (DSC) Experiments of Compound 13, 23-26, SI-5, SI-7 & SI-16

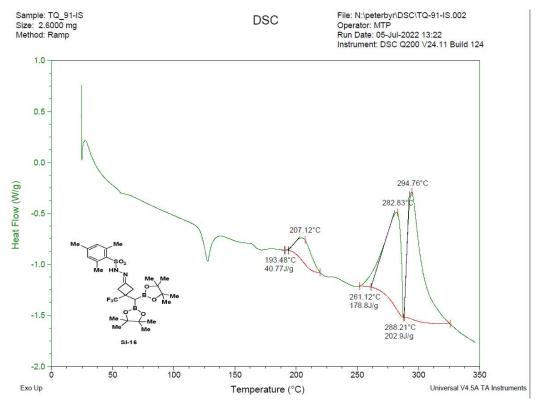



Compound 23






Compound 25



Yoshida Correlations are used to correlate a material's onset temperature (T) and energy (Q) from a DSC experiment to its ability to propagate an explosion and/or be shock sensitive.

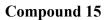
- For explosive propagation (EP): $EP = \log (Q_{DSC}) 0.38 \times \log (T_{DSC} 25) 1.67$
- For shock sensitivity (SS): $SS = \log (Q_{DSC}) 0.72 \times \log (T_{DSC} 25) 0.98$

 Q_{DSC} = energy of the exotherm in cal/g

 T_{DSC} = onset temperature of exotherm in °C

If EP or SS \leq 0, then the material is predicted NOT to demonstrate the ability to propagate an explosion or be shock sensitive.

Compound	Exotherm	Q (J/g)	Q (cal/g)	Т (°С)	Explosive Propagation (EP)	Shock Sensitivity (SS)
13	1	324.8	77.57715	254	-0.677003678	-0.789347742
	1	418.6	99.98089	253	-0.566098233	-0.677796081
23	2	50.55	12.07366	285	-1.505850927	-1.636941865
24	1	342	81.6853	253	-0.653871351	-0.765569199
	1	121.8	29.09143	93	-0.902588313	-0.835641344
25	2	90.54	21.62511	252	-1.23033155	-1.341380342
	3	195.1	46.59883	334	-0.947809168	-1.104395051
26	1	45.77	10.93198	179	-1.462559176	-1.516316221
26	2	684.6	163.5139	301	Propagation (EP) -0.677003678 -0.566098233 -1.505850927 -0.653871351 -0.902588313 -1.23033155 -0.947809168	-0.523899859
	1	16.71	3.991115	112	-1.805923081	-1.775359627
SI-5	2	130.8	31.24104	162	-0.987228286	-1.023713279
	3	6.319	1.509267	239	Propagation (EP) -0.677003678 -0.566098233 -1.505850927 -0.653871351 -0.902588313 -1.23033155 -0.947809168 -1.462559176 -0.383990771 -1.805923081 -0.987228286 -2.376791093 -1.837166594 -0.871576939 -1.266438504 -1.521439043 -1.540368631 -0.955289287	-2.479131776
	1	18.98	4.533295	172	-1.837166594	-1.884054488
SI-7	2	183.21	43.75896	190	-0.871576939	-0.93552148
51-7	3	79.1	18.89271	223	-1.266438504	-1.357304668
	4	48.91	11.68195	287	Propagation (EP) 4 -0.677003678 3 -0.566098233 5 -1.505850927 3 -0.653871351 3 -0.902588313 2 -1.23033155 4 -0.947809168 9 -1.462559176 1 -0.383990771 2 -1.805923081 2 -0.987228286 9 -2.376791093 2 -1.837166594 0 -0.871576939 3 -1.266438504 7 -1.540368631 2 -0.955289287	-1.653661482
	1	40.77	9.737747	207	-1.540368631	-1.618792903
SI-16	2	178.8	42.70565	282	-0.955289287	-1.084666549
	3	202.9	48.46183	294	-0.907906034	-1.044021809


Conclusion:

All 8 compounds are predicted NOT to demonstrate the ability to propagate an explosion or be shock sensitive based on the DSC data collected.

Reference:

Yoshida, T.; Yoshizawa, F.; Itoh, M.; Matsunaga, T.; Watanabe, M. Prediction of Fire and Explosion Hazard for Reactive Chemicals (I): Estimation of Explosive Properties of Self-Reactive Chemicals from SC-DSC Data. Kogyo Kayaku 1987, 48, 311–316.

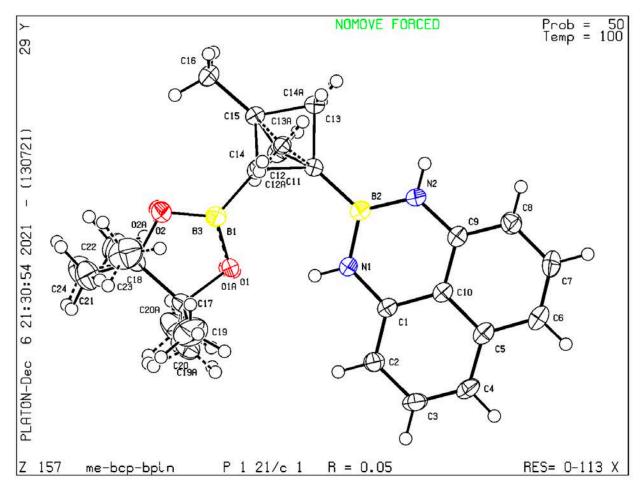
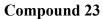


Table S9. Crystal data and structure refinement for compound 15. CCDC reference number: 2158998.


Empirical formula	C22 H28 B2 N2 O2	
Formula weight	374.08	
Temperature	100.01(11) K	
Wavelength	1.54184 Å	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 9.47573(16) Å	α= 90°.
	b = 10.73100(19) Å	β=99.0998(15)°.
	c = 20.9064(3) Å	$\gamma = 90^{\circ}$.
Volume	2099.09(6) Å ³	
Ζ	4	
Density (calculated)	1.184 Mg/m ³	

Absorption coefficient	0.578 mm ⁻¹
F(000)	800
Crystal size	0.41 x 0.25 x 0.14 mm ³
Theta range for data collection	4.283 to 73.370°.
Index ranges	-11<=h<=11, -13<=k<=13, -25<=l<=25
Reflections collected	11994
Independent reflections	4105 [R(int) = 0.0246]
Completeness to theta = 67.684°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.88926
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4105 / 39 / 353
Goodness-of-fit on F ²	1.099
Final R indices [I>2sigma(I)]	R1 = 0.0488, wR2 = 0.1287
R indices (all data)	R1 = 0.0522, $wR2 = 0.1316$
Extinction coefficient	n/a
Largest diff. peak and hole	0.277 and -0.248 e.Å ⁻³

	x	У	Z	U(eq)
N1	2334(1)	6798(1)	2618(1)	23(1)
N2	560(1)	8336(1)	2763(1)	25(1)
C1	1666(1)	6538(1)	1991(1)	22(1)
C2	2192(2)	5657(1)	1607(1)	28(1)
23	1505(2)	5457(2)	968(1)	32(1)
C4	311(2)	6112(2)	719(1)	29(1)
C5	-283(2)	7006(1)	1099(1)	25(1)
C6	-1535(2)	7689(1)	860(1)	30(1)
C7	-2060(2)	8547(2)	1246(1)	33(1)
28	-1374(2)	8783(1)	1882(1)	30(1)
C9	-160(2)	8134(1)	2133(1)	23(1)
C10	406(1)	7222(1)	1746(1)	22(1)
211	2660(1)	7938(1)	3721(1)	23(1)
C15	3693(2)	8174(1)	4573(1)	27(1)
C16	4506(2)	8338(2)	5246(1)	41(1)
C17	6497(2)	5607(2)	3277(1)	37(1)
C18	7402(2)	5924(1)	3944(1)	29(1)
32	1829(2)	7697(2)	3025(1)	23(1)
01	5191(9)	6303(6)	3308(4)	26(1)
02	6758(2)	7065(2)	4149(1)	30(1)
012	2818(3)	6979(2)	4288(1)	30(1)
C13	2423(3)	8934(3)	4240(1)	32(1)
C14	4316(2)	8186(2)	3929(1)	27(1)
C19	7124(8)	6387(5)	2732(3)	65(2)
220	6278(6)	4340(6)	3089(2)	47(1)
221	8986(3)	6138(3)	3970(2)	50(1)
022	7186(3)	4929(3)	4438(1)	40(1)
31	5435(3)	7166(3)	3798(1)	27(1)
DIA	5047(16)	6002(11)	3356(7)	44(3)
D2A	6354(3)	6356(4)	4335(2)	40(1)
C12A	3697(4)	7014(3)	4173(2)	18(1)

Table S10. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C13A	3818(4)	8958(3)	3920(2)	22(1)
C14A	2046(4)	8307(5)	4353(2)	26(1)
C23	8259(7)	7089(6)	3832(3)	61(2)
C24	8383(7)	4979(6)	4307(3)	62(2)
B3	5069(4)	6491(4)	3947(2)	18(1)
C20A	6059(13)	4088(11)	3318(6)	75(3)
C19A	7037(9)	5785(9)	2692(5)	62(2)

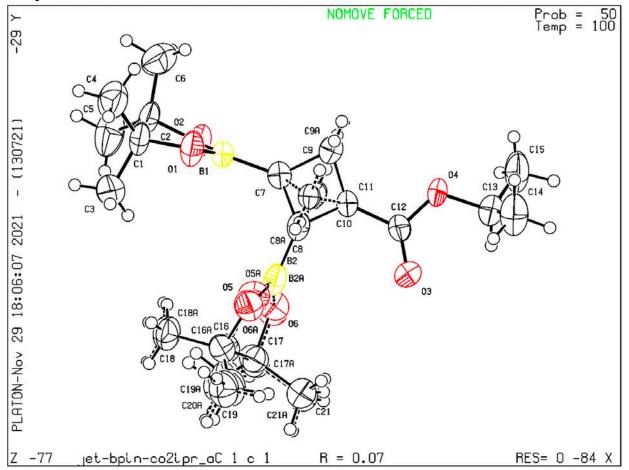


Table S11. Crystal data and structure refinement for compound **23**. CCDC reference number: 2159002.

C21 H36 B2 O6	
406.12	
100.04(15) K	
1.54184 Å	
monoclinic	
C 1 c 1	
a = 9.8439(9) Å	<i>α</i> = 90°.
b = 16.3337(19) Å	β= 90.304(8)°.
c = 14.8019(9) Å	$\gamma = 90^{\circ}$.
2379.9(4) Å ³	
4	
1.133 Mg/m ³	
0.642 mm ⁻¹	
880	
	406.12 100.04(15) K 1.54184 Å monoclinic C 1 c 1 a = 9.8439(9) Å b = 16.3337(19) Å c = 14.8019(9) Å 2379.9(4) Å ³ 4 1.133 Mg/m ³ 0.642 mm ⁻¹

Crystal size	0.2 x 0.14 x 0.055 mm ³
Theta range for data collection	5.246 to 76.734°.
Index ranges	-9<=h<=12, -20<=k<=20, -18<=l<=9
Reflections collected	6562
Independent reflections	2980 [R(int) = 0.0566]
Completeness to theta = 67.684°	96.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.60810
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2980 / 248 / 340
Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0707, wR2 = 0.1960
R indices (all data)	R1 = 0.0919, wR2 = 0.2156
Absolute structure parameter	0.3(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.480 and -0.309 e.Å ⁻³

	X	у	Z	U(eq)
B1	6913(6)	6690(4)	3443(4)	50(1)
C1	6524(6)	7115(4)	2018(4)	61(2)
C2	7739(7)	6534(4)	2026(4)	62(2)
03	5213(9)	6730(6)	1681(6)	97(3)
24	6766(10)	7921(4)	1504(6)	86(2)
25	7704(12)	5842(6)	1336(6)	103(3)
26	9115(8)	6955(6)	2011(7)	99(3)
27	6719(6)	6572(4)	4477(4)	56(1)
211	6433(5)	6374(3)	5719(4)	50(1)
C12	6171(5)	6190(3)	6685(4)	48(1)
213	7198(7)	6177(4)	8168(4)	67(2)
C14	6572(9)	6857(6)	8659(6)	89(2)
215	8641(8)	5995(6)	8434(5)	87(2)
)1	6344(5)	7309(3)	2970(3)	68(1)
02	7629(5)	6158(3)	2923(3)	71(1)
)3	5129(4)	5897(3)	6976(3)	67(1)
04	7250(4)	6377(3)	7210(2)	58(1)
32	4240(20)	5903(14)	4737(11)	54(4)
28	5376(10)	6519(6)	4997(7)	49(2)
9	7355(15)	6990(9)	5301(10)	56(3)
210	7097(11)	5697(7)	5038(7)	55(2)
C16	2250(30)	5565(12)	4070(20)	56(4)
C17	2840(30)	4793(11)	4560(20)	58(4)
218	2420(40)	5536(18)	3090(30)	63(5)
219	1000(80)	5720(50)	4390(50)	78(7)
220	2890(50)	4010(20)	4060(30)	67(6)
21	2220(80)	4640(30)	5490(60)	71(6)
)5	3045(11)	6221(7)	4431(8)	65(3)
06	4245(12)	5090(9)	4707(8)	66(3)
32A	4642(16)	5523(16)	4687(9)	38(3)
28A	6071(11)	5852(7)	4918(8)	45(2)

Table S12. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C9A	7740(12)	6654(9)	5257(9)	39(3)	
C10A	5741(11)	7120(7)	5133(7)	42(2)	
C16A	2480(30)	5367(17)	4120(30)	56(4)	
C17A	2910(40)	4562(15)	4570(30)	58(4)	
C18A	2630(50)	5330(20)	3010(40)	63(5)	
C19A	850(100)	5800(60)	4290(60)	78(7)	
C20A	2700(60)	3850(30)	3950(40)	67(6)	
C21A	2300(100)	4460(40)	5510(70)	71(6)	
O5A	3596(16)	5969(7)	4450(11)	58(3)	
O6A	4362(12)	4694(7)	4703(8)	51(3)	

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds 0.01013 Ang.

Author Response: There is a considerable amount of disorder in this molecule that contributes to the low bond precision.

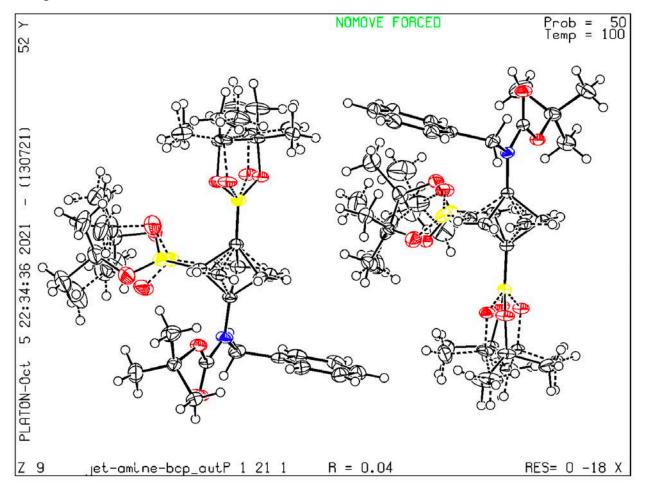


Table S13. Crystal data and structure refinement for compound 24. CCDC reference number: 2158995.

Empirical formula	C29 H45 B2 N O6	
Formula weight	525.28	
Temperature	100.02(12) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 15.4484(4) Å	<i>α</i> = 90°.
	b = 12.6264(2) Å	β=102.262(2)°.
	c = 15.9625(4) Å	$\gamma = 90^{\circ}$.
Volume	3042.57(11) Å ³	
Z	4	
Density (calculated)	1.147 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	

F(000)	1136
Crystal size	0.44 x 0.23 x 0.23 mm ³
Theta range for data collection	2.319 to 33.170°.
Index ranges	-22<=h<=22, -18<=k<=18, -22<=l<=23
Reflections collected	64772
Independent reflections	19333 [R(int) = 0.0441]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.65168
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	19333 / 750 / 1059
Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0439, $wR2 = 0.1030$
R indices (all data)	R1 = 0.0606, wR2 = 0.1103
Absolute structure parameter	0.1(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.391 and -0.299 e.Å ⁻³

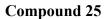

	х	у	Z	U(eq)
01	10352(2)	2841(2)	2916(2)	31(1)
02	8946(2)	2778(1)	2104(2)	29(1)
03	8091(2)	4755(2)	3193(2)	26(1)
04	7492(2)	6210(3)	2422(3)	30(1)
05	9517(1)	8766(1)	1383(1)	32(1)
06	8949(1)	7198(1)	812(1)	25(1)
N1	9828(1)	7222(1)	2116(1)	22(1)
C1	10119(2)	1714(2)	2827(2)	28(1)
C2	9094(2)	1758(2)	2548(2)	25(1)
C3	10556(3)	1272(3)	2130(3)	41(1)
C4	10458(3)	1172(5)	3668(5)	45(1)
C5	8683(9)	892(12)	1949(11)	32(1)
C6	8635(3)	1828(2)	3299(3)	42(1)
C7	7386(4)	5124(3)	3598(3)	23(1)
28	6839(2)	5864(3)	2905(2)	32(1)
C9	6901(4)	4167(5)	3853(4)	38(1)
210	7838(2)	5726(2)	4408(2)	33(1)
211	6124(2)	5278(4)	2271(2)	61(1)
C12	6464(2)	6836(3)	3263(2)	52(1)
213	9700(1)	4612(1)	2292(1)	24(1)
C14	8866(1)	5386(2)	1996(1)	21(1)
C15	10078(2)	5427(2)	2985(1)	23(1)
C16	10153(2)	5233(2)	1665(1)	23(1)
C17	9750(1)	6085(1)	2170(1)	19(1)
C18	10416(1)	7770(1)	2811(1)	25(1)
C19	9432(1)	7811(1)	1425(1)	22(1)
220	8404(1)	7681(2)	44(1)	30(1)
21	8004(1)	6715(2)	-465(1)	36(1)
222	8980(2)	8302(2)	-449(1)	42(1)
223	7689(2)	8365(2)	291(2)	51(1)
24	9984(1)	8152(1)	3523(1)	24(1)

Table S14. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C25	10527(1)	8404(1)	4319(1)	31(1)
C26	10164(2)	8814(2)	4974(1)	37(1)
C27	9267(2)	8975(2)	4847(1)	40(1)
C28	8720(2)	8720(2)	4063(1)	35(1)
C29	9080(1)	8305(1)	3403(1)	28(1)
B1	9670(1)	3396(1)	2432(1)	24(1)
B2	8150(3)	5467(2)	2552(3)	21(1)
07	6380(3)	7006(4)	5910(3)	25(1)
08	6978(3)	7253(4)	7334(3)	28(1)
09	5077(3)	5694(3)	7748(3)	34(1)
O10	5784(2)	4825(2)	8977(1)	43(1)
O11	6814(1)	1376(1)	8199(1)	40(1)
012	7517(1)	2951(1)	8526(1)	30(1)
N2	6553(1)	2782(1)	7283(1)	28(1)
C30	6583(3)	8128(5)	6010(3)	22(1)
C31	6700(4)	8299(6)	6989(4)	26(1)
C32	5854(3)	8774(3)	5469(3)	42(1)
C33	7446(3)	8300(2)	5705(2)	33(1)
C34	5849(4)	8542(3)	7278(4)	50(1)
C35	7411(3)	9102(3)	7382(3)	36(1)
C36	4460(3)	5639(3)	8330(2)	38(1)
C37	5052(2)	5390(3)	9201(2)	43(1)
C38	3824(3)	4719(4)	7995(3)	54(1)
C39	3952(7)	6671(8)	8201(4)	45(1)
C40	4636(4)	4716(4)	9794(3)	54(1)
C41	5422(3)	6420(4)	9666(3)	60(1)
C42	6707(1)	5338(1)	6861(1)	22(1)
C43	6628(2)	4847(2)	7754(2)	22(1)
C44	7401(2)	4468(2)	6807(2)	25(1)
C45	5983(2)	4524(2)	6424(2)	26(1)
C46	6651(1)	3895(1)	7112(1)	22(1)
C47	6951(1)	2291(1)	8026(1)	29(1)
C48	7930(1)	2659(2)	9417(1)	31(1)
C49	8447(2)	3657(2)	9741(1)	42(1)
C50	7226(2)	2445(2)	9922(1)	45(1)
C51	8560(1)	1738(2)	9420(1)	36(1)

C52	5951(1)	2167(1)	6638(1)	30(1)
C53	6327(1)	1848(1)	5875(1)	26(1)
C54	5756(1)	1669(1)	5088(1)	31(1)
C55	6078(2)	1342(2)	4384(1)	38(1)
C56	6980(2)	1185(2)	4461(1)	38(1)
C57	7553(1)	1366(2)	5240(1)	35(1)
C58	7230(1)	1698(1)	5945(1)	30(1)
B3	6705(1)	6557(1)	6698(1)	22(1)
B4	5819(2)	5107(2)	8156(2)	26(1)
C64	10622(4)	5357(5)	2396(5)	23(2)
C61	5883(4)	4641(5)	6910(5)	26(2)
C60	7017(5)	4391(5)	6322(5)	29(2)
C59	7219(4)	4730(4)	7676(4)	24(2)
C62	9419(5)	5520(5)	2892(4)	18(1)
C63	9339(5)	5285(5)	1522(4)	23(2)
O2A	9275(5)	2681(4)	1842(4)	25(1)
O1A	10109(6)	2962(5)	3184(5)	29(2)
C1A	9845(7)	1843(6)	3166(5)	34(2)
C3A	10690(11)	1252(17)	3637(17)	45(1)
C4A	9122(9)	1778(8)	3678(7)	46(3)
C5A	10258(8)	1244(9)	1773(8)	36(3)
C6A	8730(30)	910(30)	1940(30)	32(1)
C2A	9531(4)	1629(5)	2193(4)	22(2)
O13	5123(5)	4232(5)	8189(6)	79(3)
B5	5377(5)	4937(6)	7629(6)	31(2)
C66	4503(5)	4784(7)	8608(6)	48(2)
C65	4788(6)	6000(8)	8581(5)	37(2)
C67	4565(13)	4263(15)	9463(10)	87(5)
O17	5299(9)	5962(10)	7925(9)	66(3)
C68	3508(7)	4529(11)	8043(9)	54(1)
C70	4053(18)	6760(20)	8417(13)	45(1)
C69	5501(7)	6219(9)	9289(7)	60(1)
C34A	6336(14)	8615(8)	7642(10)	55(4)
C31A	6931(12)	8373(18)	7043(10)	27(4)
C35A	7718(11)	9116(10)	7146(11)	48(4)
C30A	6439(11)	8265(15)	6116(10)	37(5)

C32A	5578(8)	8855(8)	5832(12)	46(3)
C33A	6992(13)	8346(8)	5452(8)	47(3)
O4A	7731(6)	5977(7)	2387(8)	35(2)
O3A	8127(7)	4883(8)	3512(6)	37(2)
C7A	7175(10)	5105(12)	3466(9)	55(6)
C9A	6720(15)	4097(16)	3619(13)	57(5)
C10A	7184(9)	5937(9)	4169(8)	67(3)
C8A	6902(6)	5538(7)	2539(7)	47(2)
C12A	6216(7)	6372(9)	2418(11)	83(4)
C11A	6671(7)	4632(9)	1881(7)	62(3)
B6	8407(7)	5464(7)	2911(8)	28(2)
015	7272(8)	7271(11)	7266(10)	29(2)
O14	6172(10)	7084(13)	6065(10)	29(2)

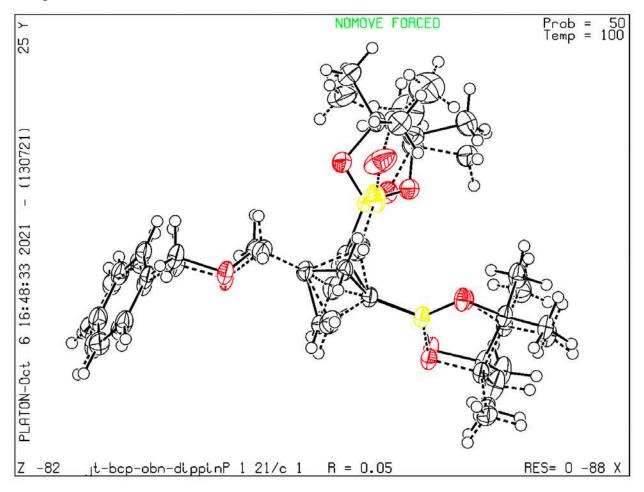


Table S15. Crystal data and structure refinement for compound 25. CCDC reference number: 2159016.

Empirical formula	C25 H38 B2 O5	
Formula weight	440.17	
Temperature	100.01(11) K	
Wavelength	1.54184 Å	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 15.7568(3) Å	α= 90°.
	b = 10.60872(17) Å	β= 93.4675(14)°.
	c = 14.8400(2) Å	$\gamma = 90^{\circ}$.
Volume	2476.11(7) Å ³	
Z	4	
Density (calculated)	1.181 Mg/m ³	
Absorption coefficient	0.626 mm ⁻¹	

F(000)	952
Crystal size	0.392 x 0.202 x 0.111 mm ³
Theta range for data collection	5.029 to 77.049°.
Index ranges	-16<=h<=19, -6<=k<=13, -17<=l<=18
Reflections collected	13236
Independent reflections	4940 [R(int) = 0.0257]
Completeness to theta = 67.684°	98.7 %
Absorption correction	Gaussian and multi-scan
Max. and min. transmission	1.000 and 0.625
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4940 / 849 / 548
Goodness-of-fit on F ²	1.024
Final R indices [I>2sigma(I)]	R1 = 0.0501, wR2 = 0.1365
R indices (all data)	R1 = 0.0551, wR2 = 0.1409
Extinction coefficient	n/a
Largest diff. peak and hole	0.351 and -0.277 e.Å ⁻³

	X	у	Z	U(eq)
C8	2188(1)	5284(1)	3754(1)	27(1)
C12	2420(1)	5272(2)	2512(1)	34(1)
B1	1978(1)	5155(1)	4761(1)	27(1)
01	1239(4)	4665(8)	4995(2)	33(1)
02	2556(3)	5433(5)	5462(3)	28(1)
03	3576(1)	2798(2)	4147(1)	36(1)
04	4083(1)	3623(1)	2869(1)	35(1)
05	2406(1)	6305(1)	1080(1)	31(1)
C2	2217(4)	4834(4)	6262(3)	27(1)
C3	1246(4)	4766(7)	5980(3)	31(1)
C4	2616(5)	3534(5)	6371(5)	36(1)
C5	2441(6)	5673(8)	7067(5)	30(1)
26	768(6)	3638(9)	6321(6)	45(2)
27	773(7)	5981(9)	6188(8)	37(2)
C9	2511(1)	4124(2)	3162(1)	25(1)
C10	2859(1)	6099(2)	3250(1)	27(1)
C11	1566(1)	5580(2)	2910(1)	28(1)
214	4424(3)	2248(5)	4081(5)	35(1)
C15	4834(2)	3159(3)	3390(2)	31(1)
C16	4256(4)	908(5)	3692(4)	43(1)
C17	4858(2)	2215(3)	5018(2)	50(1)
C18	5412(2)	2525(3)	2760(2)	41(1)
C19	5263(2)	4286(2)	3842(2)	43(1)
220	2569(1)	5137(2)	1516(1)	31(1)
221	2493(2)	6233(2)	128(1)	33(1)
222	1768(2)	5548(2)	-367(2)	30(1)
223	1806(2)	4249(2)	-521(1)	30(1)
224	1114(2)	3611(2)	-913(2)	34(1)
225	378(2)	4266(3)	-1185(2)	38(1)
226	340(3)	5572(3)	-1068(3)	41(1)
227	1033(2)	6191(3)	-651(3)	36(1)

Table S16. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

B2	3405(2)	3520(3)	3400(2)	26(1)
O1A	1139(6)	4926(8)	4991(6)	27(1)
O2A	2502(7)	5237(11)	5522(6)	27(1)
O3A	3455(5)	2870(9)	3759(5)	52(2)
O4A	4470(5)	4308(6)	3589(5)	66(2)
O5A	2064(5)	5552(8)	1093(4)	35(2)
C2A	2031(8)	4822(11)	6287(7)	27(1)
C3A	1099(8)	4953(11)	5978(7)	27(1)
C4A	2341(15)	3465(14)	6445(13)	54(4)
C5A	2284(12)	5600(20)	7131(11)	30(1)
C6A	549(13)	3840(16)	6238(15)	46(4)
C7A	708(17)	6195(19)	6228(19)	37(3)
C9A	3060(5)	5323(8)	3446(5)	42(2)
C10A	1899(6)	6344(9)	3126(5)	49(2)
C11A	1899(6)	4319(8)	3037(5)	47(2)
C14A	4243(13)	2267(18)	4090(20)	35(1)
C15A	4885(9)	3077(13)	3672(6)	31(1)
C16A	4439(16)	980(30)	3880(19)	77(7)
C17A	4269(7)	2285(11)	5114(5)	59(2)
C18A	5050(8)	2747(12)	2688(9)	56(3)
C19A	5724(7)	3335(15)	4227(9)	92(4)
C20A	2786(8)	5760(14)	1685(7)	38(2)
C21A	2206(9)	5787(14)	135(9)	37(3)
C22A	1538(11)	5224(15)	-399(12)	32(2)
C23A	1495(11)	3944(15)	-580(11)	31(2)
C24A	820(10)	3414(18)	-1036(12)	36(2)
C25A	134(12)	4105(19)	-1321(13)	36(2)
C26A	197(18)	5290(20)	-1153(18)	38(3)
C27A	822(15)	5952(19)	-712(18)	33(2)
B2A	3710(6)	4162(8)	3592(6)	40(2)

Compound 27

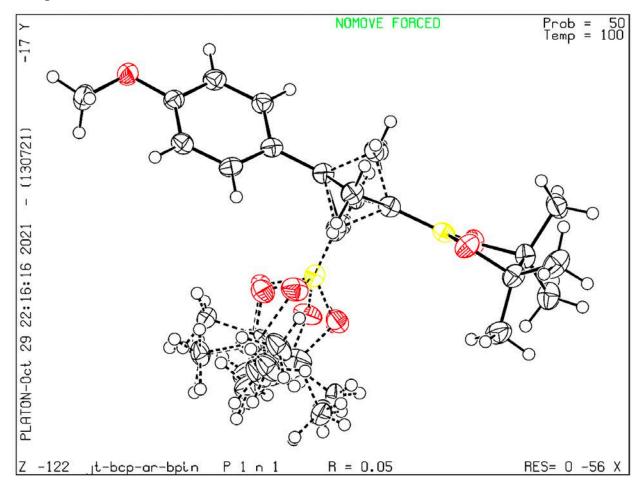


Table S17. Crystal data and structure refinement for compound 27. CCDC reference number: 2159001.

Empirical formula	C24 H35.99 B2 O5	
Formula weight	426.08	
Temperature	100.01(11) K	
Wavelength	1.54184 Å	
Crystal system	monoclinic	
Space group	P 1 n 1	
Unit cell dimensions	a = 12.02588(16) Å	<i>α</i> = 90°.
	b = 6.61763(11) Å	β= 93.5949(13)°.
	c = 14.9926(2) Å	$\gamma = 90^{\circ}.$
Volume	1190.81(3) Å ³	
Ζ	2	
Density (calculated)	1.188 Mg/m ³	
Absorption coefficient	0.635 mm ⁻¹	

F(000)	460
Crystal size	0.398 x 0.314 x 0.239 mm ³
Theta range for data collection	4.576 to 76.923°.
Index ranges	-11<=h<=15, -7<=k<=8, -18<=l<=18
Reflections collected	11284
Independent reflections	3931 [R(int) = 0.0230]
Completeness to theta = 67.684°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.37195
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3931 / 466 / 409
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0530, wR2 = 0.1448
R indices (all data)	R1 = 0.0535, wR2 = 0.1454
Absolute structure parameter	0.13(7)
Extinction coefficient	n/a
Largest diff. peak and hole	0.676 and -0.388 e.Å ⁻³

	х	У	Z	U(eq)
01	2501(2)	5819(4)	6840(2)	36(1)
02	3006(2)	2933(4)	6139(2)	34(1)
03	9312(2)	11515(4)	4396(2)	36(1)
C1	1577(3)	4393(5)	6916(2)	36(1)
22	2142(3)	2337(5)	6729(2)	33(1)
23	1150(4)	4579(7)	7848(3)	48(1)
C4	683(3)	4972(6)	6201(3)	45(1)
25	2743(3)	1414(6)	7559(2)	42(1)
26	1387(4)	793(5)	6250(3)	41(1)
C7	4260(3)	6047(5)	5964(2)	31(1)
C11	5534(3)	7416(5)	5559(2)	29(1)
C12	6524(3)	8504(5)	5252(2)	28(1)
C13	7589(3)	7661(5)	5318(2)	32(1)
C14	8497(3)	8700(5)	5037(2)	33(1)
C15	8367(3)	10626(5)	4672(2)	28(1)
216	7315(3)	11506(5)	4607(2)	32(1)
C17	6406(3)	10442(5)	4894(2)	32(1)
218	9184(3)	13382(6)	3924(3)	40(1)
31	3241(3)	4913(6)	6309(2)	30(1)
04	3406(6)	6690(9)	3540(4)	44(2)
05	3515(5)	9485(9)	4407(4)	42(2)
28	4588(4)	6318(6)	4971(3)	29(1)
C9	5521(4)	5534(7)	6195(3)	34(1)
C10	4610(4)	8307(7)	6124(3)	34(1)
C19	2587(7)	8129(12)	3120(5)	30(1)
220	3028(6)	10189(10)	3514(4)	18(1)
221	2718(12)	7970(30)	2107(8)	52(3)
222	1440(8)	7489(18)	3365(8)	43(3)
223	3958(7)	11150(13)	3033(6)	38(2)
224	2112(10)	11691(15)	3745(7)	46(2)
32	3833(13)	7507(19)	4261(8)	25(1)

Table S18. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C8A4239(14)8140(30)5396(10)32(3)C9A5042(15)5290(30)5227(11)29(3)C10A5315(15)6780(30)6509(11)29(3)O5A4117(8)9282(19)3806(8)52(3)O6A2666(7)7752(16)4302(6)42(2)B2A3810(18)7590(30)4307(12)25(1)C20A3254(14)9100(20)2950(9)68(5)C23A3020(20)7710(40)2147(14)52(3)C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)C21A1153(12)8340(30)3186(12)39(2)	
C10A5315(15)6780(30)6509(11)29(3)O5A4117(8)9282(19)3806(8)52(3)O6A2666(7)7752(16)4302(6)42(2)B2A3810(18)7590(30)4307(12)25(1)C20A3254(14)9100(20)2950(9)68(5)C23A3020(20)7710(40)2147(14)52(3)C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)	
O5A4117(8)9282(19)3806(8)52(3)O6A2666(7)7752(16)4302(6)42(2)B2A3810(18)7590(30)4307(12)25(1)C20A3254(14)9100(20)2950(9)68(5)C23A3020(20)7710(40)2147(14)52(3)C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)	
O6A2666(7)7752(16)4302(6)42(2)B2A3810(18)7590(30)4307(12)25(1)C20A3254(14)9100(20)2950(9)68(5)C23A3020(20)7710(40)2147(14)52(3)C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)	
B2A3810(18)7590(30)4307(12)25(1)C20A3254(14)9100(20)2950(9)68(5)C23A3020(20)7710(40)2147(14)52(3)C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)	
C20A3254(14)9100(20)2950(9)68(5)C23A3020(20)7710(40)2147(14)52(3)C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)	
C23A3020(20)7710(40)2147(14)52(3)C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)	
C24A3385(15)11380(20)2607(10)35(3)C19A2289(11)9140(20)3578(10)64(4)	
C19A 2289(11) 9140(20) 3578(10) 64(4)	
C21A 1153(12) 8340(30) 3186(12) 39(2)	
C22A 2387(15) 11330(20) 4047(9) 46(2)	
O6B 2854(8) 6883(14) 3975(6) 32(2)	
O5B 3840(9) 10010(15) 3979(7) 47(3)	
C19B 2471(8) 8069(15) 3218(6) 30(1)	
C20B 2984(10) 10201(12) 3285(6) 18(1)	
C21B 1225(8) 8220(30) 3182(11) 39(2)	
C22B 2796(15) 7065(18) 2376(6) 52(3)	
C23B 3455(15) 10804(18) 2421(7) 35(3)	
C24B 2133(15) 11734(18) 3523(10) 46(2)	
B2B 3683(9) 8356(17) 4575(5) 25(1)	

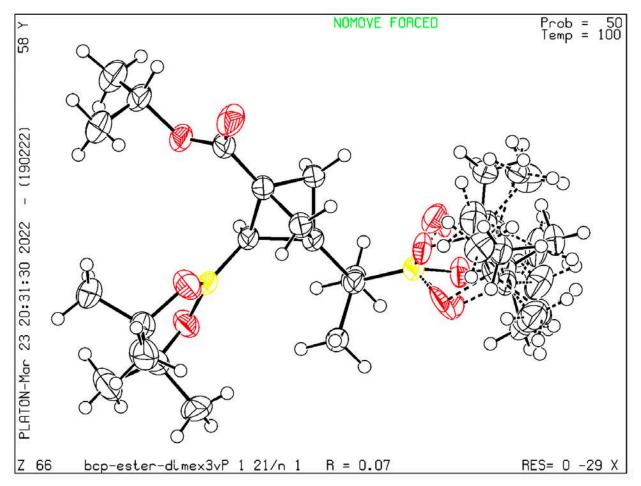


Table S19. Crystal data and structure refinement for compound **33**. CCDC reference number: 2162135.

Empirical formula	C24.04 H42.08 B2 O6.01	
Formula weight	448.92	
Temperature	100.0(3) K	
Wavelength	1.54184 Å	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 6.1700(2) Å	α= 90°.
	b = 34.5169(12) Å	β= 96.682(3)°.
	c = 12.2637(4) Å	$\gamma = 90^{\circ}$.
Volume	2594.05(15) Å ³	
Z	4	
Density (calculated)	1.149 Mg/m ³	
Absorption coefficient	0.632 mm ⁻¹	

F(000)	978
Crystal size	$0.176 \text{ x } 0.069 \text{ x } 0.046 \text{ mm}^3$
Theta range for data collection	3.848 to 68.237°.
Index ranges	-7<=h<=6, -41<=k<=41, -14<=l<=14
Reflections collected	19006
Independent reflections	4632 [R(int) = 0.0688]
Completeness to theta = 67.684°	97.5 %
Absorption correction	Gaussian and multi-scan
Max. and min. transmission	1.000 and 0.842
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4632 / 410 / 438
Goodness-of-fit on F ²	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0684, wR2 = 0.1847
R indices (all data)	R1 = 0.0841, $wR2 = 0.1962$
Extinction coefficient	n/a
Largest diff. peak and hole	0.548 and -0.201 e.Å ⁻³

22 $4755(3)$ $3833(1)$ $7921(1)$ $52(1)$ 33 $8954(3)$ $3199(1)$ $6842(2)$ $54(1)$ 34 $6576(3)$ $2844(1)$ $5692(1)$ $49(1)$ 35 $9103(6)$ $4418(1)$ $3635(2)$ $43(1)$ 355 $9103(6)$ $4418(1)$ $3635(2)$ $43(1)$ 355 $9103(6)$ $4418(1)$ $3635(2)$ $43(1)$ 355 $9103(6)$ $4418(1)$ $3635(2)$ $43(1)$ 356 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ 366 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ 366 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ 366 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ 366 $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ 361 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 373 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 374 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 374 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 374 $6338(4)$ $3969(1)$ $6335(2)$ $40(1)$ 374 $6338(4)$ $371(1)$ $5356(2)$ $40(1)$ 374 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 374 $532(4)$ $3580(1)$ $5714(2)$ $37(1)$ 374 $532(4)$ $3580(1)$ $5714(2)$ $37(1)$ 374 $4336(5)$ $2796(1)$ $7120(2)$ $52(1)$ </th <th></th> <th>x</th> <th>У</th> <th>Z</th> <th>U(eq)</th>		x	У	Z	U(eq)
33 $8954(3)$ $3199(1)$ $6842(2)$ $54(1)$ 344 $6576(3)$ $2844(1)$ $5692(1)$ $49(1)$ 35 $9103(6)$ $4418(1)$ $3635(2)$ $43(1)$ 35 $9103(6)$ $4418(1)$ $3635(2)$ $43(1)$ 35 $7450(19)$ $4565(2)$ $3442(7)$ $51(2)$ $35B$ $6556(14)$ $4535(2)$ $3039(10)$ $41(3)$ 366 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ 364 $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ $36B$ $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 311 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 32 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 33 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 34 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 35 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 36 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 37 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 38 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 39 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 314 $9836(5)$ $2796(1)$ $7120(2)$ $52(1)$ 314 $9833(7)$ $2550(1)$ $5188(2)$ $74(1)$ 314 $9833(7)$ $2550(1)$ $5188(2)$ $74(1)$ 314 $9833(7)$ $2550(1)$ $5188(2)$ $74(1)$ </td <td>01</td> <td>7417(4)</td> <td>4281(1)</td> <td>8063(2)</td> <td>64(1)</td>	01	7417(4)	4281(1)	8063(2)	64(1)
44 $6576(3)$ $2844(1)$ $5692(1)$ $49(1)$ 55 $9103(6)$ $4418(1)$ $3635(2)$ $43(1)$ $55A$ $7450(19)$ $4565(2)$ $3442(7)$ $51(2)$ $55B$ $6556(14)$ $4535(2)$ $3039(10)$ $41(3)$ 56 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ $56A$ $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ $56B$ $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 511 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 22 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 23 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 24 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 25 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $279(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ </td <td>02</td> <td>4755(3)</td> <td>3833(1)</td> <td>7921(1)</td> <td>52(1)</td>	02	4755(3)	3833(1)	7921(1)	52(1)
959103(6)4418(1) $3635(2)$ $431(1)$ $95A$ $7450(19)$ $4565(2)$ $3442(7)$ $51(2)$ $95B$ $6556(14)$ $4535(2)$ $3039(10)$ $41(3)$ 96 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ $96A$ $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ $96B$ $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ $96B$ $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ $9743(2)$ $70(1)$ 922 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 923 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 923 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 923 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 923 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 923 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 923 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ $9233(4)$ $3580(1)$ $5714(2)$ $37(1)$ $9233(4)$ $3580(1)$ $5714(2)$ $37(1)$ 923 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 923 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 923 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 923 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 923 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 923 $8430(6)$ $2705(1)$ $8151(2)$ <	O3	8954(3)	3199(1)	6842(2)	54(1)
55A $7450(19)$ $4565(2)$ $3442(7)$ $51(2)$ $55B$ $6556(14)$ $4535(2)$ $3039(10)$ $41(3)$ 566 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ $56A$ $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ $56B$ $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 511 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 52 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 53 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 53 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 54 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 55 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 56 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 57 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 58 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 59 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 512 $11905(5)$ $2750(1)$ $718(3)$ $61(1)$ 513 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 514 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 515 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 516 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 517 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 519 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ <td>04</td> <td>6576(3)</td> <td>2844(1)</td> <td>5692(1)</td> <td>49(1)</td>	04	6576(3)	2844(1)	5692(1)	49(1)
35B $6556(14)$ $4535(2)$ $3039(10)$ $41(3)$ 306 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ 306 $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ 306 $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 306 $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 301 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 322 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 33 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 34 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 35 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 36 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 37 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 38 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 39 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$	05	9103(6)	4418(1)	3635(2)	43(1)
66 $6763(5)$ $4320(1)$ $2094(2)$ $40(1)$ $66A$ $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ $66B$ $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 21 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 22 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 23 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 23 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 24 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 25 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ </td <td>O5A</td> <td>7450(19)</td> <td>4565(2)</td> <td>3442(7)</td> <td>51(2)</td>	O5A	7450(19)	4565(2)	3442(7)	51(2)
06A $8785(15)$ $4186(2)$ $2215(6)$ $41(2)$ $06B$ $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 01 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 02 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 02 $6118(6)$ $3781(1)$ $9203(3)$ $70(1)$ 02 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 02 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 02 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 02 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 02 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 02 $6572(4)$ $4187(1)$ $5356(2)$ $40(1)$ 02 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 02 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 02 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 02 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 02 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 02 $19905(5)$ $2759(1)$ $6098(2)$ $54(1)$ 02 $1990(1)$ $6298(3)$ $66(1)$ 02 $199(1)$ $6298(3)$ $66(1)$ 02 $3474(1)$ $3487(2)$ $46(1)$ 03 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 03 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 02 $8311(9)$ $4616(2)$ 180	O5B	6556(14)	4535(2)	3039(10)	41(3)
06B $9640(16)$ $4209(2)$ $2683(14)$ $60(3)$ 21 $4502(6)$ $3881(1)$ $9089(2)$ $57(1)$ 22 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 23 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 24 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 25 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $279(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	06	6763(5)	4320(1)	2094(2)	40(1)
4502(6) $3881(1)$ $9089(2)$ $57(1)$ 52 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 53 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 54 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 55 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 56 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 57 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 58 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 59 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	D6A	8785(15)	4186(2)	2215(6)	41(2)
22 $6118(6)$ $3616(1)$ $9743(2)$ $70(1)$ 33 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 34 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 25 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	D6B	9640(16)	4209(2)	2683(14)	60(3)
23 $2174(6)$ $3781(1)$ $9203(3)$ $70(1)$ 24 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 25 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C1	4502(6)	3881(1)	9089(2)	57(1)
24 $6308(5)$ $4048(1)$ $7529(2)$ $46(1)$ 25 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C2	6118(6)	3616(1)	9743(2)	70(1)
25 $6398(4)$ $3969(1)$ $6335(2)$ $40(1)$ 26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C3	2174(6)	3781(1)	9203(3)	70(1)
26 $5832(4)$ $3580(1)$ $5714(2)$ $37(1)$ 27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C4	6308(5)	4048(1)	7529(2)	46(1)
27 $5125(4)$ $4187(1)$ $5356(2)$ $40(1)$ 28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	05	6398(4)	3969(1)	6335(2)	40(1)
28 $8451(4)$ $4009(1)$ $5738(2)$ $40(1)$ 29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C6	5832(4)	3580(1)	5714(2)	37(1)
29 $6572(4)$ $3882(1)$ $4850(2)$ $37(1)$ 210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C7	5125(4)	4187(1)	5356(2)	40(1)
210 $9463(5)$ $2796(1)$ $7120(2)$ $52(1)$ 211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C8	8451(4)	4009(1)	5738(2)	40(1)
211 $8336(5)$ $2579(1)$ $6098(2)$ $54(1)$ 212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C9	6572(4)	3882(1)	4850(2)	37(1)
212 $11905(5)$ $2750(1)$ $7318(3)$ $61(1)$ 213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C10	9463(5)	2796(1)	7120(2)	52(1)
213 $8430(6)$ $2705(1)$ $8151(2)$ $67(1)$ 214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C11	8336(5)	2579(1)	6098(2)	54(1)
214 $9883(7)$ $2550(1)$ $5188(2)$ $74(1)$ 215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C12	11905(5)	2750(1)	7318(3)	61(1)
215 $7368(6)$ $2190(1)$ $6298(3)$ $66(1)$ 216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C13	8430(6)	2705(1)	8151(2)	67(1)
216 $6685(4)$ $3812(1)$ $3629(2)$ $38(1)$ 217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C14	9883(7)	2550(1)	5188(2)	74(1)
217 $8243(5)$ $3474(1)$ $3487(2)$ $46(1)$ 218 $4388(4)$ $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C15	7368(6)	2190(1)	6298(3)	66(1)
4388(4) $3710(1)$ $3081(2)$ $46(1)$ 219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	216	6685(4)	3812(1)	3629(2)	38(1)
219 $9320(10)$ $4763(2)$ $2965(5)$ $34(1)$ 220 $8311(9)$ $4616(2)$ $1801(4)$ $34(1)$	C17	8243(5)	3474(1)	3487(2)	46(1)
8311(9) 4616(2) 1801(4) 34(1)	C18	4388(4)	3710(1)	3081(2)	46(1)
	C19	9320(10)	4763(2)	2965(5)	34(1)
221 11713(14) 4872(3) 3028(7) 42(2)	C20	8311(9)	4616(2)	1801(4)	34(1)
	221	11713(14)	4872(3)	3028(7)	42(2)

Table S20. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C22	7936(10)	5083(2)	3400(6)	47(1)
C23	9970(10)	4419(2)	1169(4)	49(1)
C24	7044(13)	4927(2)	1115(7)	45(2)
C25	7330(20)	4626(5)	836(9)	64(3)
C26	9103(17)	4573(3)	1812(8)	34(1)
C27	11390(30)	4597(8)	1514(17)	63(6)
C28	8670(20)	4823(3)	2846(9)	34(1)
C29	7380(30)	5194(5)	2519(16)	66(5)
C30	10720(30)	4886(5)	3641(11)	67(4)
C31	11600(30)	4792(8)	3378(15)	47(5)
C32	11040(30)	4655(6)	1314(16)	37(5)
C33	7742(14)	4797(2)	2368(8)	25(3)
C34	10076(13)	4611(2)	2445(8)	29(3)
C35	7850(30)	5214(5)	2861(16)	35(4)
C36	6590(30)	4786(7)	1172(14)	54(5)
B1	7159(5)	3205(1)	6077(2)	37(1)
B2	7580(4)	4191(1)	3101(2)	36(1)

Compound 55

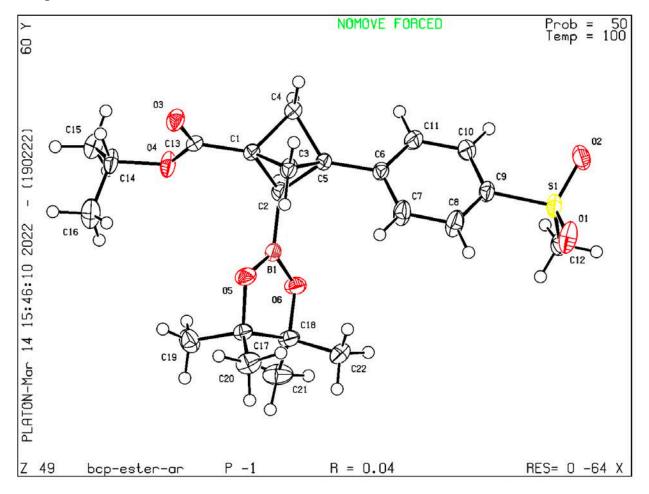


Table S21. Crystal data and structure refinement for compound **55**. CCDC reference number: 2160325.

Empirical formula	C22 H31 B O6 S	
Formula weight	434.34	
Temperature	100.03(12) K	
Wavelength	1.54184 Å	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 5.95874(10) Å	$\alpha = 83.5200(10)^{\circ}.$
	b = 9.81535(13) Å	β= 87.3338(11)°.
	c = 20.1087(2) Å	$\gamma = 74.1704(13)^{\circ}.$
Volume	1124.12(3) Å ³	
Z	2	
Density (calculated)	1.283 Mg/m ³	
Absorption coefficient	1.572 mm ⁻¹	

F(000)	464
Crystal size	0.22 x 0.14 x 0.06 mm ³
Theta range for data collection	2.212 to 77.052°.
Index ranges	-7<=h<=7, -12<=k<=12, -25<=l<=22
Reflections collected	20714
Independent reflections	4625 [R(int) = 0.0315]
Completeness to theta = 67.684°	100.0 %
Absorption correction	Gaussian and multi-scan
Max. and min. transmission	1.00 and 0.498
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4625 / 0 / 278
Goodness-of-fit on F ²	1.068
Final R indices [I>2sigma(I)]	R1 = 0.0433, wR2 = 0.1115
R indices (all data)	R1 = 0.0447, wR2 = 0.1125
Extinction coefficient	n/a
Largest diff. peak and hole	0.600 and -0.306 e.Å ⁻³

	x	У	Z	U(eq)
51	7203(1)	6990(1)	4245(1)	27(1)
D1	9681(2)	6683(2)	4327(1)	43(1)
02	6109(3)	8004(1)	3702(1)	40(1)
3	240(2)	10704(1)	8568(1)	30(1)
4	-1103(2)	8763(1)	8624(1)	32(1)
5	4542(2)	6292(1)	8264(1)	28(1)
	3320(2)	5097(1)	7506(1)	29(1)
l	1058(3)	9240(2)	7670(1)	21(1)
2	1446(3)	7777(2)	7391(1)	22(1)
3	3568(3)	9267(2)	7421(1)	25(1)
Ļ	195(3)	9988(2)	6967(1)	28(1)
i	2414(3)	8775(2)	6839(1)	21(1)
	3566(3)	8369(2)	6191(1)	21(1)
	5889(3)	7597(2)	6181(1)	34(1)
	7016(3)	7181(2)	5591(1)	37(1)
	5796(3)	7555(2)	4999(1)	24(1)
0	3464(4)	8304(2)	4995(1)	38(1)
l	2359(3)	8709(2)	5594(1)	38(1)
2	6515(3)	5379(2)	4174(1)	32(1)
3	41(3)	9667(2)	8331(1)	21(1)
4	-2092(3)	9008(2)	9295(1)	29(1)
5	-4497(3)	8810(2)	9296(1)	34(1)
6	-499(3)	7975(3)	9795(1)	43(1)
.7	5561(3)	4784(2)	8482(1)	22(1)
8	5277(3)	4056(2)	7851(1)	26(1)
9	4124(3)	4425(2)	9087(1)	35(1)
0	8056(3)	4580(2)	8678(1)	33(1)
1	4586(4)	2668(2)	8000(1)	40(1)
22	7380(4)	3855(2)	7378(1)	39(1)
	3135(3)	6374(2)	7732(1)	22(1)

Table S22. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Compound 59

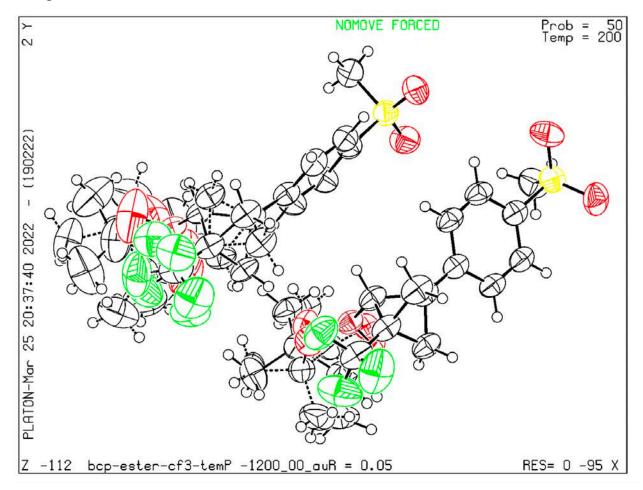


Table S23. Crystal data and structure refinement for **59**. CCDC reference number: 2160336.

Empirical formula	C19 H24 B F3 O4 S	
Formula weight	416.25	
Temperature	200.0(3) K	
Wavelength	1.54184 Å	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.92218(20) Å	α= 78.1946(16)°.
	b = 10.05349(18) Å	β= 81.8000(16)°.
	c = 22.9971(5) Å	$\gamma = 65.9117(18)^{\circ}$.
Volume	2045.46(7) Å ³	
Z	4	
Density (calculated)	1.352 Mg/m ³	
Absorption coefficient	1.847 mm ⁻¹	
F(000)	872	

Crystal size	0.25 x 0.19 x 0.15 mm ³
Theta range for data collection	3.936 to 76.943°.
Index ranges	-12<=h<=12, -11<=k<=12, -27<=l<=28
Reflections collected	23689
Independent reflections	8231 [R(int) = 0.0209]
Completeness to theta = 67.684°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.85389
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8231 / 324 / 729
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0548, $wR2 = 0.1596$
R indices (all data)	R1 = 0.0603, wR2 = 0.1649
Extinction coefficient	n/a
Largest diff. peak and hole	0.498 and -0.445 e.Å ⁻³

	X	У	Z	U(eq)
S1	4473(1)	1404(1)	6014(1)	61(1)
F1	1504(2)	8302(2)	2211(1)	100(1)
F2	89(3)	7228(2)	2184(1)	123(1)
F3	-603(2)	8982(2)	2672(1)	130(1)
01	3271(2)	1447(2)	6446(1)	81(1)
02	5603(2)	1788(2)	6167(1)	87(1)
03	2333(4)	2953(5)	2956(2)	58(1)
04	3544(4)	3995(4)	2208(2)	61(1)
C1	3744(2)	2567(2)	5355(1)	56(1)
C2	4542(2)	3310(2)	4991(1)	62(1)
C3	3965(2)	4216(2)	4476(1)	61(1)
C4	2582(2)	4407(2)	4311(1)	54(1)
C5	1801(2)	3645(2)	4683(1)	56(1)
C6	2371(2)	2722(2)	5199(1)	56(1)
C7	1972(2)	5420(2)	3763(1)	55(1)
C8	2691(2)	5349(2)	3109(1)	58(1)
С9	455(2)	5792(2)	3509(1)	63(1)
C10	1589(3)	7115(2)	3633(1)	71(1)
C11	1191(2)	6753(2)	3080(1)	61(1)
C12	556(3)	7806(2)	2547(1)	73(1)
C13	5314(3)	-371(3)	5825(1)	75(1)
C14	2344(5)	2359(4)	2420(2)	56(1)
C15	3602(5)	2664(4)	2020(2)	55(1)
C16	820(7)	3286(10)	2190(4)	101(3)
C17	2640(17)	712(17)	2579(6)	78(3)
C18	3350(18)	3105(19)	1350(5)	86(3)
C19	5117(7)	1474(8)	2137(3)	70(2)
B1	2873(2)	4091(2)	2756(1)	54(1)
S2	8667(1)	1695(1)	4316(1)	60(1)
F4	5655(9)	7502(9)	315(3)	111(2)
75	6316(8)	8949(7)	617(2)	111(2)

Table S24. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F6	4091(6)	9094(7)	819(4)	132(2)
O5	8082(2)	567(2)	4450(1)	80(1)
O6	8493(2)	2564(2)	4765(1)	77(1)
O7	7482(9)	3356(8)	1138(3)	122(2)
O8	8957(10)	4247(8)	632(3)	150(3)
C20	7909(2)	2900(2)	3665(1)	55(1)
C21	7645(2)	4380(2)	3607(1)	58(1)
C22	7163(2)	5310(2)	3080(1)	59(1)
C23	6956(2)	4776(2)	2604(1)	53(1)
C24	7198(3)	3285(2)	2674(1)	62(1)
C25	7665(3)	2347(2)	3202(1)	64(1)
C26	6510(2)	5777(2)	2034(1)	54(1)
C27	7461(3)	5717(3)	1425(2)	50(1)
C28	5143(4)	6094(4)	1670(2)	59(1)
C29	6083(5)	7464(4)	1924(2)	64(1)
C30	5935(2)	7093(2)	1329(1)	62(1)
C31	5467(3)	8161(3)	777(2)	83(1)
C32	10569(3)	877(3)	4108(1)	71(1)
C33	8417(7)	2174(5)	778(2)	81(1)
C34	8990(11)	3107(10)	352(4)	118(3)
C35	7512(12)	1650(12)	444(5)	143(3)
C36	9284(12)	1000(7)	1239(4)	154(3)
C37	8387(14)	3893(11)	-192(4)	166(4)
C38	10764(8)	2315(10)	316(5)	147(3)
B2	7970(6)	4406(5)	1064(2)	54(1)
09	2992(7)	2757(7)	2972(3)	55(1)
O10	2863(8)	4477(7)	2151(3)	69(2)
C40	2674(8)	3266(7)	1953(3)	64(2)
C44	3298(8)	1984(6)	2453(3)	56(1)
C43	4969(12)	1185(13)	2388(5)	67(2)
C41	1025(12)	3761(19)	1888(6)	109(5)
C39	2490(30)	960(30)	2589(9)	75(4)
C42	3540(30)	2920(30)	1361(9)	95(6)
C28A	7409(6)	6642(6)	1605(3)	68(1)
C27A	6052(7)	5493(6)	1466(3)	64(1)
C29A	5169(7)	7296(6)	1968(3)	74(2)

B2A	7216(9)	4316(9)	1081(3)	62(2)
O12	6978(10)	3247(12)	1028(5)	126(3)
011	8774(13)	4077(13)	869(5)	137(3)
C45	9360(10)	2767(11)	494(4)	83(2)
CN	7865(10)	2702(10)	519(4)	91(2)
C49	10510(12)	1456(10)	815(5)	118(3)
C46	6871(13)	3633(13)	-1(5)	135(3)
C48	9744(14)	3017(12)	-231(4)	125(3)
C47	7947(18)	1072(12)	749(6)	132(4)
F5A	5402(19)	9505(8)	813(5)	109(3)
F4A	6090(20)	7730(20)	286(7)	129(6)
F6A	3993(11)	8498(15)	721(6)	110(3)

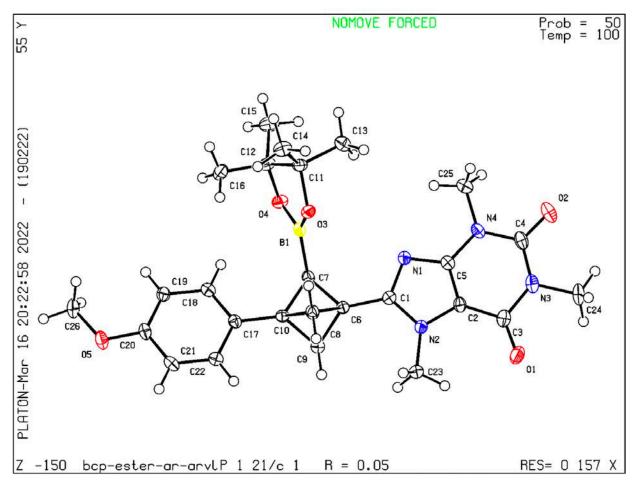


Table S25. Crystal data and structure refinement for compound 76. CCDC reference number: 2162136.

Empirical formula	C26 H33 B N4 O5	
Formula weight	492.37	
Temperature	100.03(13) K	
Wavelength	1.54184 Å	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 11.5499(3) Å	α=90°.
	b = 18.6825(4) Å	β=98.064(2)°.
	c = 11.5251(3) Å	$\gamma = 90^{\circ}$.
Volume	2462.30(10) Å ³	
Z	4	
Density (calculated)	1.328 Mg/m ³	
Absorption coefficient	0.749 mm ⁻¹	

F(000)	1048
Crystal size	0.42 x 0.09 x 0.043 mm ³
Theta range for data collection	3.865 to 77.027°.
Index ranges	-14<=h<=14, -23<=k<=23, -14<=l<=14
Reflections collected	5008
Independent reflections	5008 [R(int) = ?]
Completeness to theta = 67.684°	98.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.56923
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5008 / 0 / 335
Goodness-of-fit on F ²	1.202
Final R indices [I>2sigma(I)]	R1 = 0.0505, wR2 = 0.1325
R indices (all data)	R1 = 0.0541, $wR2 = 0.1339$
Extinction coefficient	3.8(6)x10 ⁻⁷
Largest diff. peak and hole	0.277 and -0.282 e.Å ⁻³

	x	у	Z	U(eq)
01	2933(2)	3779(1)	-319(2)	29(1)
02	3010(2)	6230(1)	-584(2)	31(1)
03	7945(1)	5377(1)	4304(1)	20(1)
D4	7134(1)	5709(1)	5923(2)	21(1)
)5	9709(2)	2871(1)	9443(2)	26(1)
V 1	5172(2)	5069(1)	2627(2)	18(1)
N2	4672(2)	3966(1)	1976(2)	18(1)
N3	2946(2)	5010(1)	-402(2)	24(1)
14	4081(2)	5728(1)	1011(2)	21(1)
C1	5280(2)	4364(1)	2832(2)	17(1)
22	4118(2)	4446(1)	1157(2)	18(1)
23	3309(2)	4347(1)	117(2)	22(1)
24	3330(2)	5690(1)	-27(2)	23(1)
25	4459(2)	5108(1)	1596(2)	18(1)
26	5984(2)	4074(1)	3892(2)	17(1)
C7	6355(2)	4534(1)	5016(2)	18(1)
28	7255(2)	3767(1)	4025(2)	20(1)
29	5700(2)	3456(1)	4719(2)	21(1)
210	6901(2)	3769(1)	5288(2)	16(1)
211	8366(2)	6106(1)	4591(2)	20(1)
C12	8149(2)	6174(1)	5890(2)	21(1)
213	7610(2)	6611(1)	3767(2)	27(1)
C14	9635(2)	6155(1)	4399(2)	25(1)
C15	7845(2)	6920(1)	6275(3)	29(1)
216	9139(2)	5858(1)	6756(2)	27(1)
C17	7627(2)	3549(1)	6396(2)	17(1)
C18	7966(2)	4040(1)	7279(2)	19(1)
C19	8672(2)	3843(1)	8312(2)	19(1)
220	9032(2)	3135(1)	8465(2)	20(1)
221	8694(2)	2636(1)	7584(2)	21(1)
222	7996(2)	2839(1)	6565(2)	20(1)

Table S26. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C23	4680(2)	3186(1)	1856(2)	22(1)	
C24	2112(2)	4970(2)	-1494(2)	30(1)	
C25	4462(2)	6432(1)	1476(2)	26(1)	
C26	10074(2)	3359(2)	10371(2)	28(1)	
B1	7161(2)	5215(1)	5049(2)	18(1)	

Computational Investigation on BCP BisBoronates

General Remarks

All optimizations of intermediates and transition states were calculated without constraints using dispersion corrected unrestricted (UB3LYP-D3)/def2-SVP level of the theory in implicit solvent (PhCl) using CPCM as the solvation model with the "guess=mix" keyword, as implemented in Gaussian 16, Revision C.01. Frequency calculations, at the same level of theory, were used to obtain thermal corrections (at 298K) and to characterize optimized structures as transition states (only a single imaginary frequency) or intermediate (if no imaginary frequencies were found). Single point energy calculations in implicit solvent using and B3LYP-D3/def2-TZVPP-CPCM(DMSO) were also performed. All energy decomposition analysis (EDA) was done using the second-generation absolutely-localized molecular orbital EDA available in Q-Chem version 5.3. These calculations were performed at the same level of theory used for single point energy calculations but in the gas phase. All 3-D structures were generated using CYLview20. NBO analysis was preformed using NBO version 3.1 as available in the Gaussian software package. Orbitals visualizied using GaussView 6. Non-covalent interaction (NCI) analysis was preformed using the Multiwfn software with the isosurfaces visualized using VMD and colored scatter plots made with Multiwfn scripts and gnuplot 5.4.

Full reference for Gaussian 16 Software:

Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.;

Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

Full reference for Q-Chem 5.0 Software:

Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kús, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio Jr., H. Dop, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada, S. Sharmaa, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhou, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xua, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon

Reference GaussView 6:

GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.

Reference CYLview20:

CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org)

Reference NBO 3.1:

NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.

Multiwfn 3.8:

Tian Lu, Feiwu Chen, J. Comput. Chem., 33, 580-592 (2012).

VMD:

Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. Molec. Graphics, 1996, vol. 14, pp. 33-38.

GNUplot

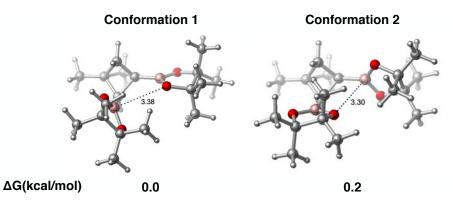
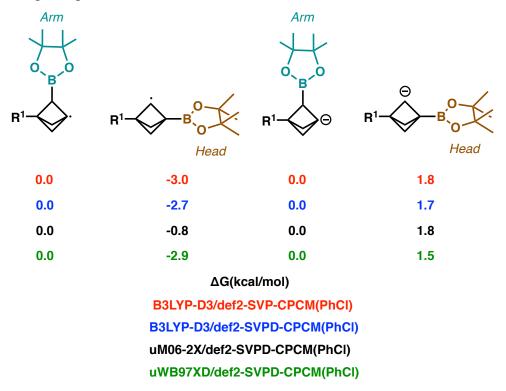



Figure S1: Lowest energy conformations obtained from conformational search of the BCP bis-

14. NBO energies reported in kcal/mol.

Figure S2: Relative free energies of both the radical and anionic intermediates that could be formed from 1 and 2e⁻⁻ pathways. All free energies were obtained from optimizations done at the indicated level of theory at the bottom of the figure.

Initially, the stability of both the radical and anionic intermediate at both the head and arm position of **14** were modeled (Figure S2 and S2). All calculations suggested that the radical was thermodynamically preferred at the arm while the anion was preferred at the head of **14**. As both 1 and 2e⁻ pathways were shown to react exclusively at the head Bpin of the bis-boronate BCPs, the relative stability of the putative radical and anionic intermediates does not correlate with observed reactivity. As such, we then explored the full reaction profile of a model reaction (see below) to gain insights into the factors controlling reactivity and selectivity.

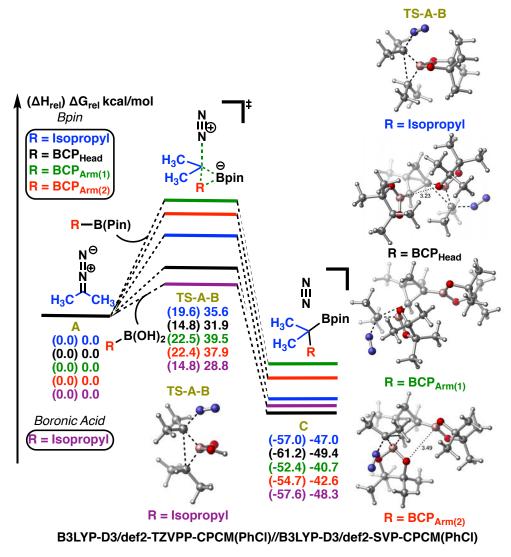
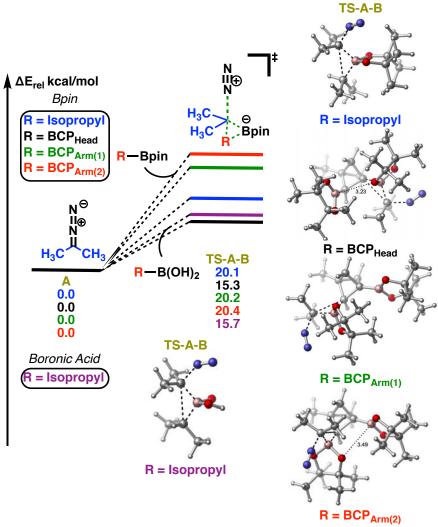
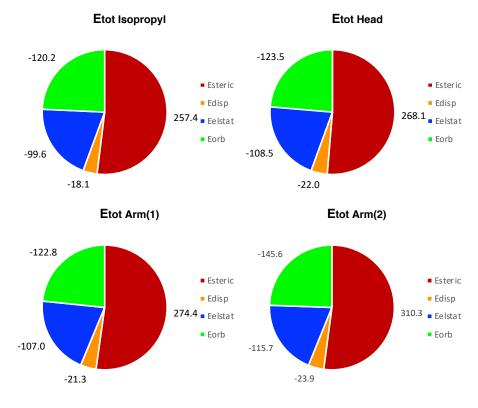



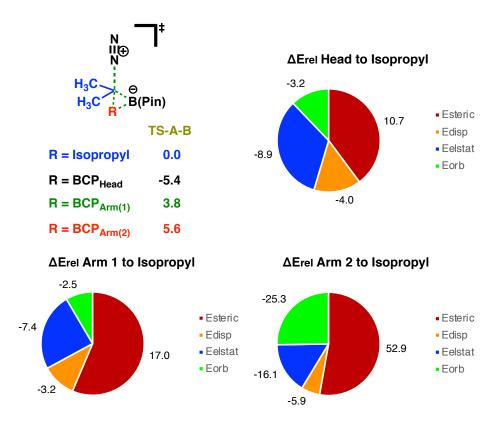
Figure S3: Reaction coordinate diagrams of concerted boron insertion pathways with bis-boronate BCP 14 at both the head and arm boronate. R = Isopropyl included for comparison. All pathways made relative to lowest energy conformation.

B3LYP-D3/def2-TZVPP-CPCM(PhCI)//B3LYP-D3/def2-SVP-CPCM(PhCI)


Figure S4: Reaction coordinate diagrams of concerted boron insertion pathways with bis-boronate BCP 14 at both the head and arm boronate in terms of total energy (E). R = Isopropyl included for comparison.

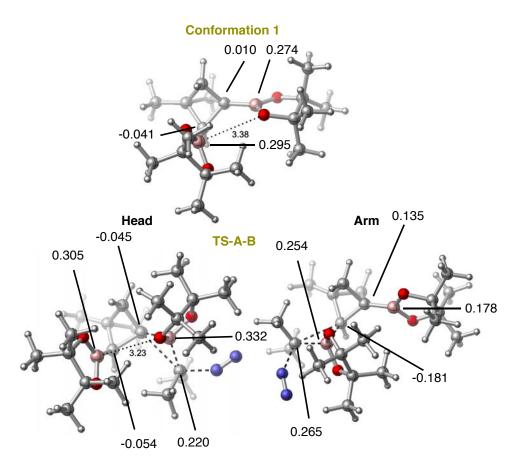
Modeling the reaction coordinate diagram of the boron insertion reaction which shows a preference in reactivity for the head Bpin in **14** (Figure 2A in the manuscript). Preliminary calculations of the boron insertion pathway revealed that this transformation proceeds via a concerted transition state. All attempts at locating putative intermediates previously proposed for these transformations failed (i.e., optimizations lead to either lead to reactants or products). Pathways were modeled for reactions at the head and arm of **14** from both conformations 1 and 2 (Figure S3). An additional pathway where the alkyl boronic ester with the alkyl group as an isopropyl is also shown as a reference for the barriers of these transformations, which was not reported in the previous publication.¹ The alkyl model system has a barrier of 35.6 kcal/mol. The computed barrier via the head of **14** is 31.9 kcal/mol which is much closer to the barrier of 28.8 kcal/mol of the alkyl boronic acid. However, reactions at the arm from conformations **1** and **2** (BCP_{Arm(1)} and BCP_{Arm(2)}) are substantially higher in free energy, 39.5 and 37.9 kcal/mol respectfully. These results reveal that the experimentally observed regioselectivity of these reactions are *kinetically* controlled. The relative barriers of the total energy of these calculations (Figure S4) retained similar trends, making energy decomposition analysis a viable next step in further interpretation of these results.

Equation Energy Decomposition Analysis

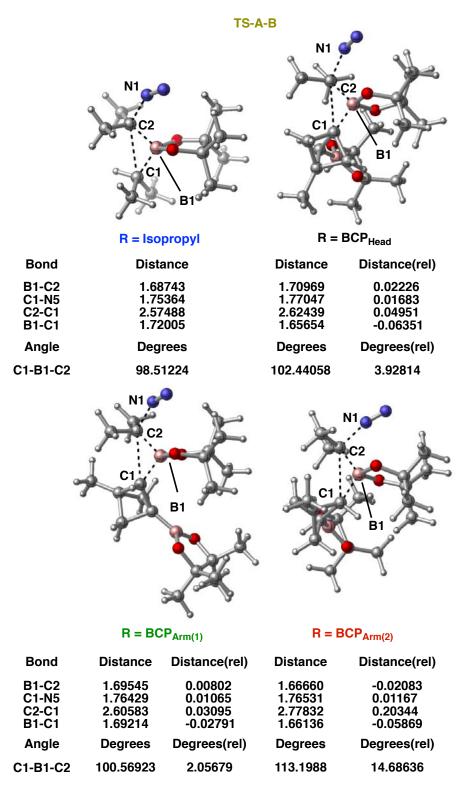

 $\Delta E_{act} = \Delta E_{dist} + \Delta E_{int}$ $\Delta E_{int} = \Delta E_{Pauli} + \Delta E_{elstat} + \Delta E_{pol} + \Delta E_{ct} + \Delta E_{disp}$ $\Delta E_{Sterics} = \Delta E_{Pauli} + \Delta E_{dist}$ $\Delta E_{Orb} = \Delta E_{pol} + \Delta E_{ct}$

Total Energy Decomposition Analysis

B3LYP-D3/def2-TZVPP-gas//B3LYP-D3/def2-SVP-CPCM(PhCl)


Figure S5: Energy decomposition analysis of indicated transition states using the second-generation ALMO-EDA.

B3LYP-D3/def2-TZVPP-gas//B3LYP-D3/def2-SVP-CPCM(PhCl)


Figure S6: Energy decomposition analysis of indicated transition states made relative to R=Isopropyl transition state.

Energy decomposition analysis (EDA) using the second generation ALMO-EDA decomposes the activation energy into one unfavorable E_{steric} and three favorable E_{disp} , E_{elstat} , and E_{orb} , electronic interactions where disp = dispersion, elstat = electrostatic and orb = orbital (Figure S5). The EDA of the transition states were made relative to R = Isopropyl (Figure S6) to highlight the change in the decomposed energies between the transition states modeled at the head and arm Bpin of the BCP. Reactions through the head Bpin of BCP (ΔE_{rel} Head; Figure S6) has an increase in favorable electronic interactions which overcome the increase in disfavorable steric interactions; resulting in a lower barrier (~5.4 kcal/mol) with respect to the R = Isopropyl transition state. Transition states at the arm Bpin of BCP (ΔE_{rel} Arm 1 and ΔE_{rel} Arm 2) have larger increase in steric interactions which outweigh the change in favorable electronic interactions, resulting in higher barriers (~3.8 kcal/mol) through R = BCP_{Arm(1)} and BCP_{Arm(2)}.

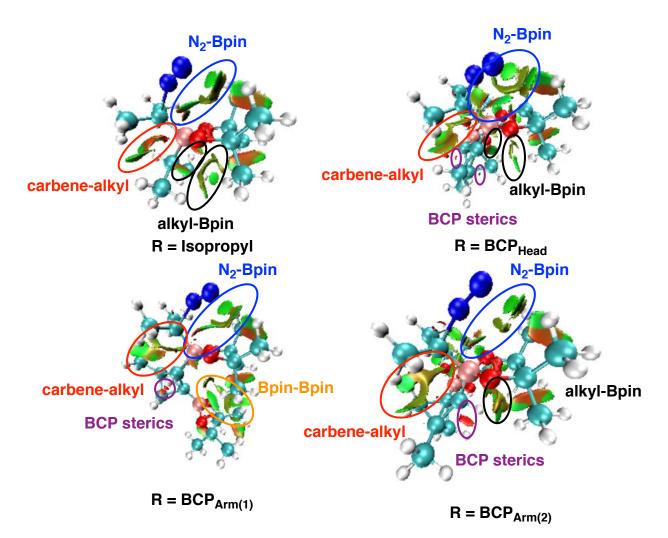


Figure S7: Mulliken charges labeled at head and arm boron and carbon for conformation 1 and additionally at the carbon carbon through TS-A-B for both arm and head transition states.

Moreover, analysis of the Mulliken charges (Figure S7) of the lowest energy intermediate of **14** show that there is more negative charge at the arm carbon than at the bridgehead carbon (-0.041 vs. 0.10). Preforming the same analysis of the lowest energy transition states shows a larger quantity of negative charge building up through TS-A-B Arm then through TS-A-B Head on the reacting BCP carbon (-0.181 vs. -0.045). Overall, these results suggest that the hybridization of the bridgehead carbon sp^{2.0} reduces the negative charge through TS-A-B which corresponds to the lower barrier.

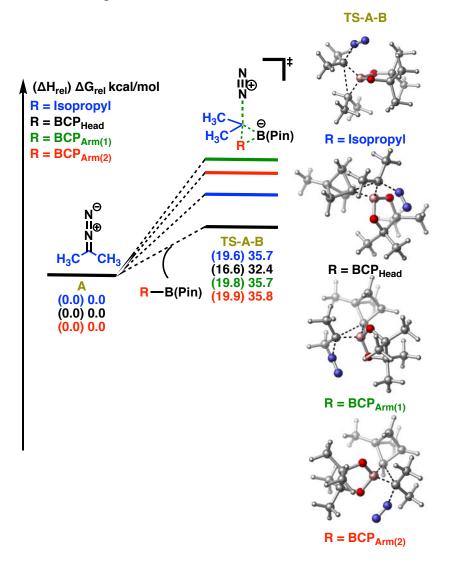
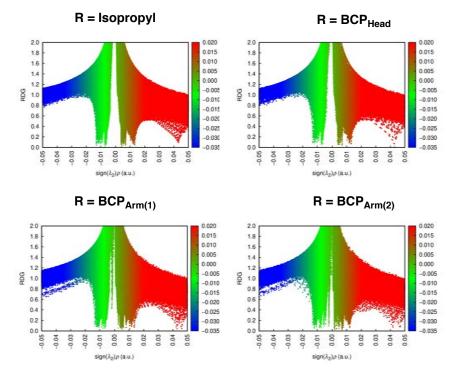

Figure S8: Bond lengths (Å) and angles (°) of the boron insertion transition states for TS-A-B. All bond distances and angles were made relative to the isopropyl system under Distance(rel) and Angle(rel).

Figure S9: Non-covalent interaction analysis of TS-A-B as available in Multiwfn. Blue indicates attractive non-covalent interactions, green indicates dispersion interactions while red indicates repulsive interactions.

To better understand the results of the EDA, the bond distances and bond angles of the decomposed transition states as well as weak non-covalent interaction analysis (NCI) of BCP **14** were compared to the isopropyl system (Figure S8 and S9). As observed from the EDA, all transition states with the BCP have increases steric and favorable electronic interactions through TS-A-B when compared to the isopropyl system. NCI analysis reveals that the increase in C1-C2 distance of the BCP transition states results in lower steric interaction between the alkyl and carbene (red to brown color from alkyl to BCP system) while all BCP systems show a steric interaction within the BCP scaffold (red color between arms of BCP; circled in purple). The BCP transition state with the least BCP steric interactions is the head transition state (R = BCP_{Head}) while the transition state with the


largest BCP steric interaction is the second arm transition state (R= BCP_{Arm(2)}), in agreement with the EDA. As the NCI analysis was for weak electronic interactions (RDG ≤ 0.5 used for constructing isosurfaces), the stronger electrostatic interactions were not visualized using this method, as can be seen in Figure S11.

B3LYP-D3/def2-TZVPP-CPCM(PhCl)//B3LYP-D3/def2-SVP-CPCM(PhCl)

Figure S10: Reaction coordinate diagram of boron insertions for mono-boronate BCP. All barriers are relative to the lowest energy conformations.

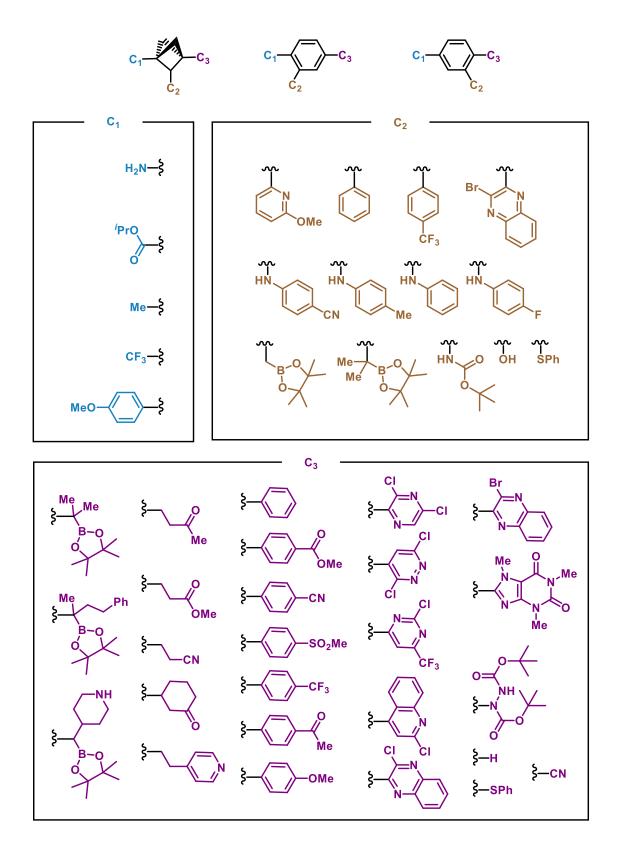
To evaluate the influence of the additional boron on the barriers of boron insertion of the bisboronate BCP, the mono-boronate BCP of 14 was modeled (Figure S10) for both the Bpin substituted at the head and arm position of the BCP. The trends in reactivity is still observed without the additional Bpin: TS-A-B has a lower barrier (32.4 kcal/mol) than the transition states at the arm BCP (\sim 35.7 kcal/mol), reinforcing that the *BCP scaffold* is responsible for the observed reactivity.

Figure S11: Scatter graphs of TS-A-B for the indicated transition states. The RDG isosurface cutoff is set to 0.5.

Procedure for Compound Enumeration.

The "Enumerate Combinatorial Reaction" component in Pipeline Pilot (version 18.1.100.11) from Dassault Systèmes (Vélizy-Villacoublay, France) was used to enumerate 2D structures of BCP compounds. 3D structures of these BCP compounds were generated with force field minimized conformations in Pipeline Pilot. These 3D structures were used to compute the topology-dependent properties, including PMI and 3D scores.

Enumeration of tri-substituted BCP and arenes


C₁, C₂ and C₃ substituents on 1,2,3-trisubstituted BCP compounds, 1, 2, 4- and 1, 3, 4-trisubstituted arenes were selected based on the experimental outcomes from Fig.4 and Fig.5 (Figure S12). Protecting groups from the output products were removed to remove influence on topology (Figure S13).

Enumeration of 1,2- and 1,3-disubstituted BCP and arenes

C₁, C₂ and C₃ substituents disubstituted BCP compounds and arenes were conducted based on the experimental outcomes from Fig.4 and Fig.5, where only functional groups successfully afforded with both C₂-Bpin and C₃-Bpin functionalization methods were selected (Figure S14). Protecting groups from the output products were removed to remove influence on topology (Figure S13).

Calculation of Principal Moments of Inertia (PMI) and 3D Scores

 I_1 , I_2 and I_3 are the three principal moments of inertia in an ascending order ($I_1 \le I_2 \le I_3$) for each given molecule calculated with Pipeline Pilot (version 18.1.100.11) from Dassault Systèmes (Vélizy-Villacoublay, France). 3D scores were calculated as 3D score = npr1 + npr2, where npr1 = I_1/I_3 , and npr2 = I_2/I_3 .

Figure S12: Enumeration of 1,2,3-trisubstituted BCP compounds, 1, 2, 4- and 1, 3, 4-trisubstituted arenes with selected substituents.

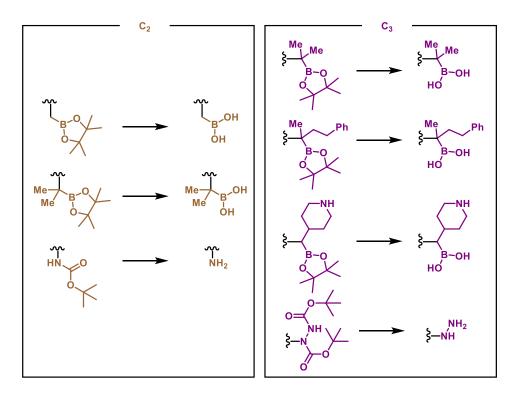
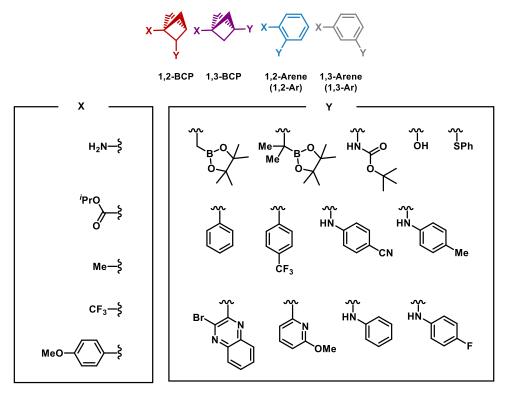
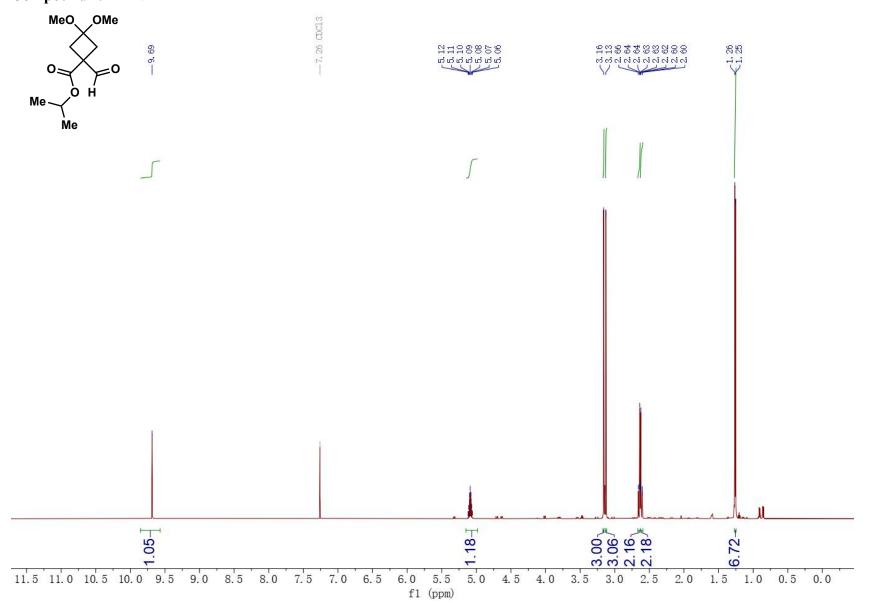
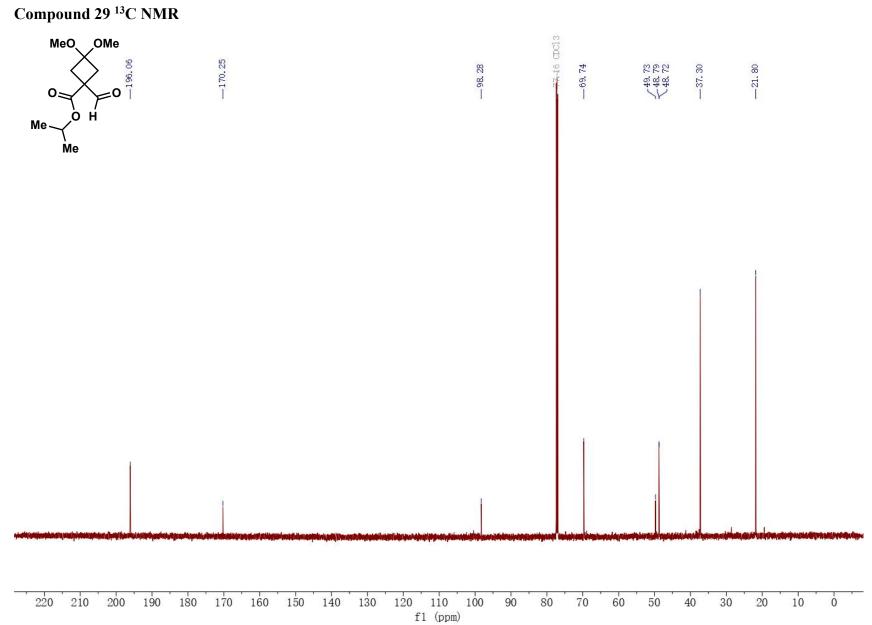



Figure S13: Deprotection of selected enumerated substituents.

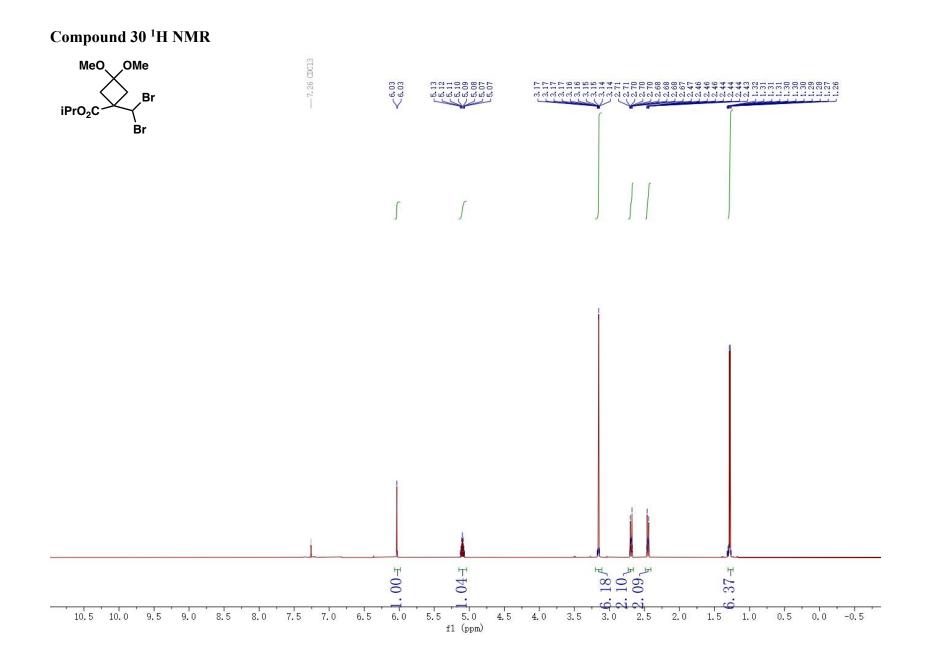
Figure S14: Enumeration of 1,2- and 1, 3-disubstituted BCP compounds and arenes with selected substituents.

Reference

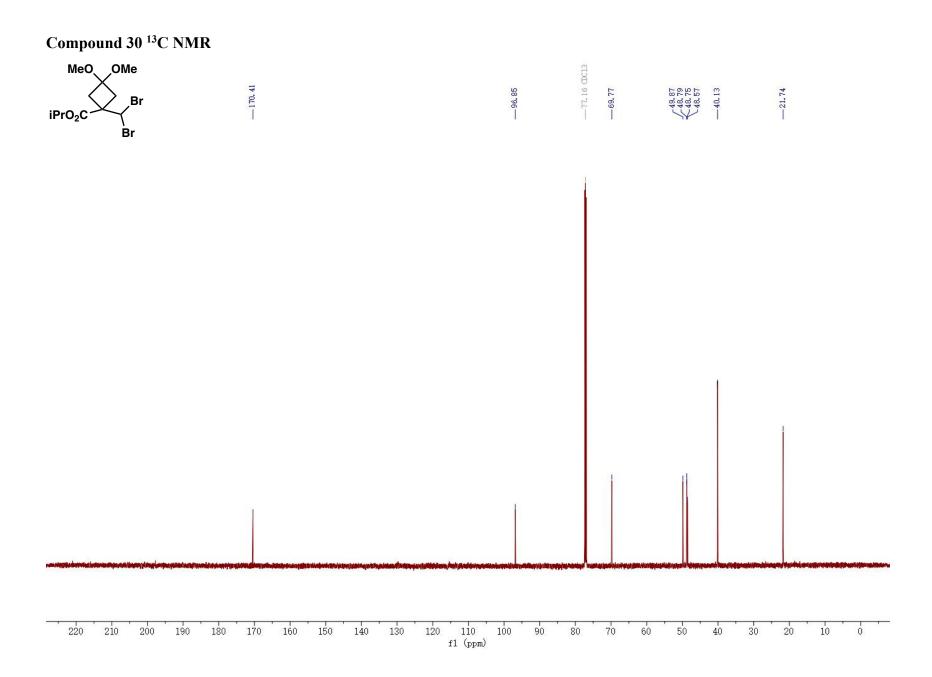

- 1. Yang, Y.; *et al.* An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. *Nat. Chem.* **13**, 950–955 (2021).
- Hazrati, H. & Oestreich, M. Copper-Catalyzed Double C(sp³)–Si Coupling of Geminal Dibromides: Ionic-to-Radical Switch in the Reaction Mechanism. Org. Lett. 20, 5367–5369 (2018).
- Yang, C. T., Zhang, Z. Q., Liu, Y. C. & Liu, L. Angew. Chem., Int. Ed. 50, 3904–3907, (2011).
- Li, H., Wang, L., Zhang, Y. & Wang, J. Transition-Metal-Free Synthesis of Pinacol Alkylboronates from Tosylhydrazones. *Angew. Chem. Int. Ed.* 51, 2943–2946 (2012).
- Katayev, D., Matousek, V., Koller, R. & Togni, A. Lewis Acid Catalyzed Synthesis of α-Trifluoromethyl Esters and Lactones by Electrophilic Trifluoromethylation. *Org. Lett.* 17, 5898 –5901 (2015).
- JosienJohn H. B. *et al.* Bridged and fused antidiabetic compounds. WO2010085528A1, (2010).
- Yang, Y. *et al.* Practical and Modular Construction of C(sp³)–Rich Alkyl Boron Compounds.
 J. Am. Soc. Chem. 143, 471–480 (2021).
- André-Joyaux, E., Kuzovlev, A. & Tappin, N. D. A general approach to deboronative radical chain reaction with pinacol alkylboronic esters. *Angew. Chem. Int. Ed.* 59, 13859–13864 (2020).
- 9. Lima, F. *et al.* A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters. *Angew. Chem. Int. Ed.*, **56**, 15136–15140 (2017).
- 10. Molander, G. A., Colombel, V. & Braz, V. A. Direct alkylation of heteroaryls using potassium alkyl- and alkoxymethyltrifluoroborates. *Org. Lett.* **13**, 1852–1855 (2011).
- Kondo, M. *et al.* Silaboration of [1.1.1]Propellane: A Storable Feedstock for Bicyclo[1.1.1]pentane Derivatives. *Angew. Chem. Int. Ed.* 59, 1970–1974 (2020).
- 12. Odachowski, M. et al. Development of Enantiospecific Coupling of Secondary and Tertiary

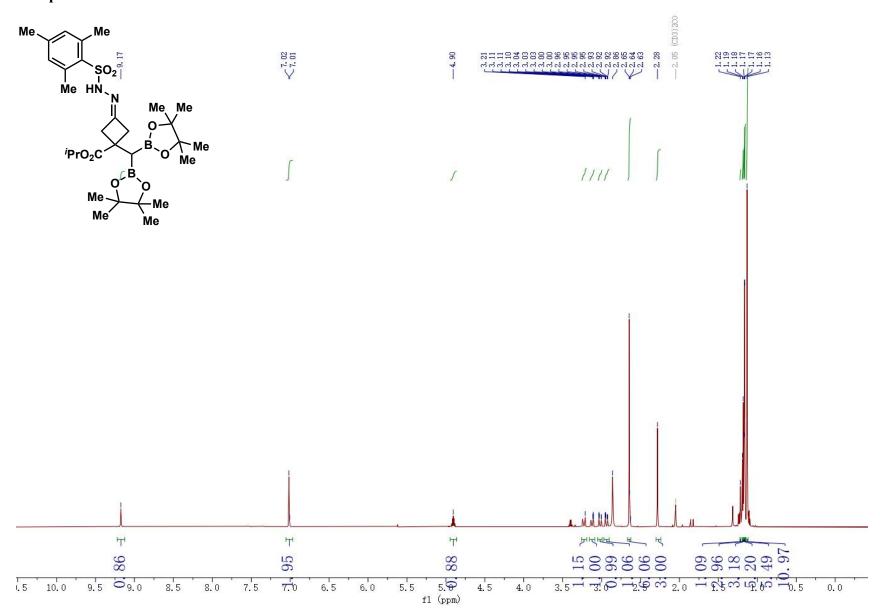

Boronic Esters with Aromatic Compounds. J. Am. Chem. Soc. 138, 9521-9532 (2016);

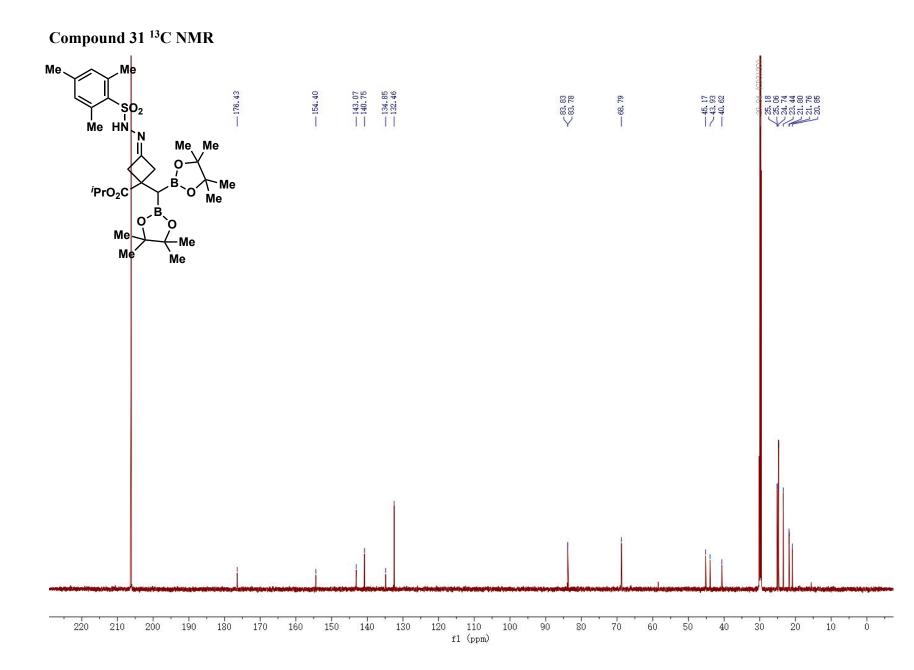
- Primer, D. N. & Molander, G. A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer. J. Am. Chem. Soc. 139, 9847–9850 (2017).
- Nykaza, T. V. *et al.* Intermolecular reductive C-N cross coupling of nitroarenes and boronic acids by P^{III}/P^V=O catalysis. *J. Am. Chem. Soc.* 140, 15200–15205 (2018).
- 15. Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).
- Angell, R. M.; Mary, A. N.; Bamborough, P.; Bamford, M. J.; Cockerill, G. S.; Merrick, S. J.; Smith, K. J.; Walker, A. L. Patent: WO2003032972 (2003).


NMR Spectra

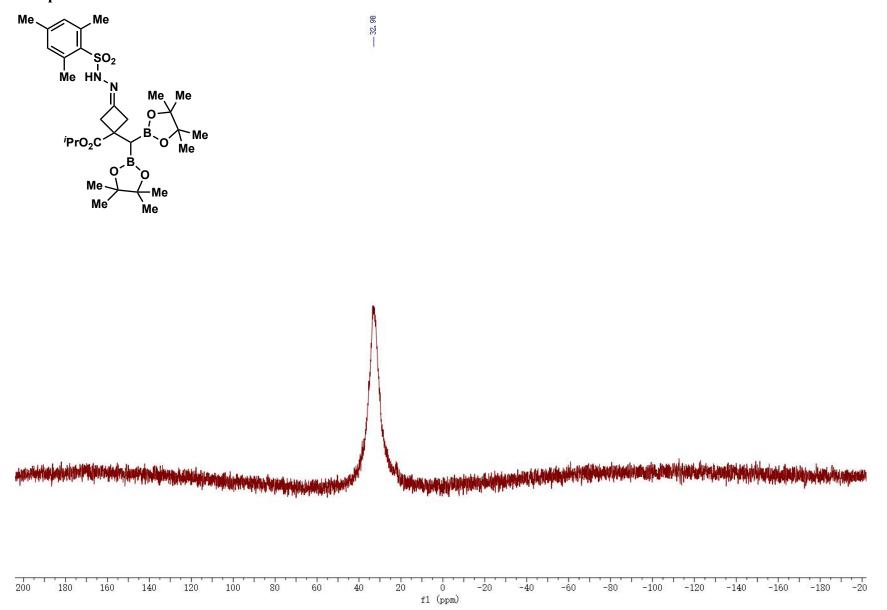
Compound 29¹H NMR

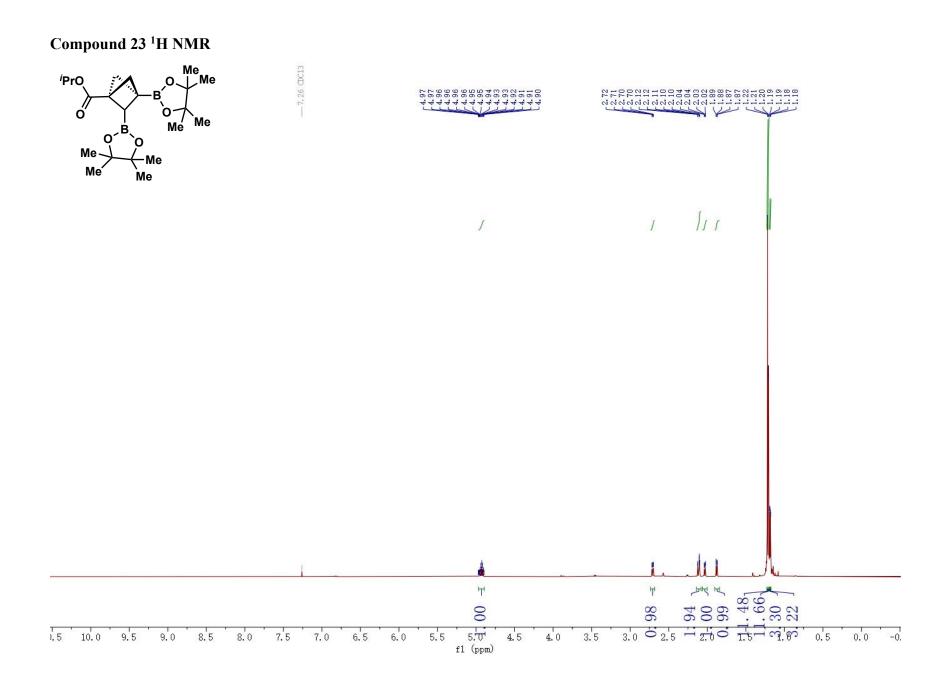


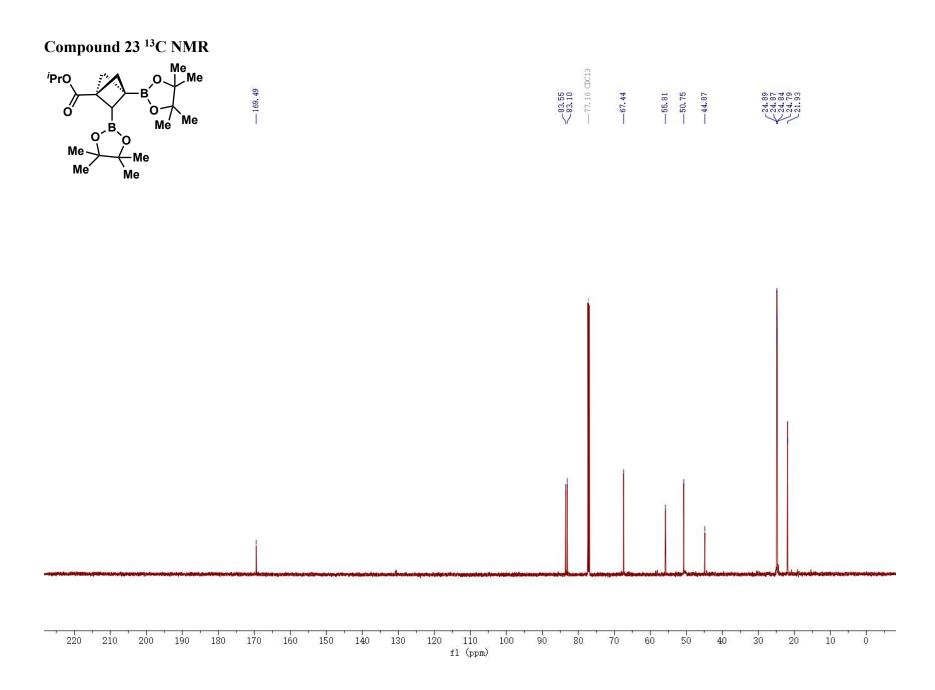


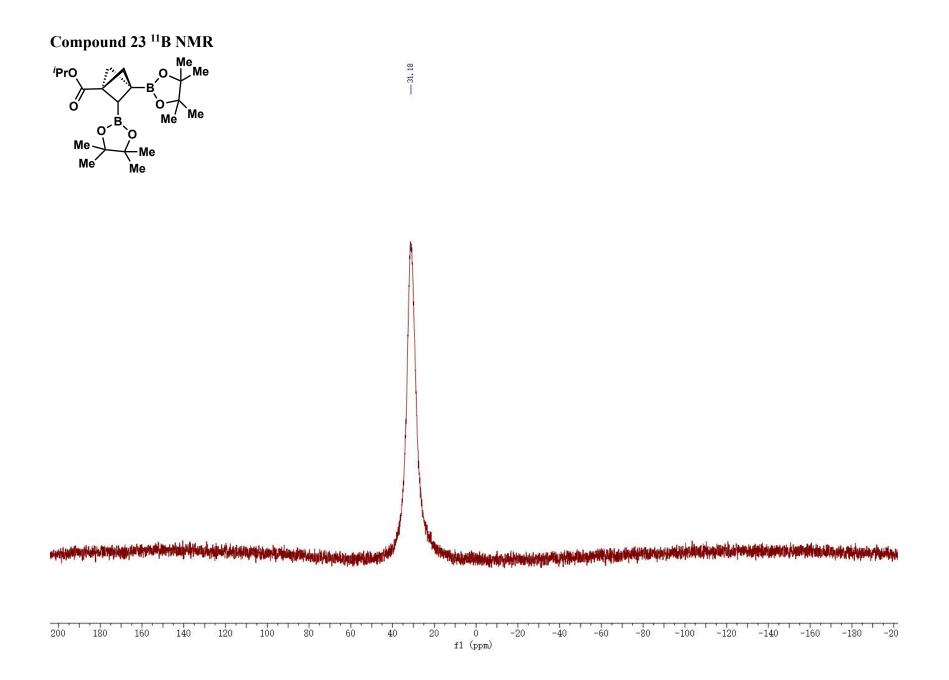


S226

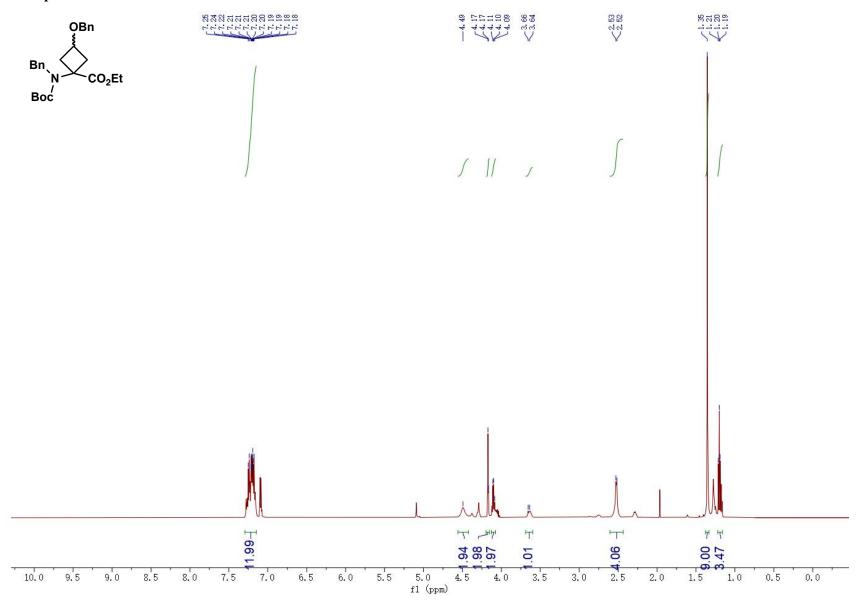


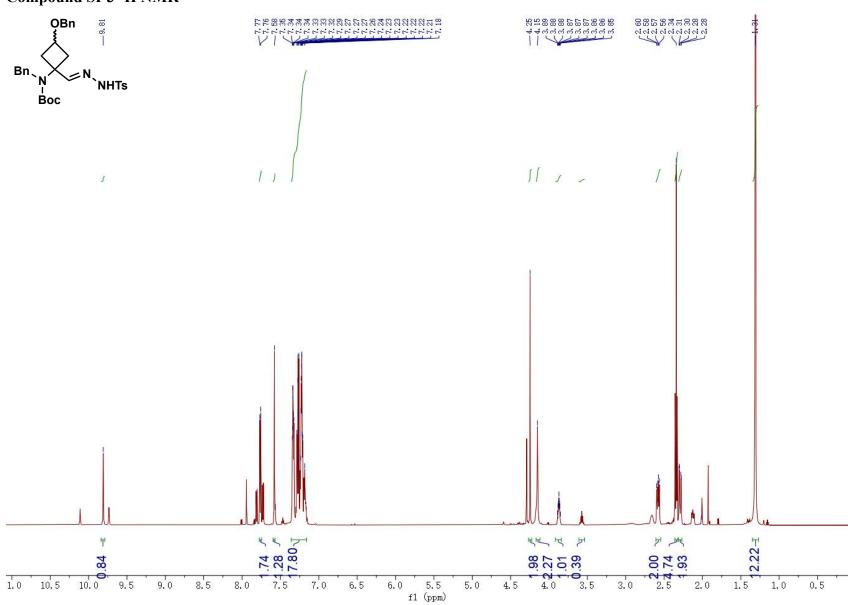

Compound 31 ¹H NMR

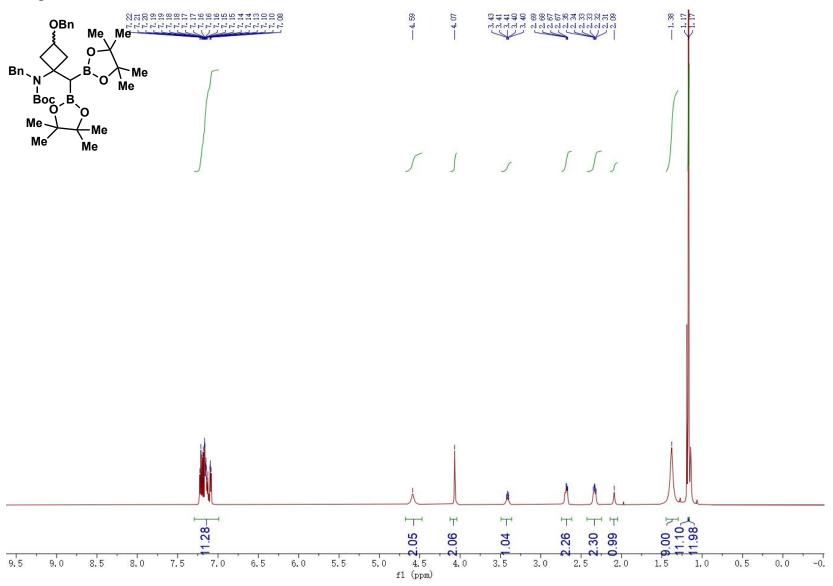


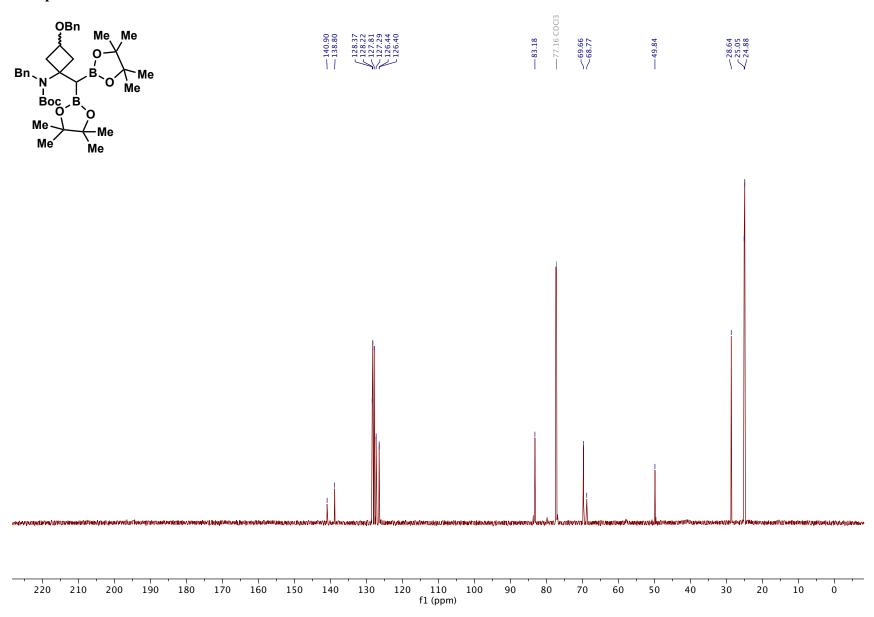


Compound 31¹¹B NMR

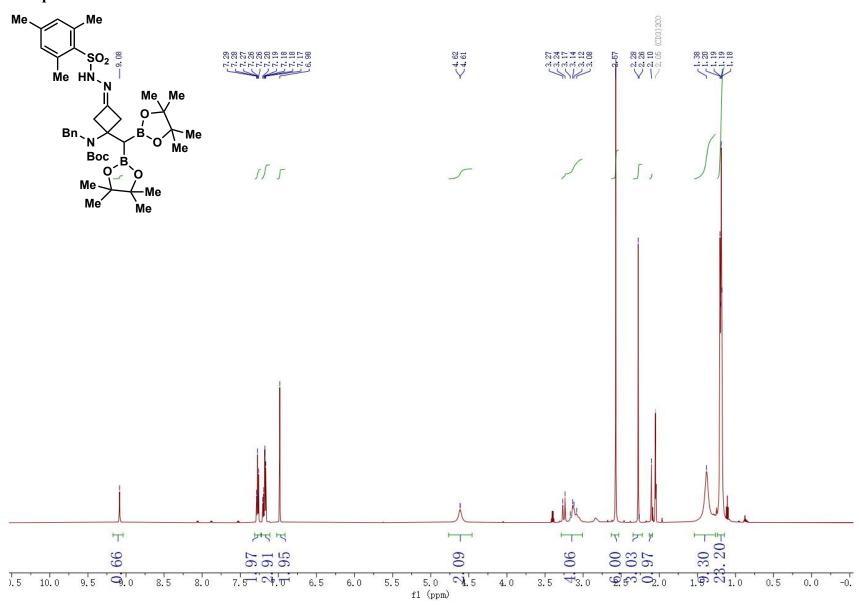


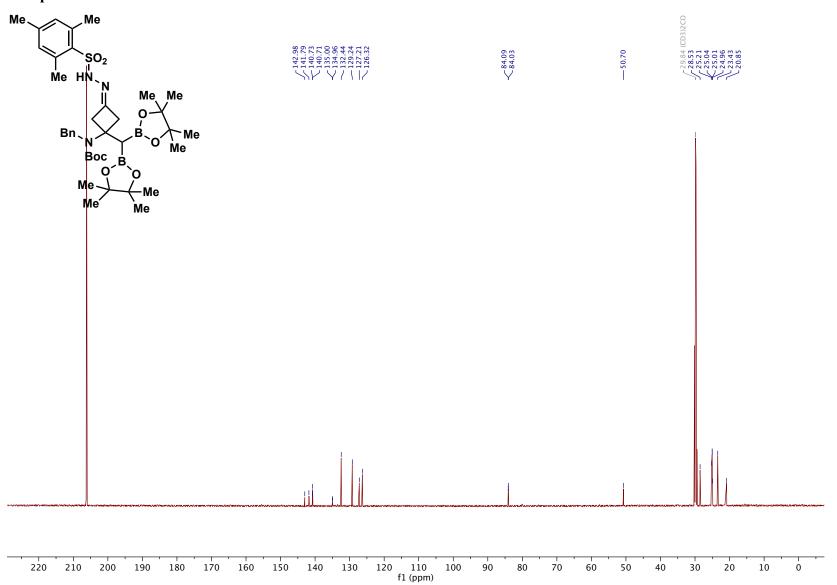


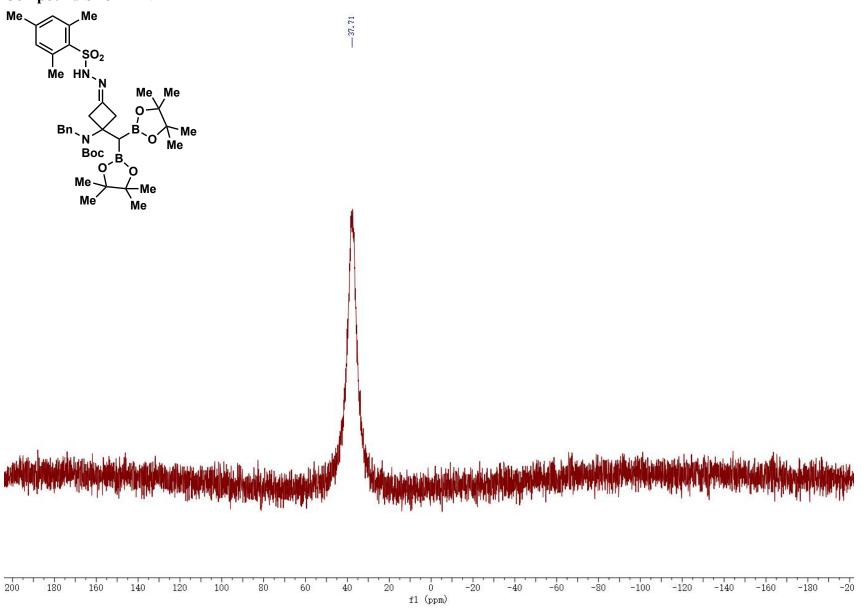

Compound SI-2 ¹H NMR

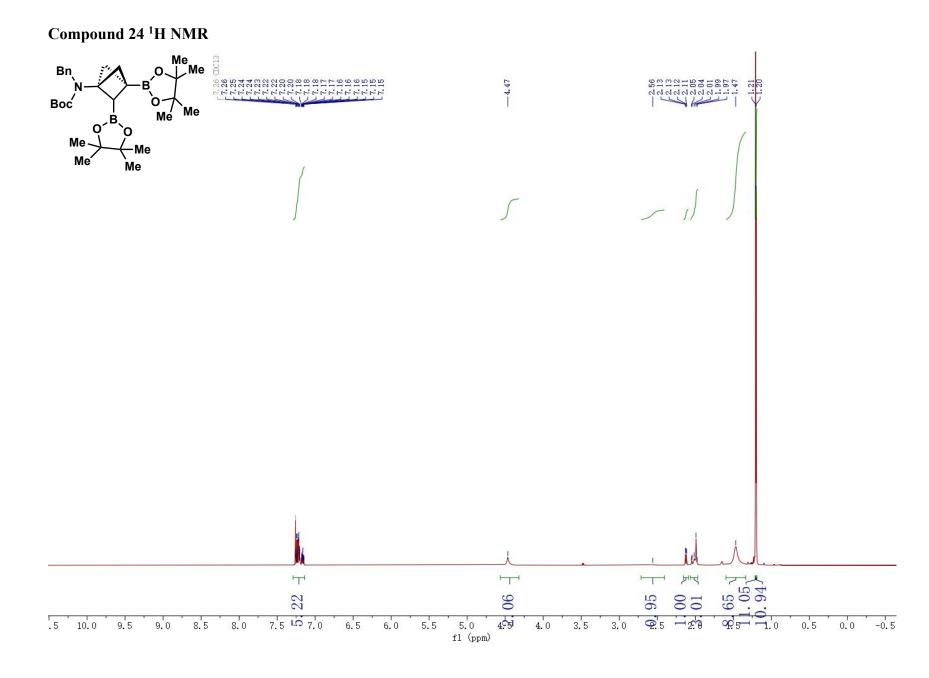


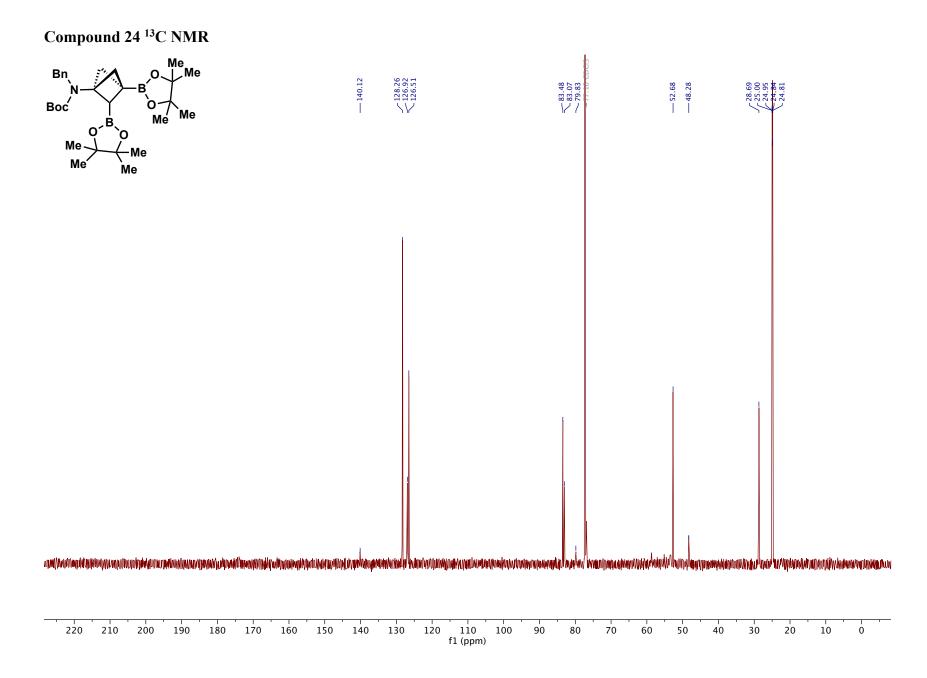
Compound SI-3 ¹H NMR



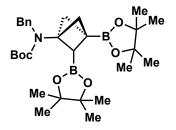

Compound SI-4 ¹³C NMR

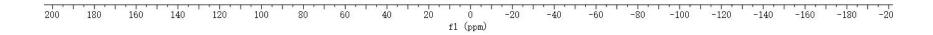

Compound SI-5 ¹H NMR

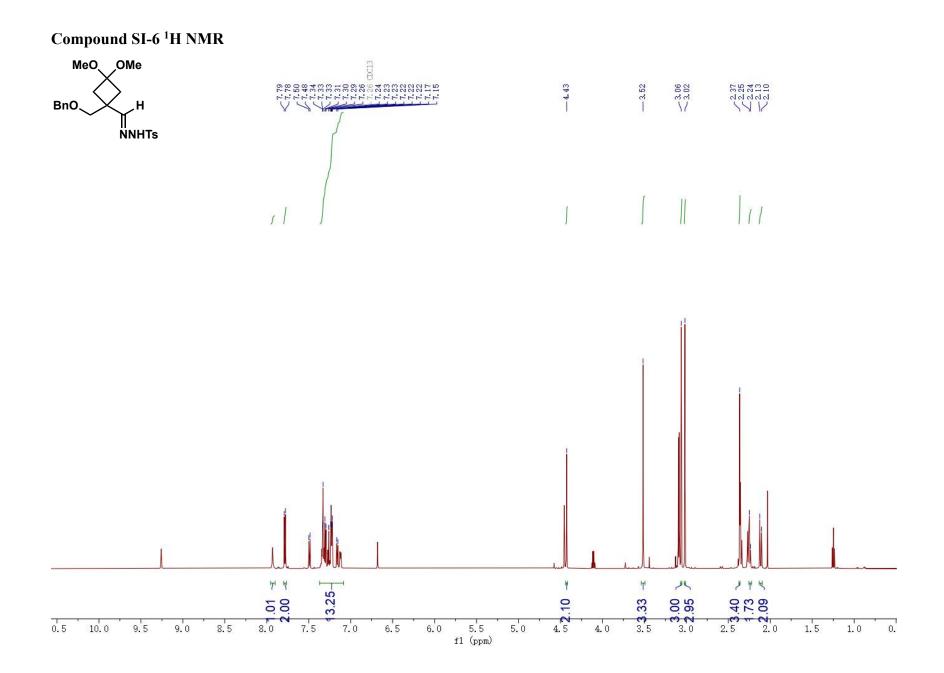

Compound SI-5¹³C NMR



Compound SI-5¹¹B NMR

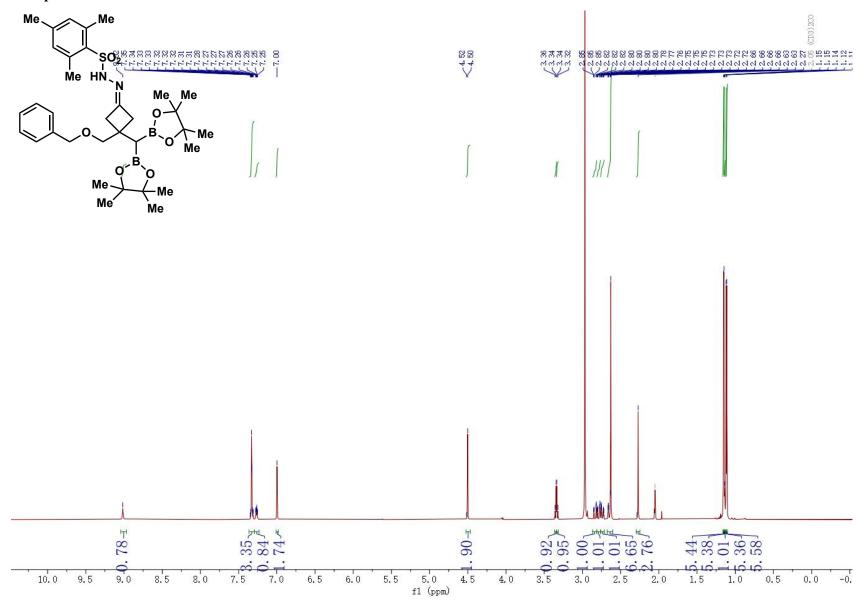


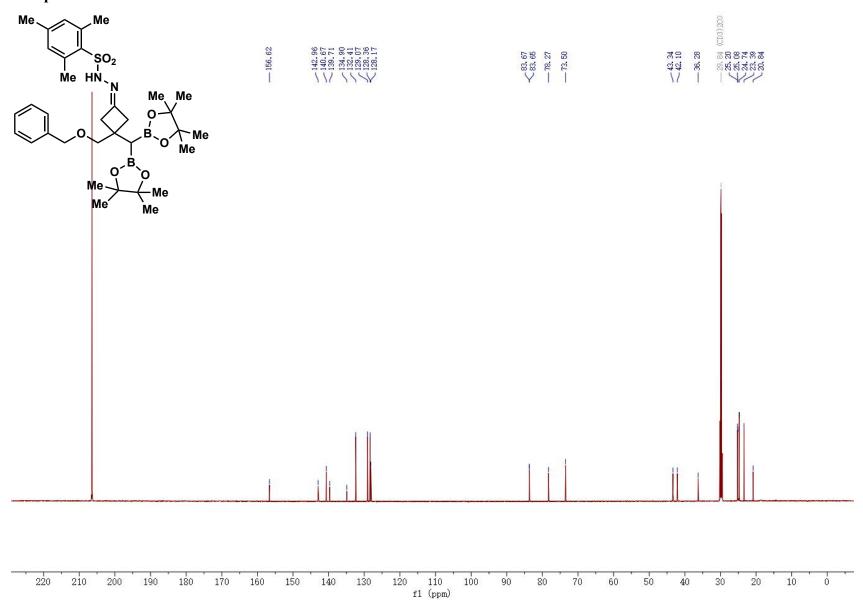




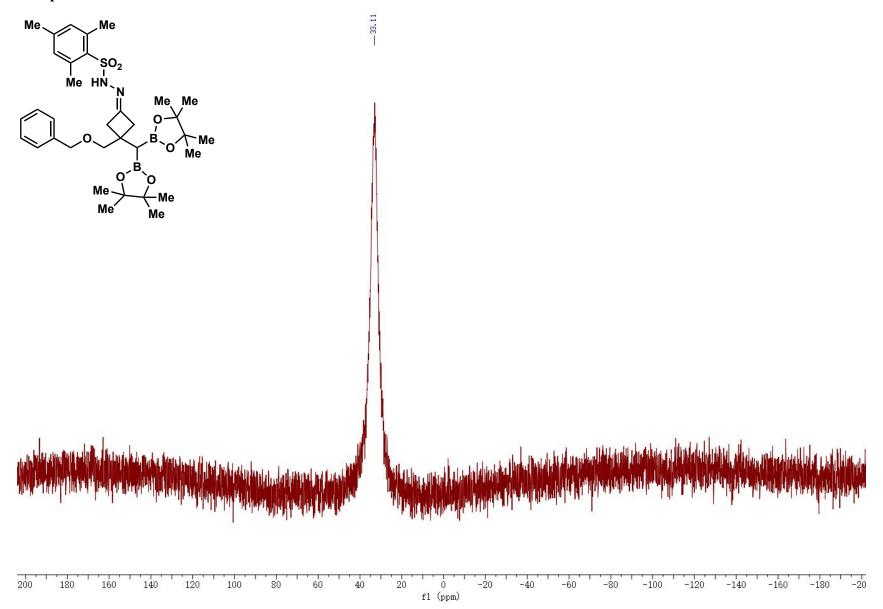
S242

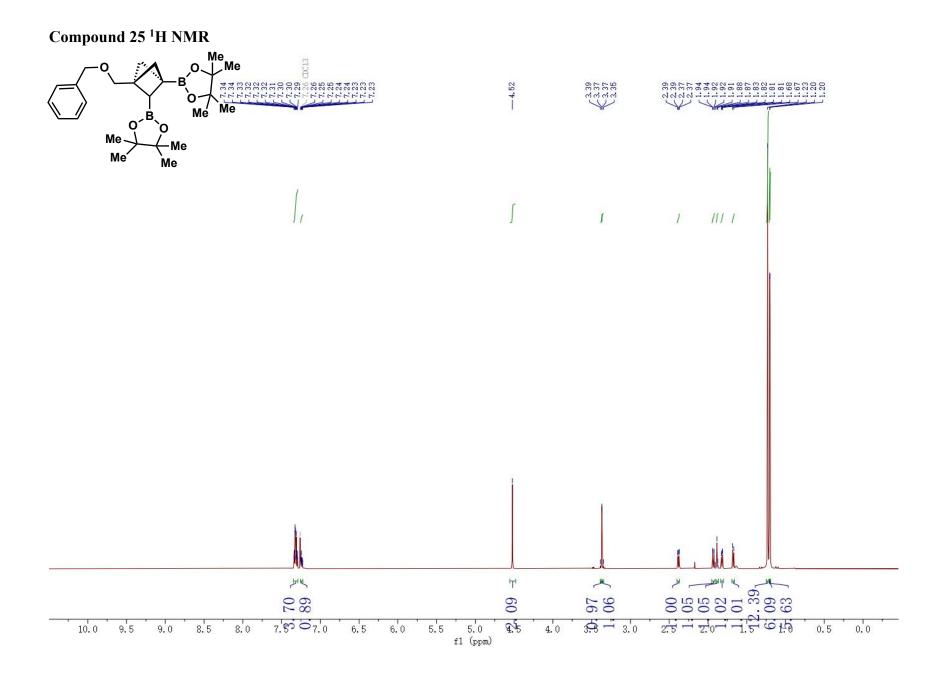
Compound 24¹¹B NMR

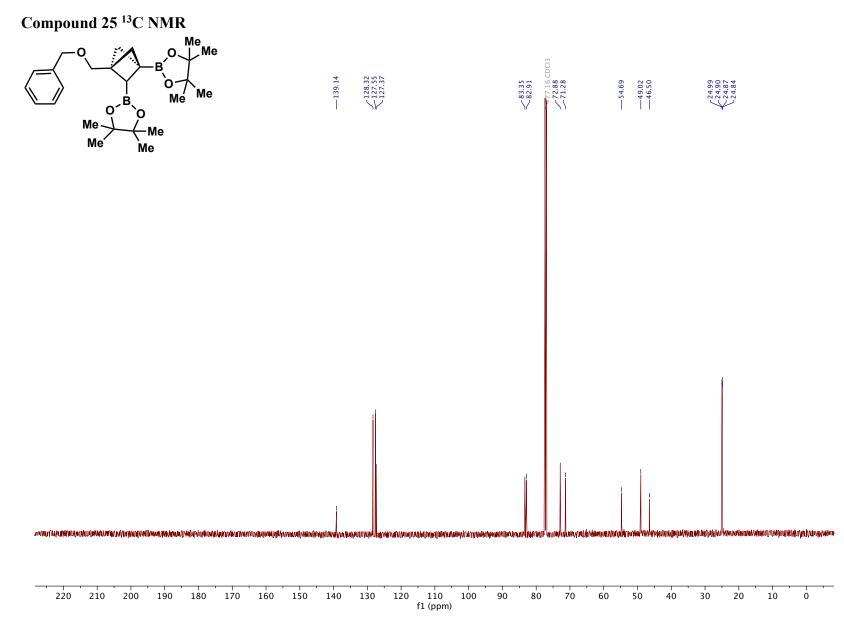




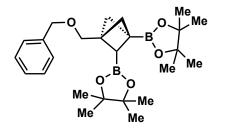
S244

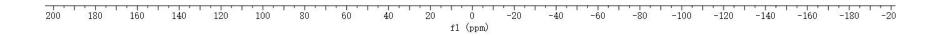

Compound SI-7 ¹H NMR

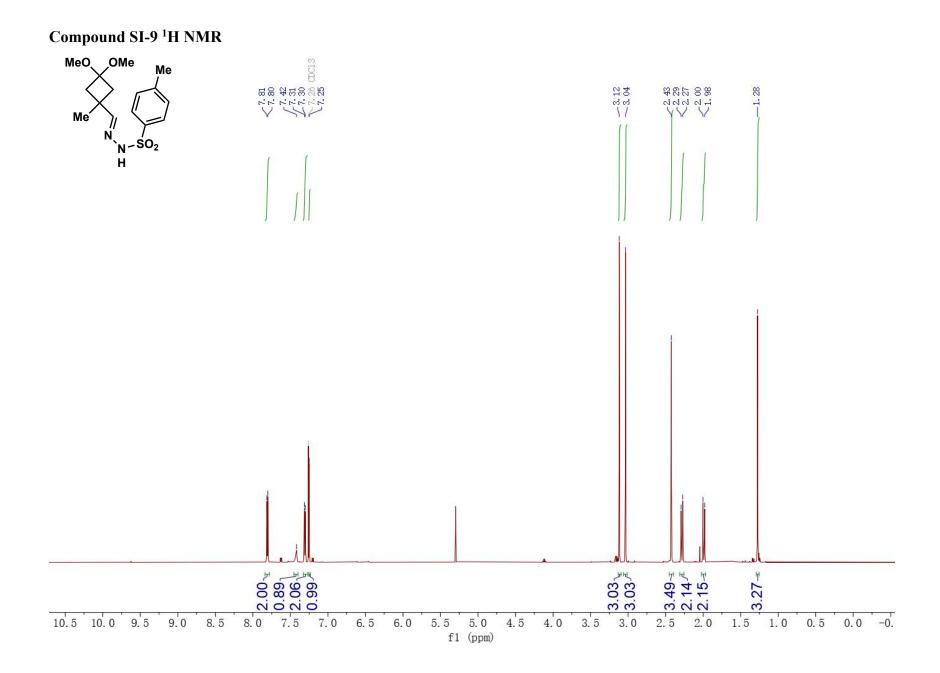


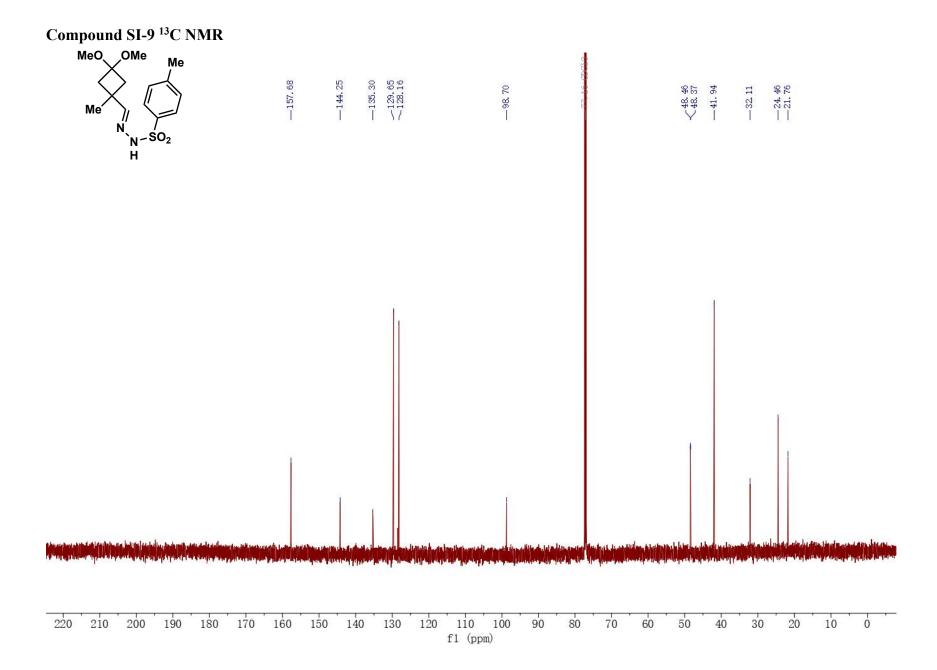

Compound SI-7 ¹³C NMR

Compound SI-7¹¹B NMR

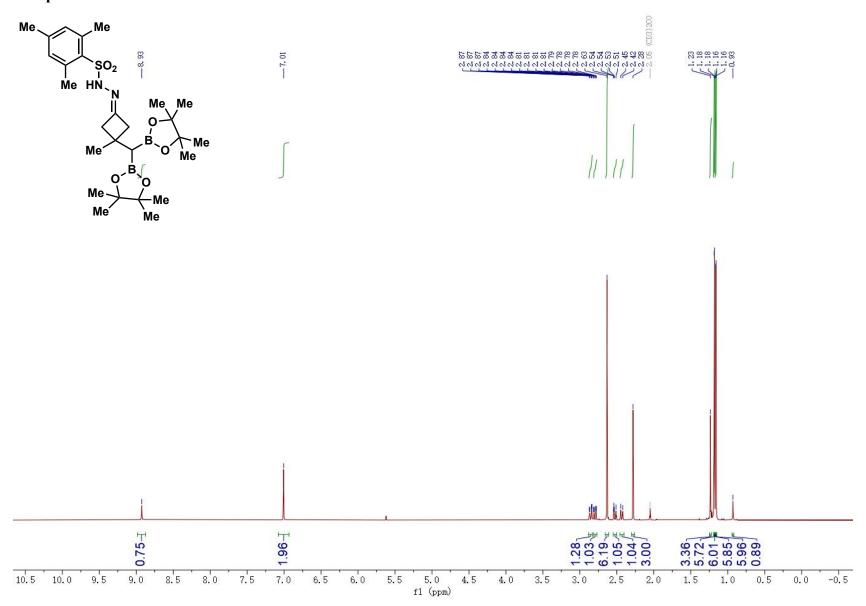


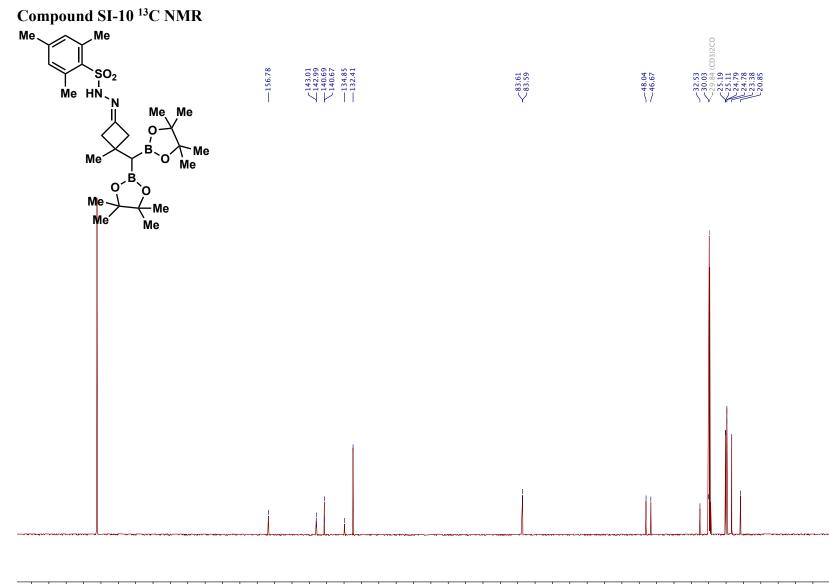


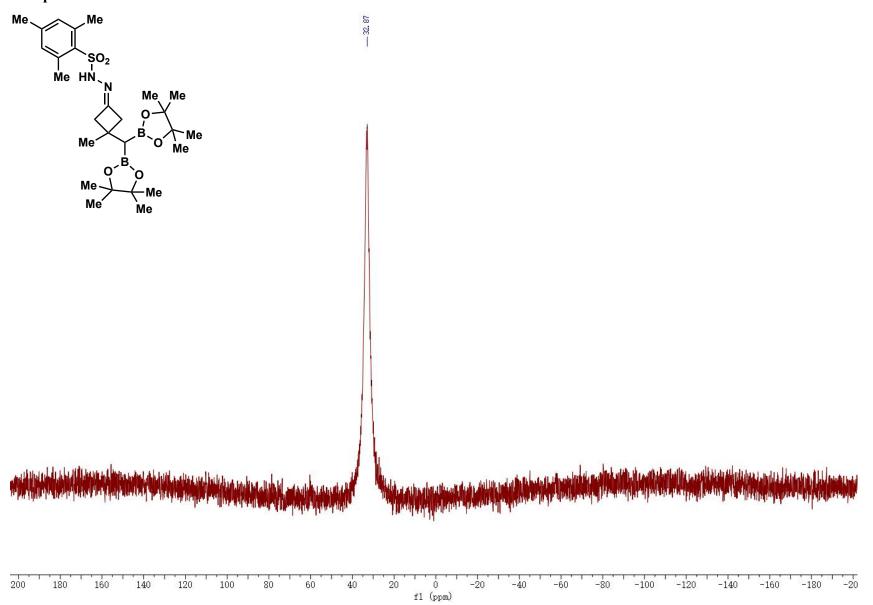


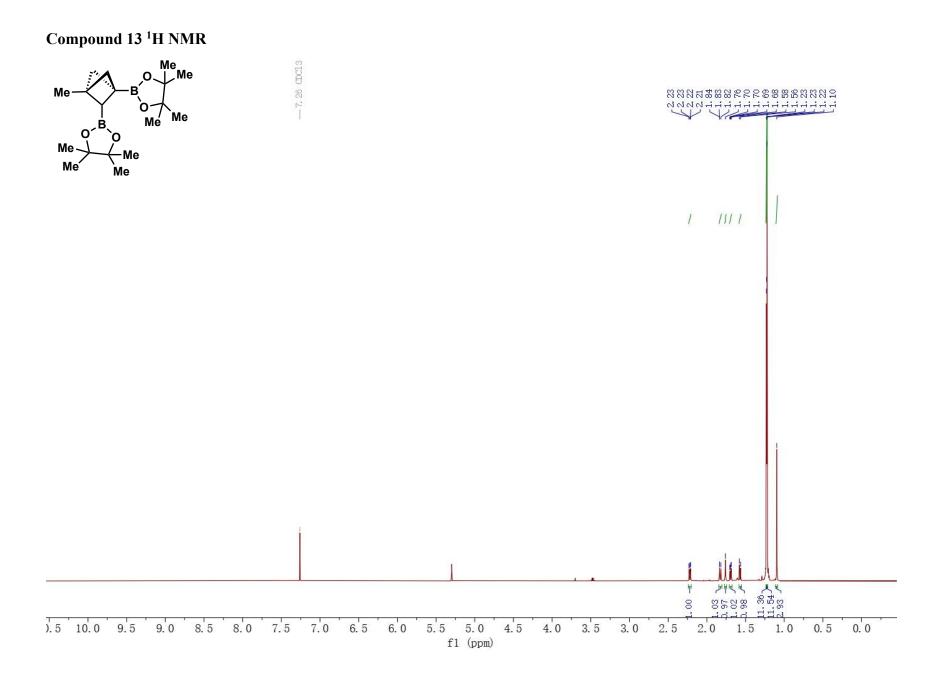


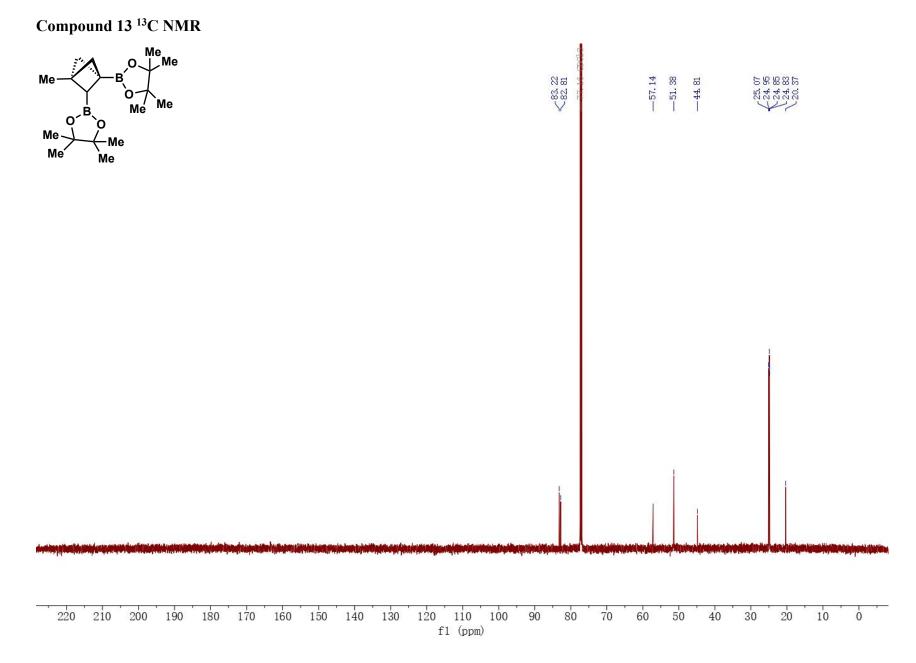
Compound 25¹¹B NMR





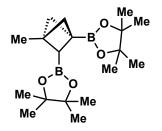

Compound SI-10 ¹H NMR

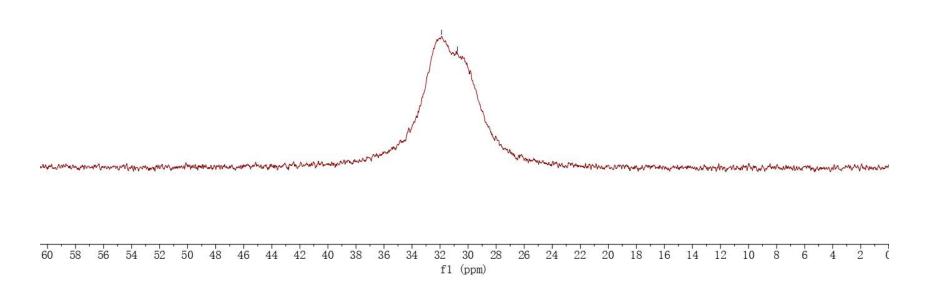


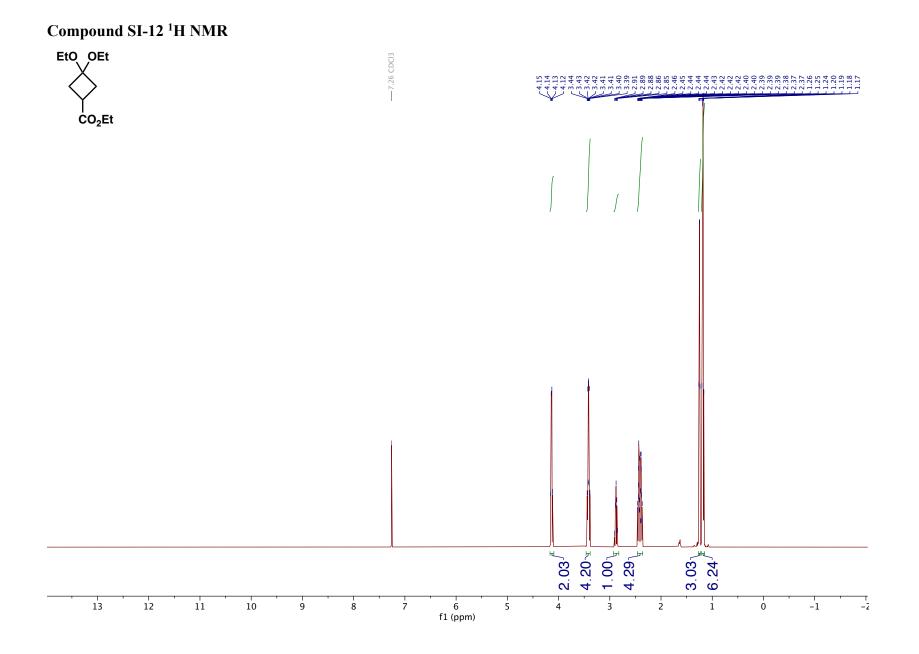


220 210 200 120 110 100 f1 (ppm) 190 180 150 140 130

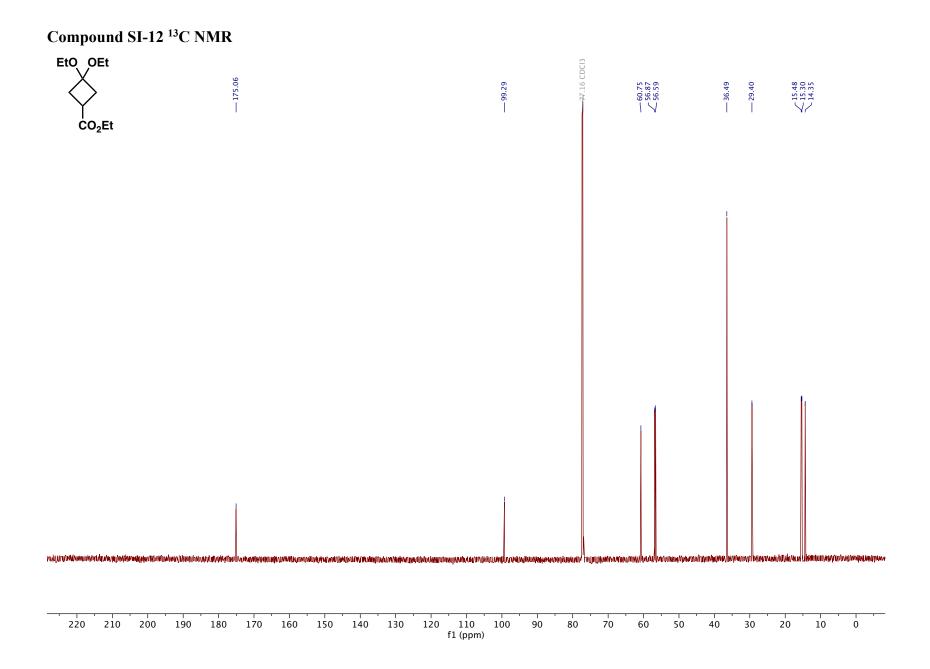
Compound SI-10¹¹B NMR

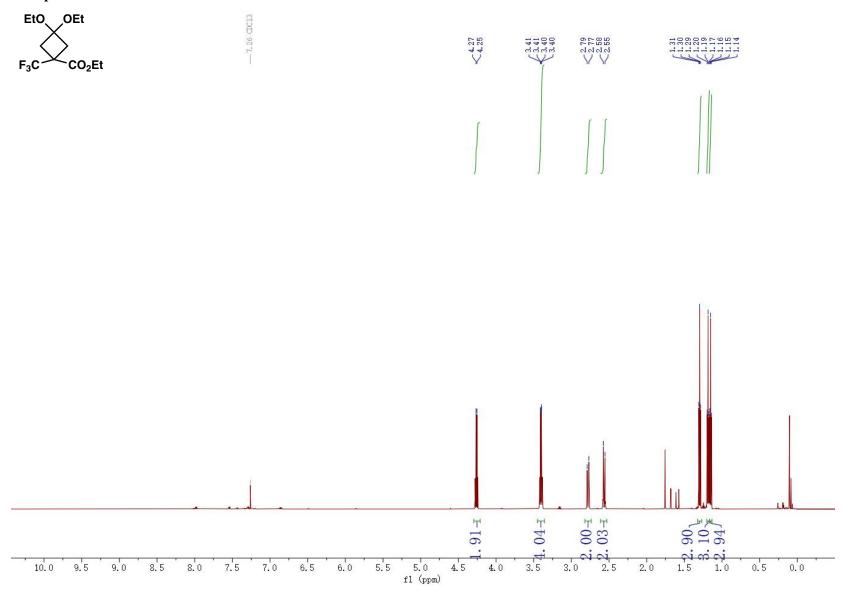


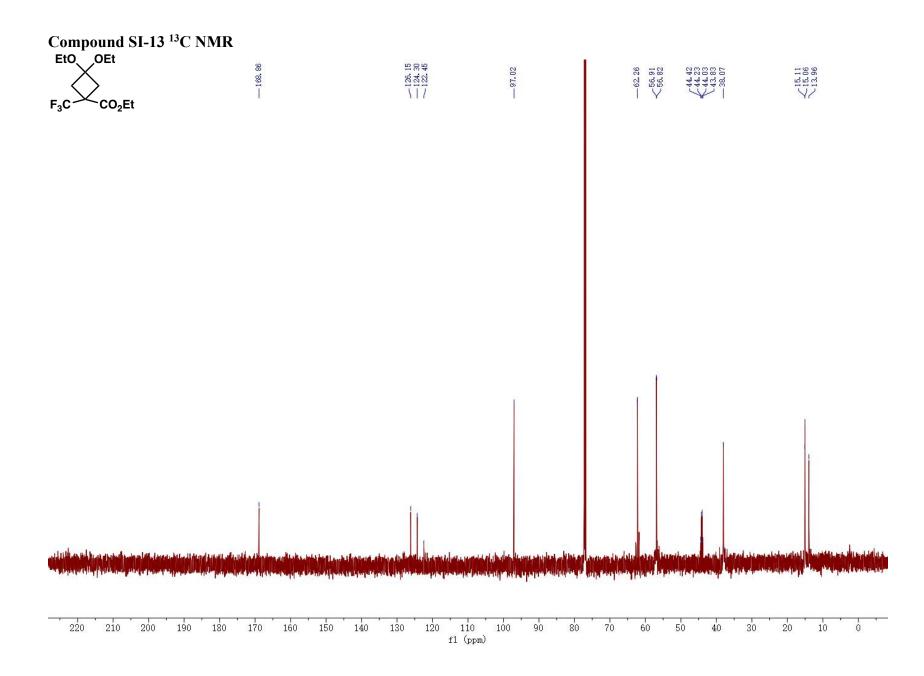



S257

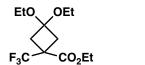
Compound 13 ¹¹B NMR

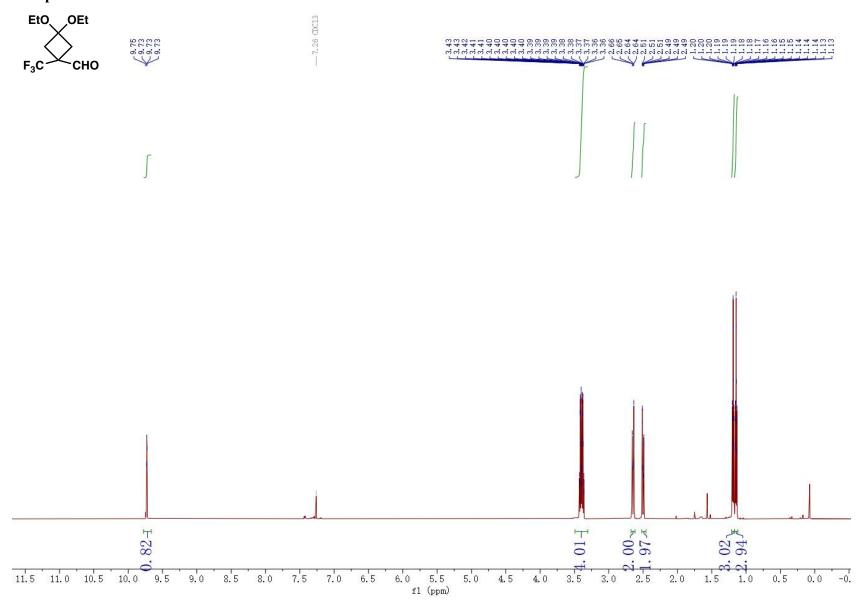


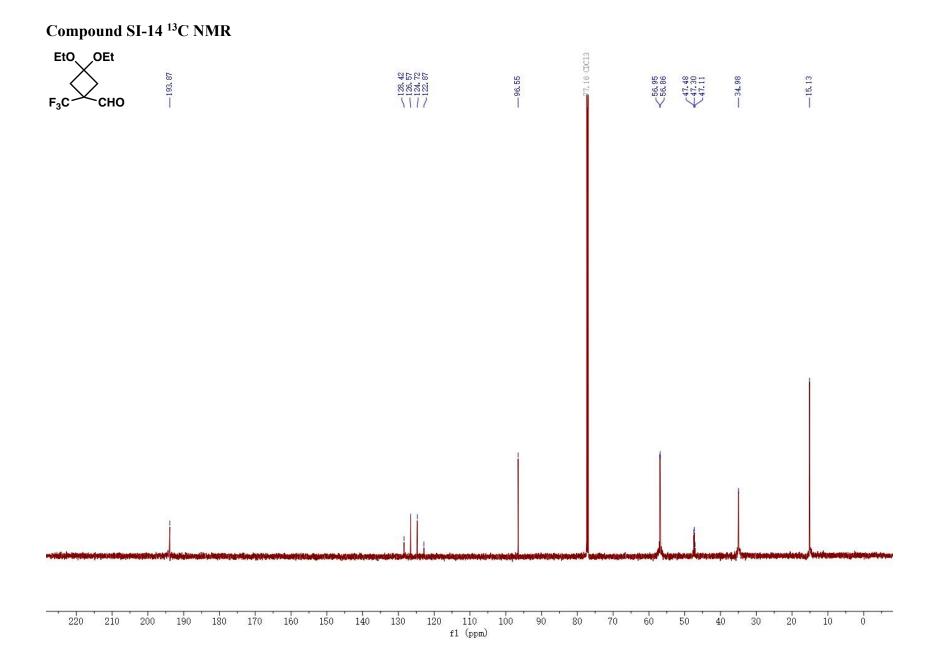




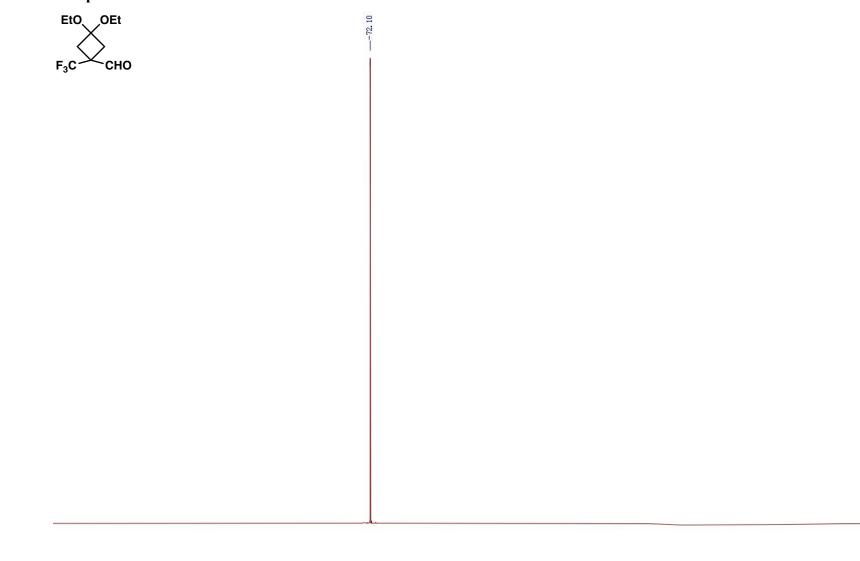
S259

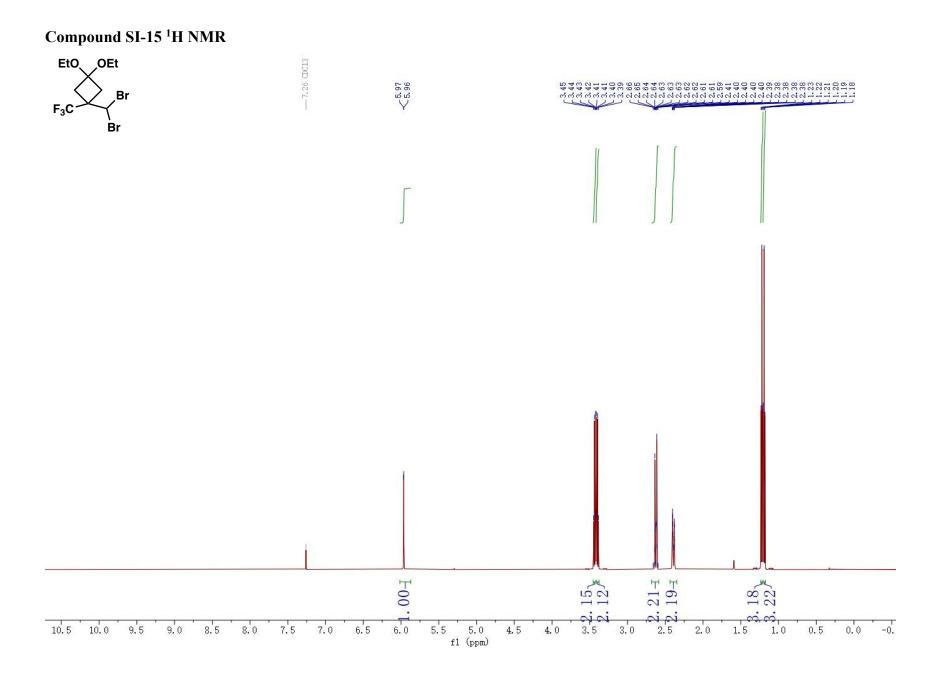


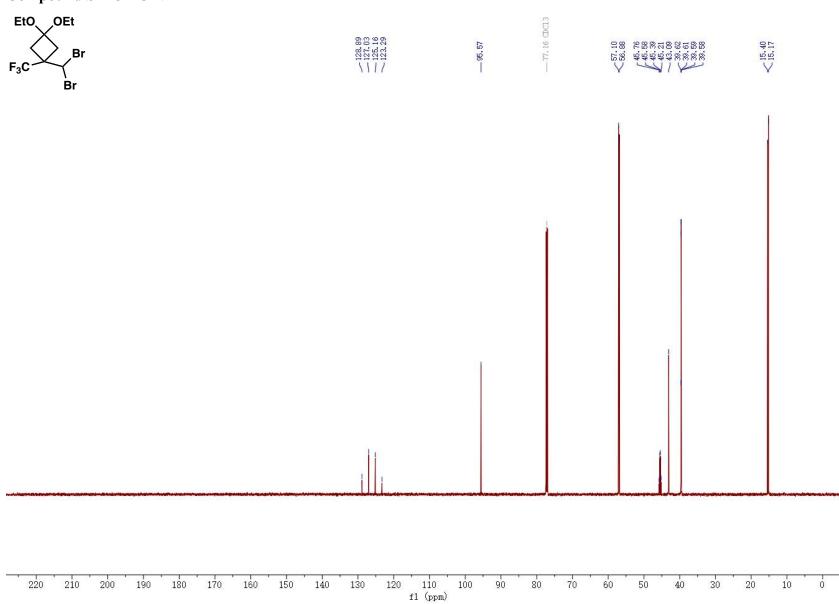



Compound SI-13 ¹⁹F NMR

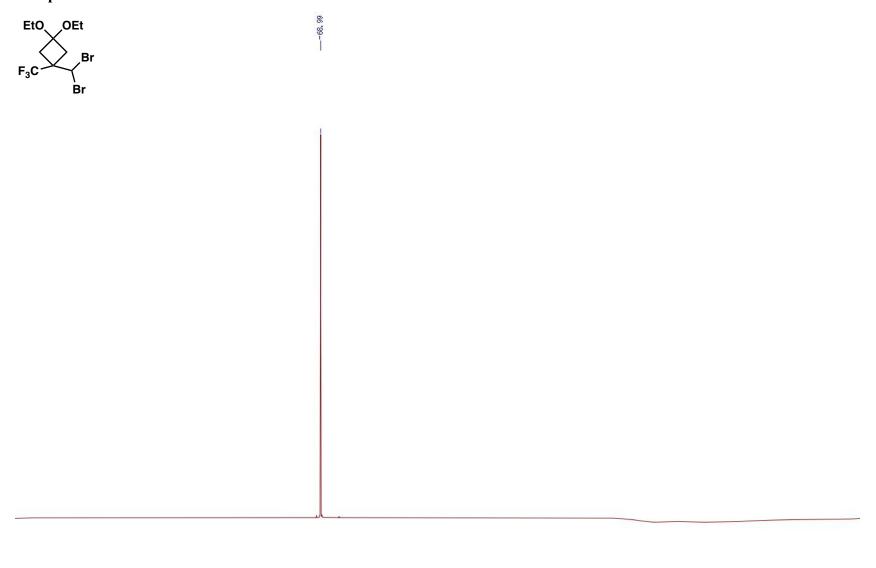
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

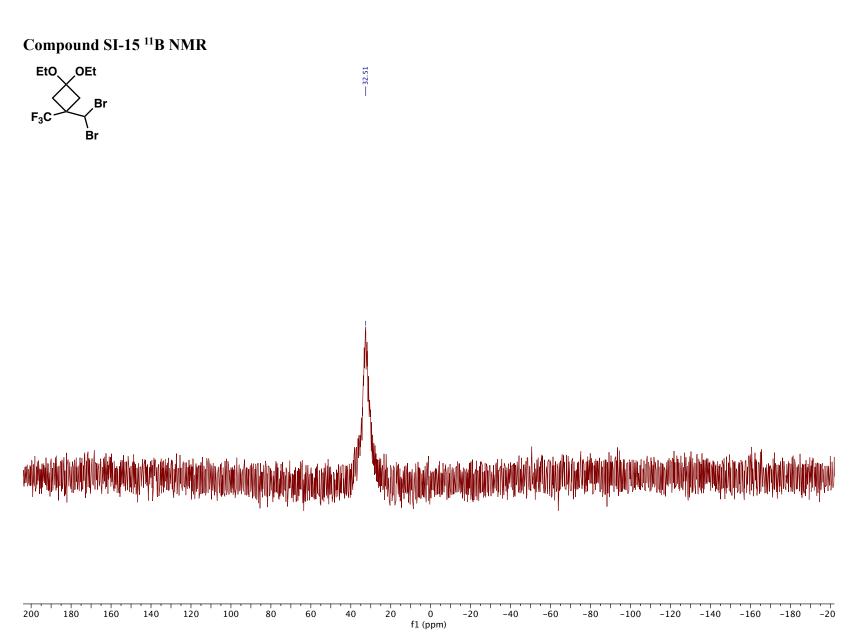

Compound SI-14 ¹H NMR




S265

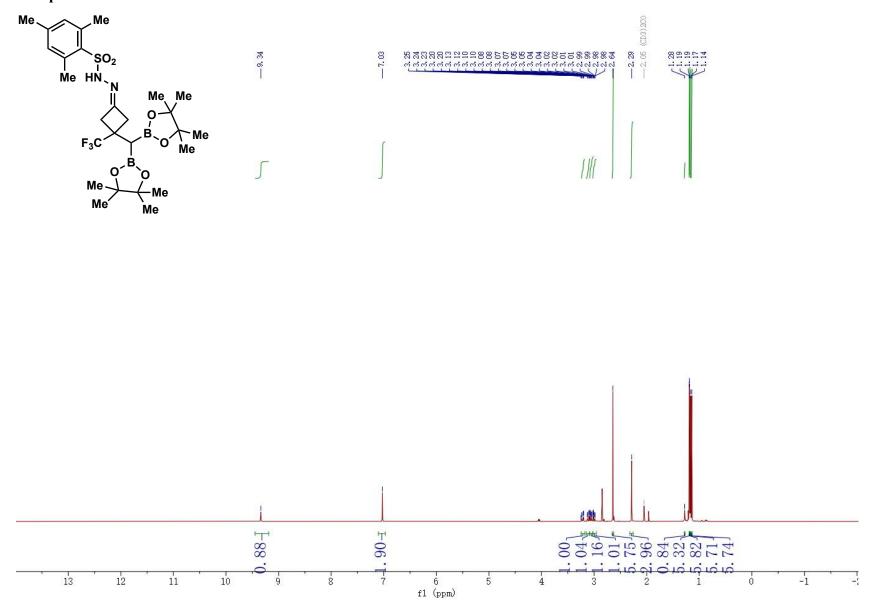
Compound SI-14¹⁹F NMR


	- C											· · ·		· · · ·	S 10 1	2 AL						· · · · · ·	· · · · ·		A 4 4	2
20	10	0	-10	-90	-20	-40	-E0	-60	-70	-00	-00	-100	-110	-190	-120	-140	-150	-160	-170	-100	-100	-900	-910	_000	_020	
20	10	0	10	20	00	40	00	00	10	00	90	100	110	120	100	140	100	100	TIO	100	190	200	210	220	200	
fl (ppm)																										
												11 (ppm/													

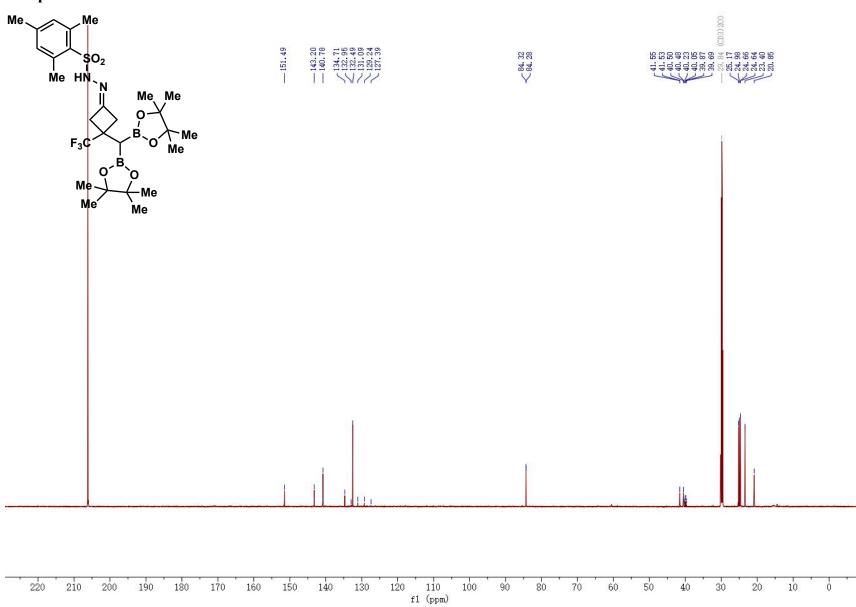


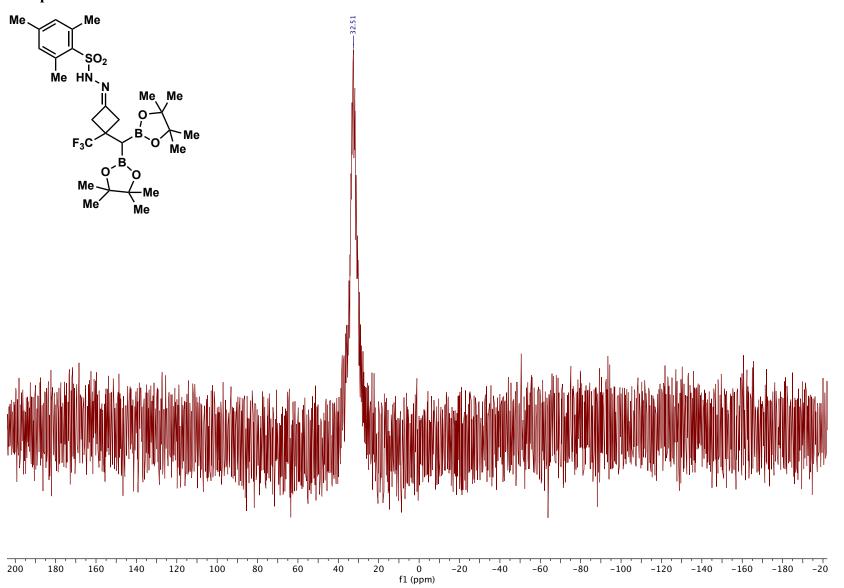
Compound SI-15¹³C NMR

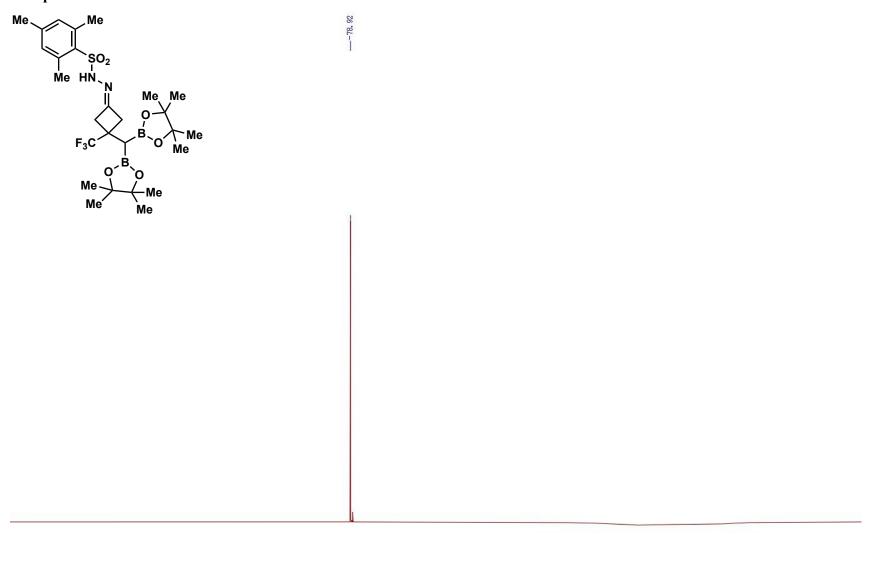
Compound SI-15¹⁹F NMR

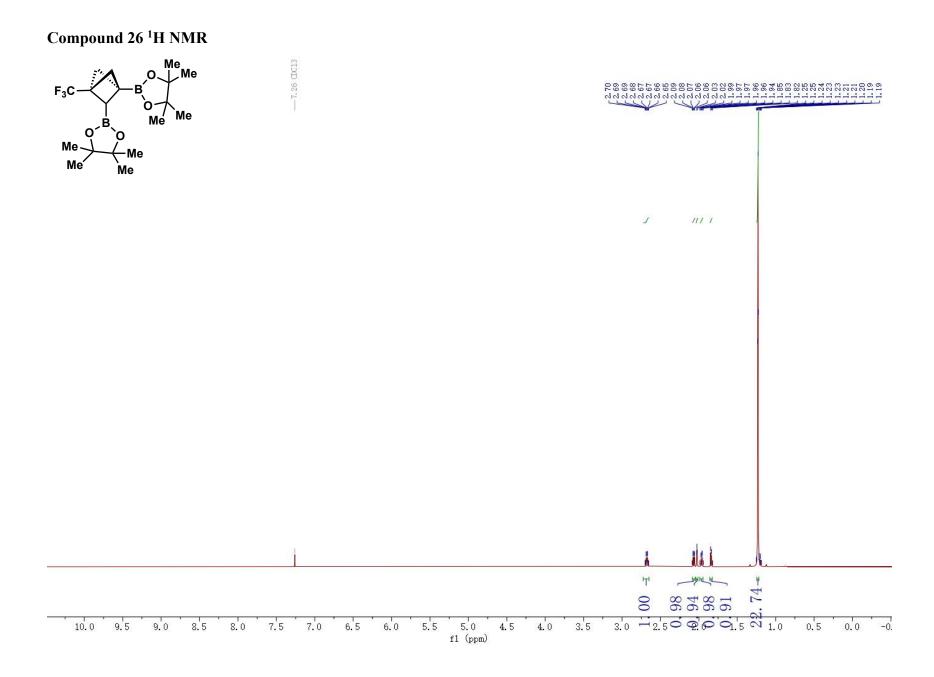


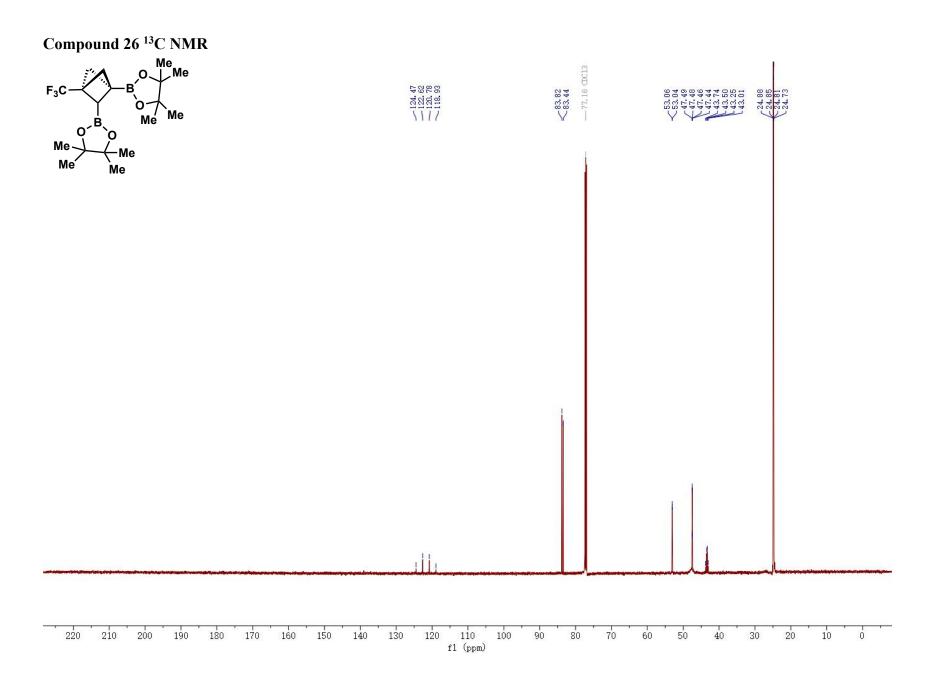
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)



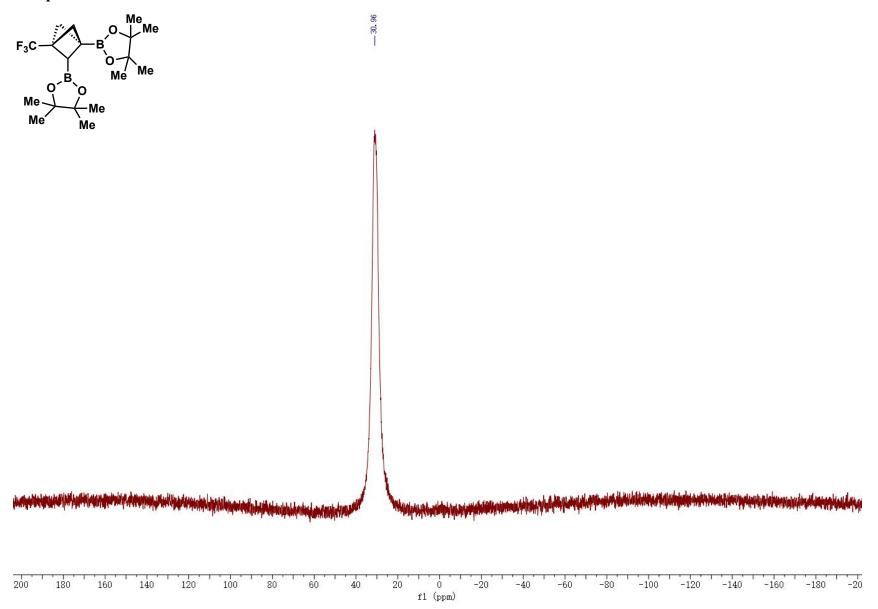

Compound SI-16¹H NMR

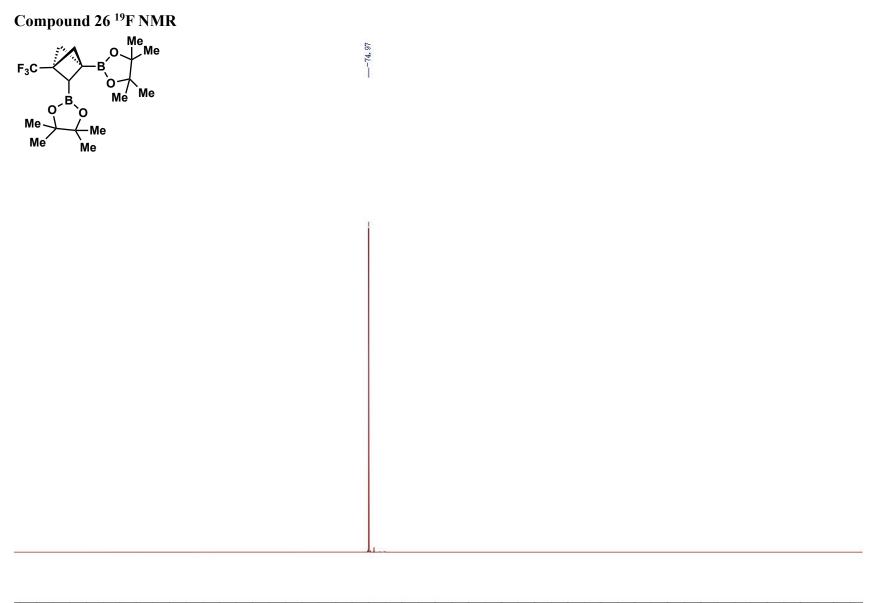

Compound SI-16¹³C NMR

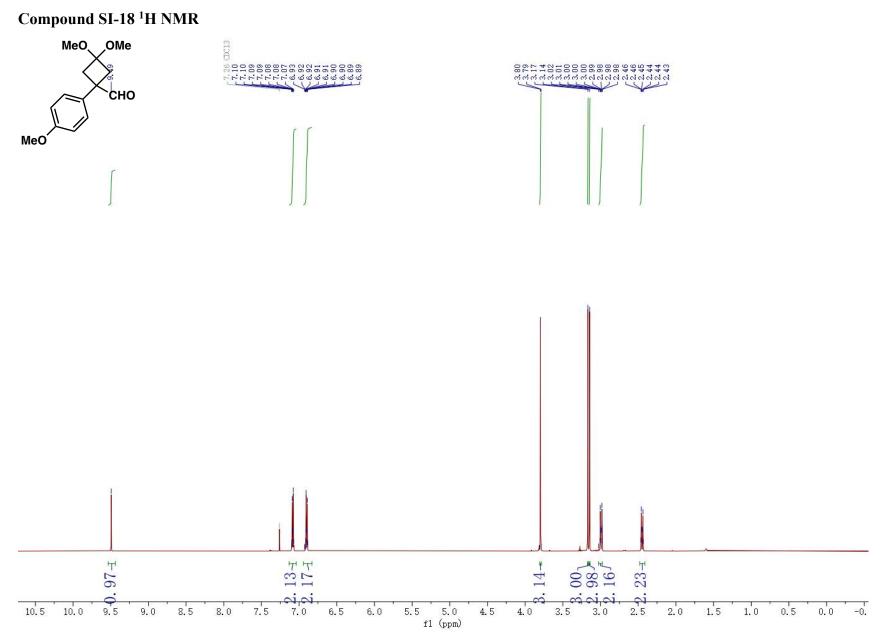

Compound SI-16¹¹B NMR



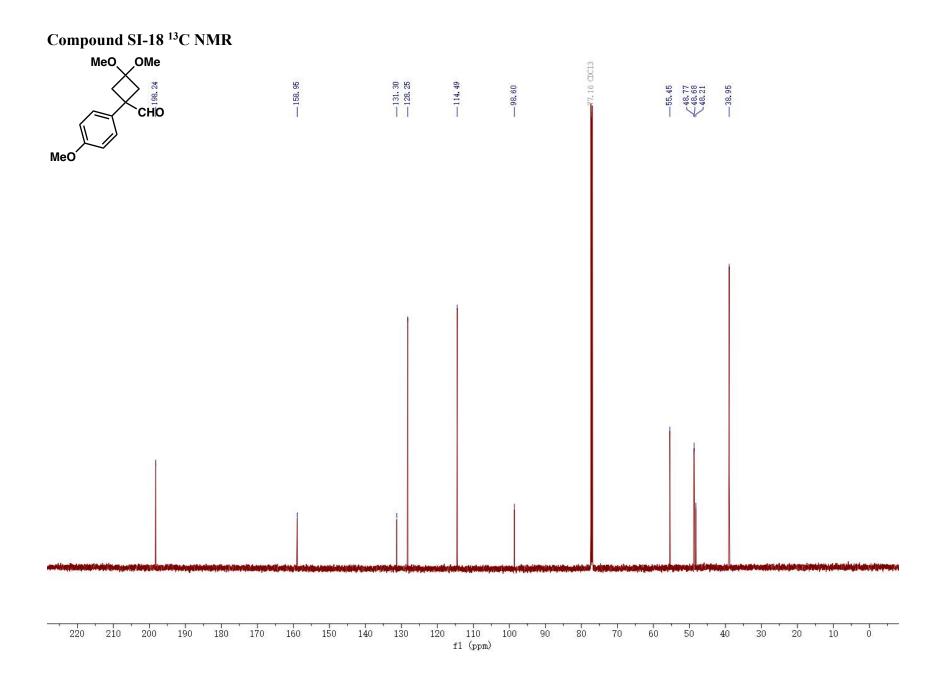
Compound SI-16¹⁹F NMR

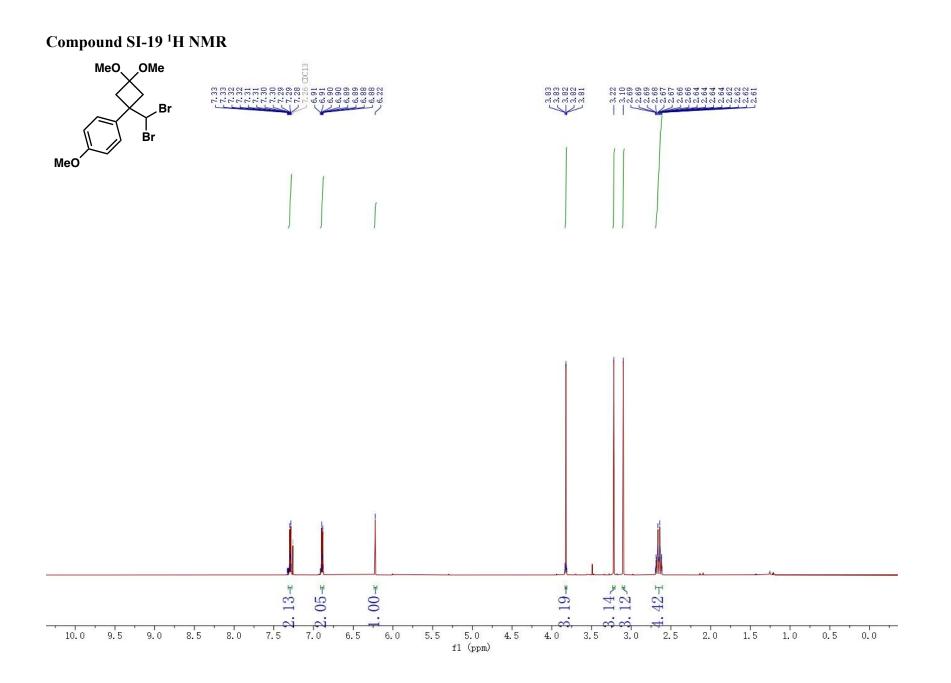


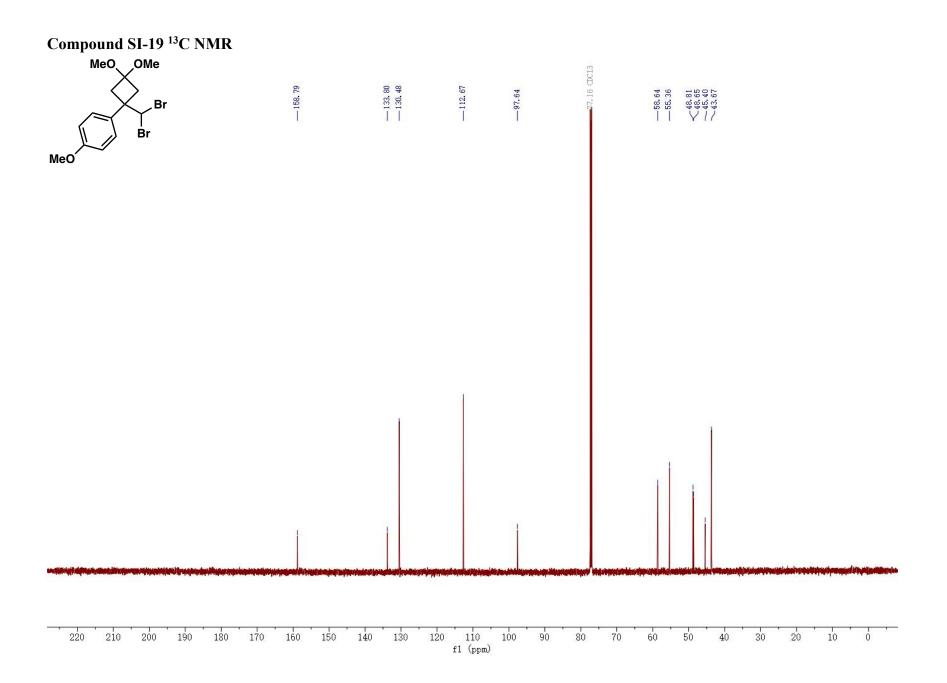

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

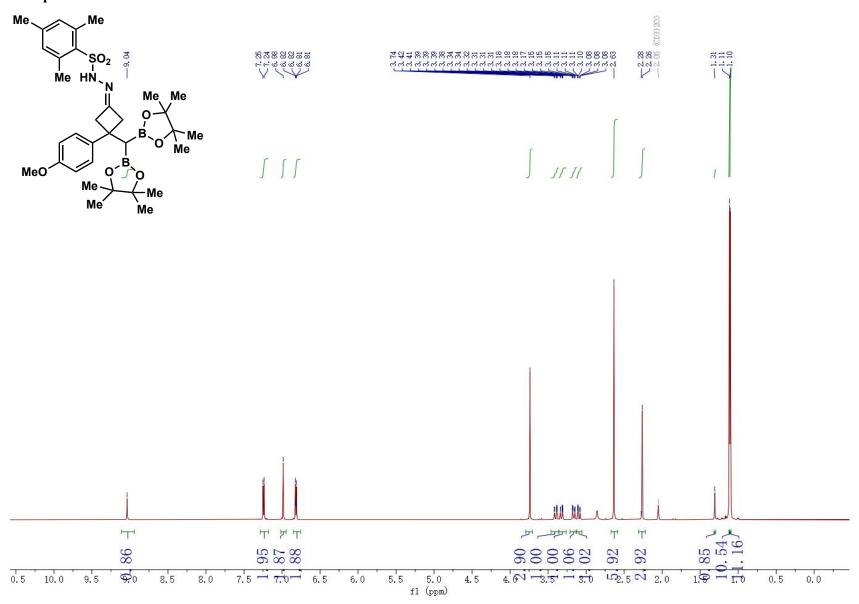


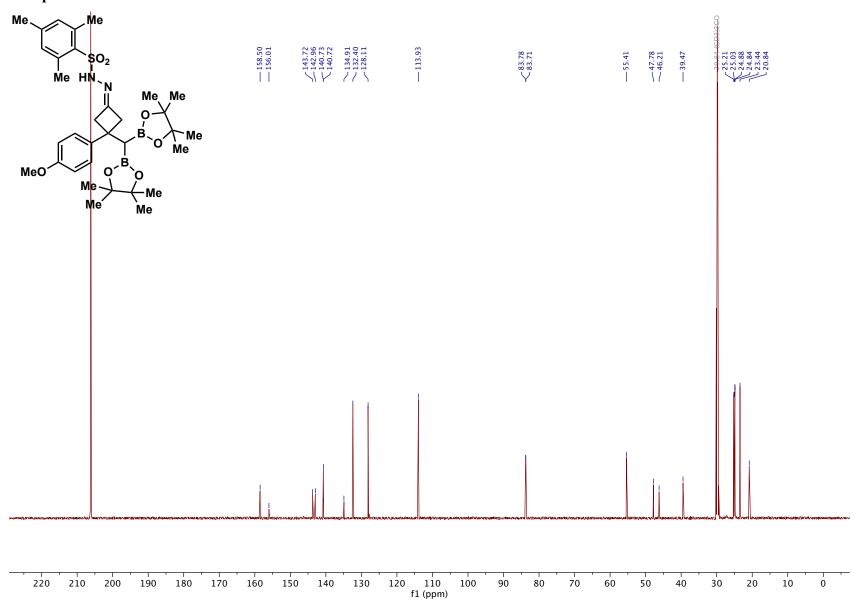
Compound 26¹¹B NMR

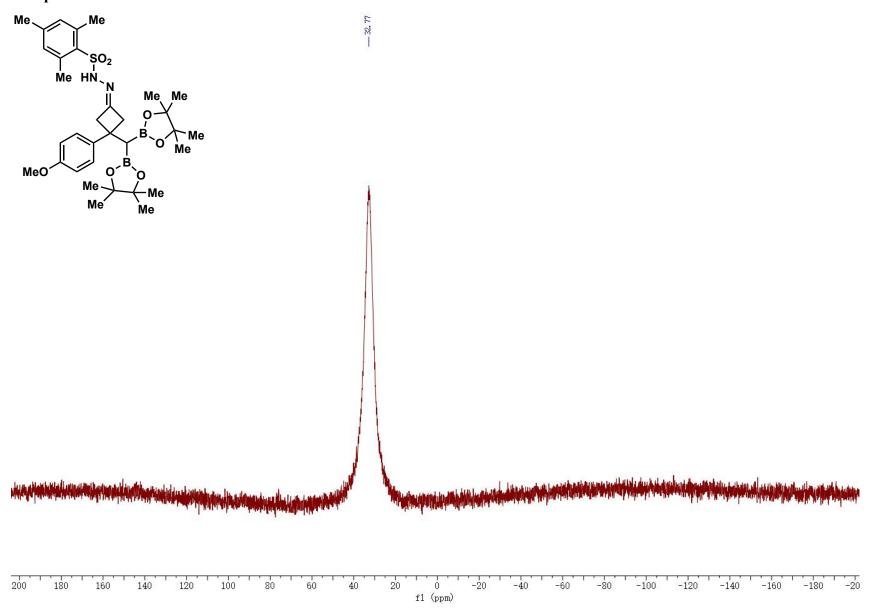


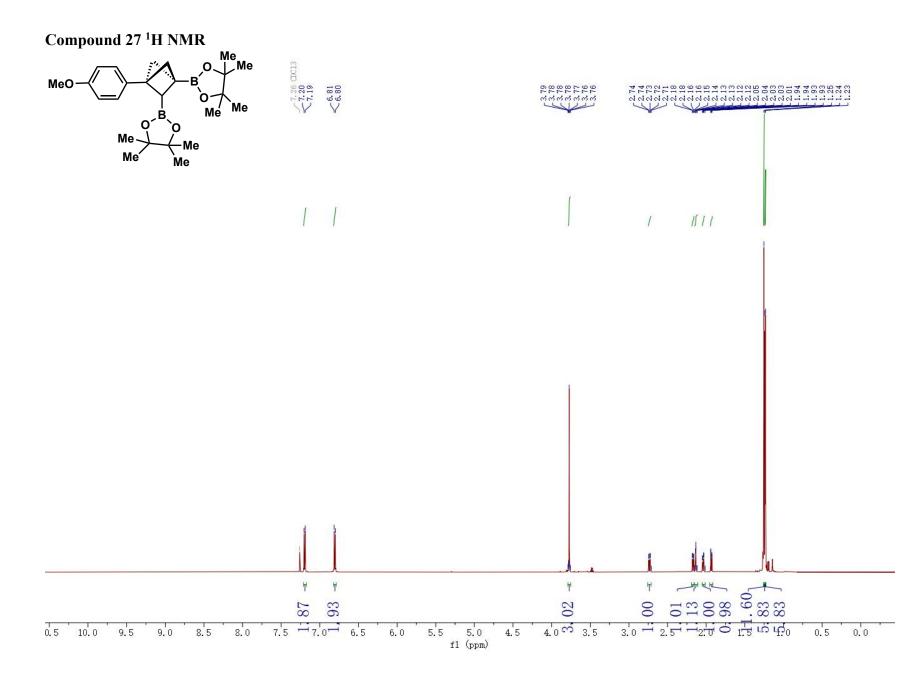


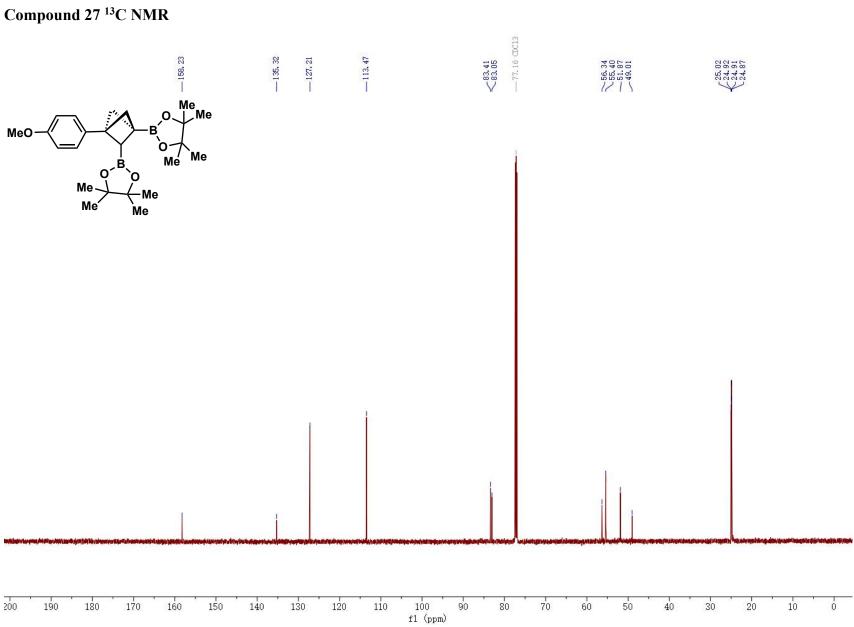

30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220
fl (ppm)																									


S279

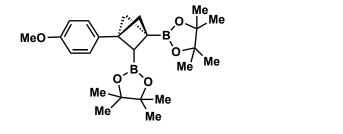


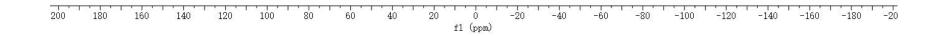

Compound SI-20¹H NMR

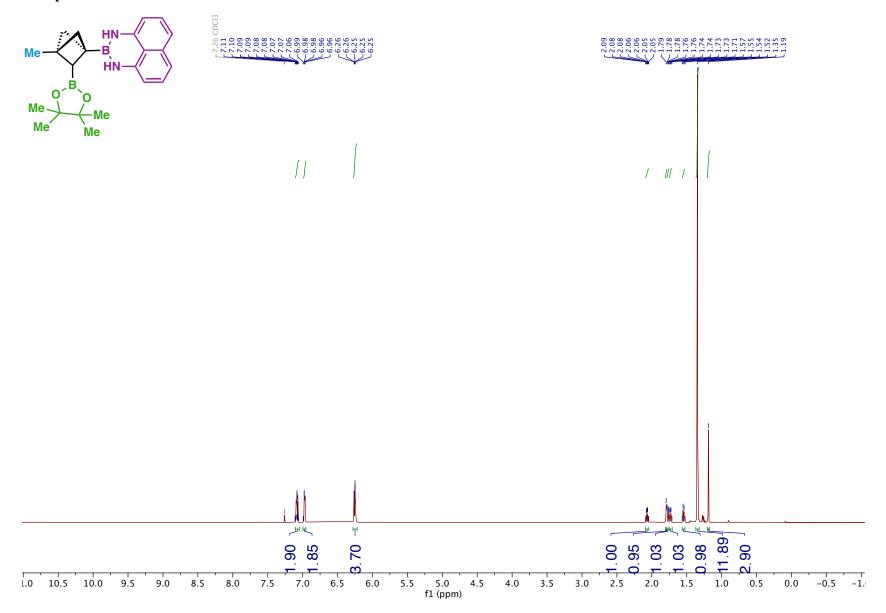


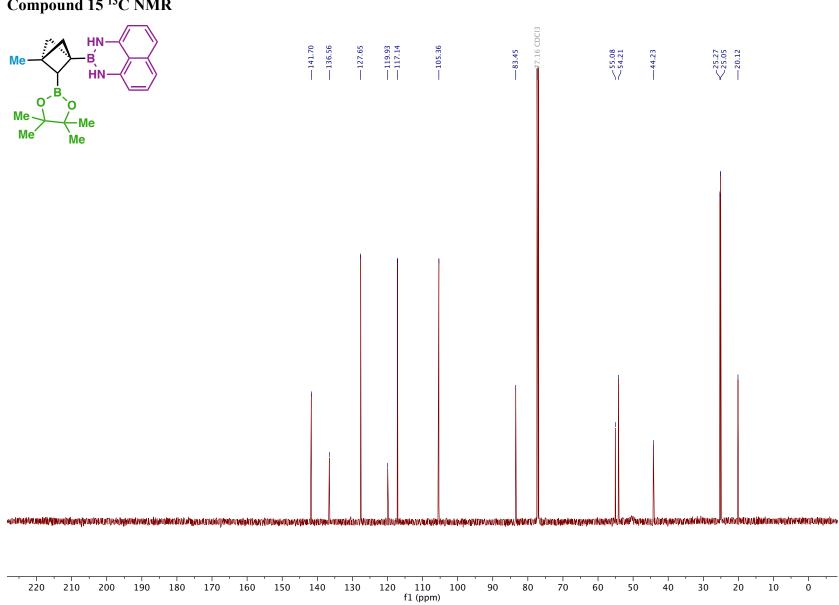

Compound SI-20¹³C NMR

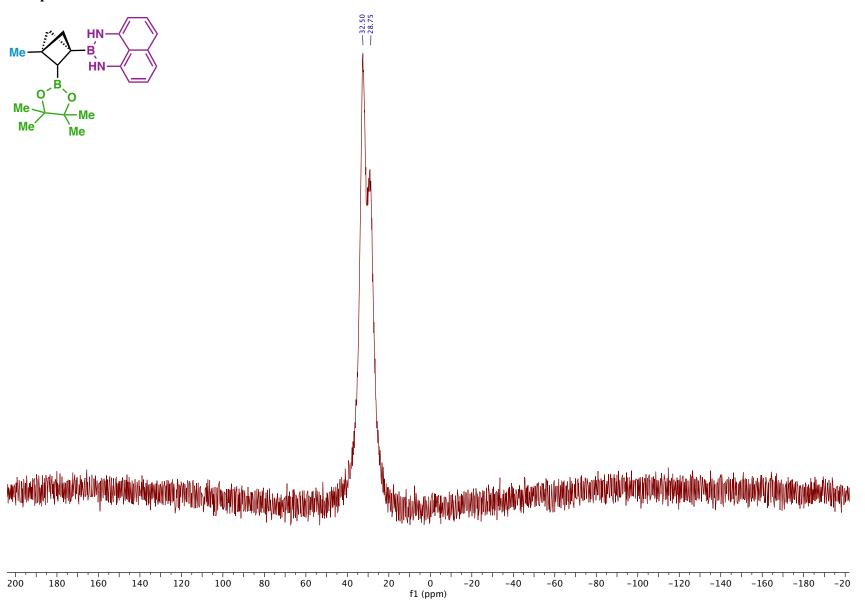
Compound SI-20¹¹B NMR

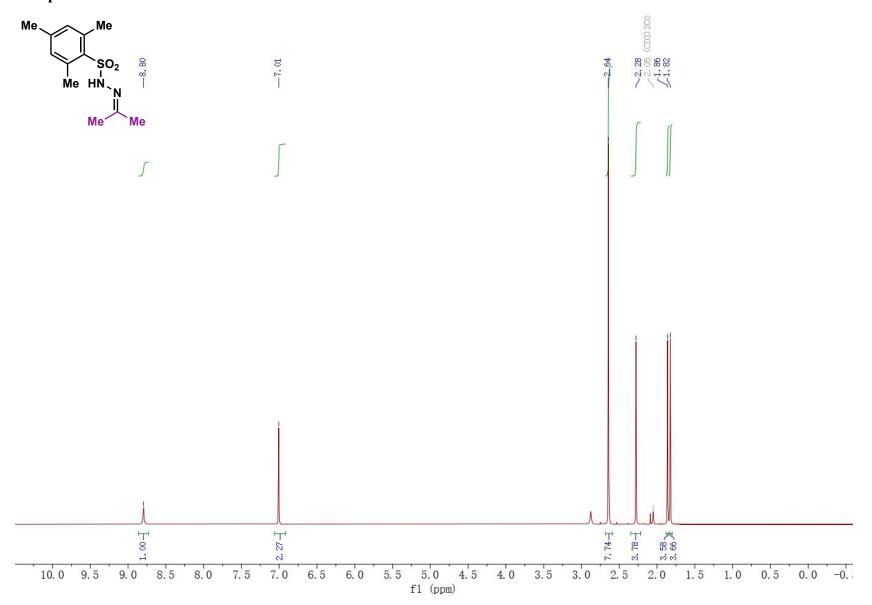




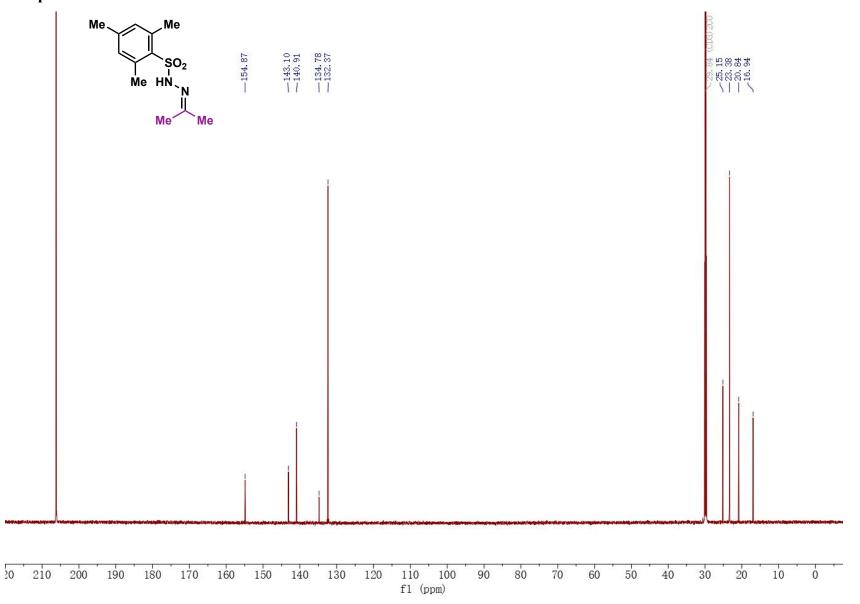



Compound 27¹¹B NMR

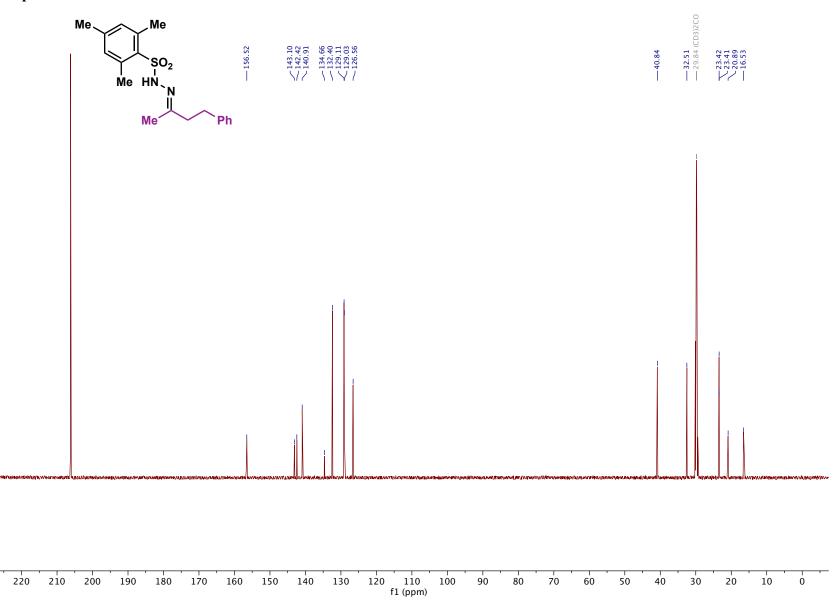

Compound 15¹H NMR

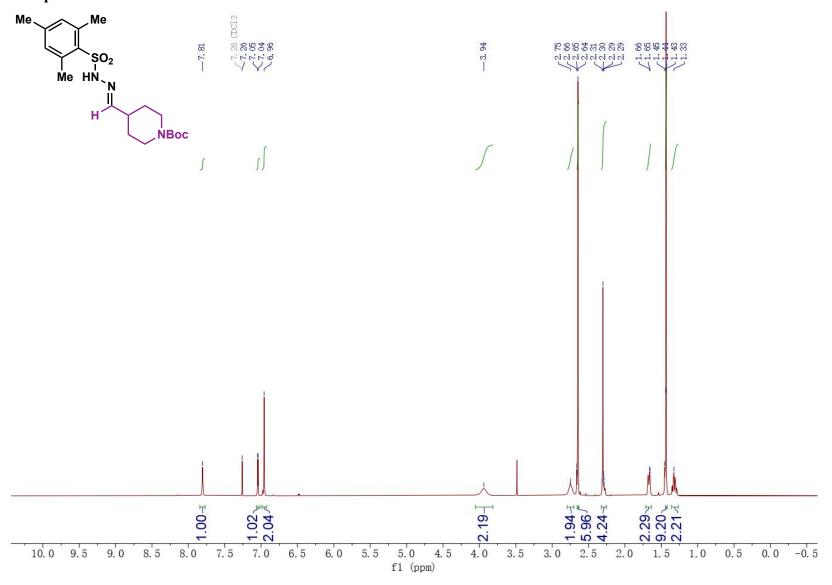


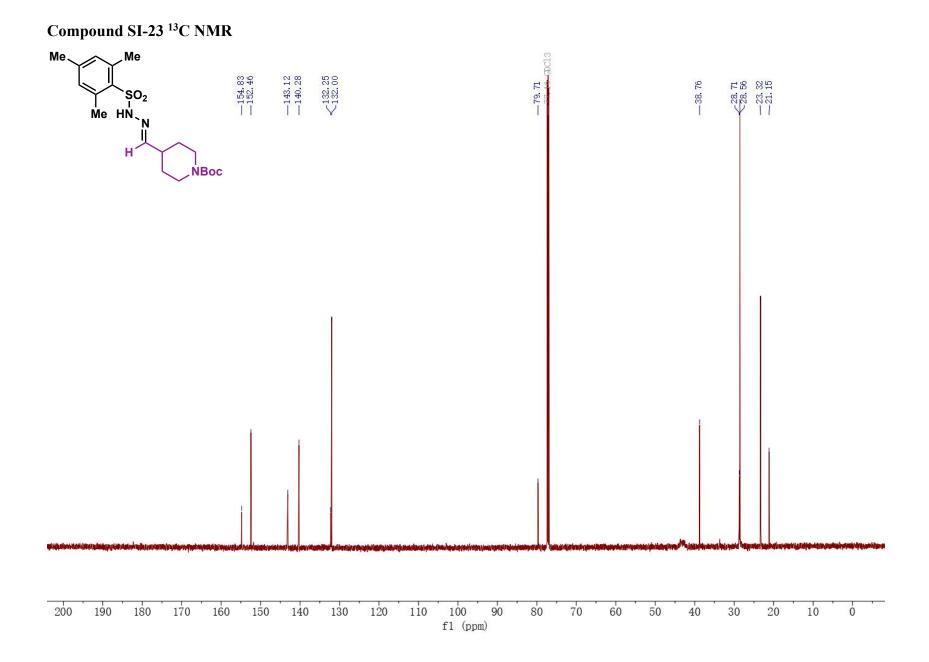
Compound 15¹³C NMR


Compound 15¹¹B NMR

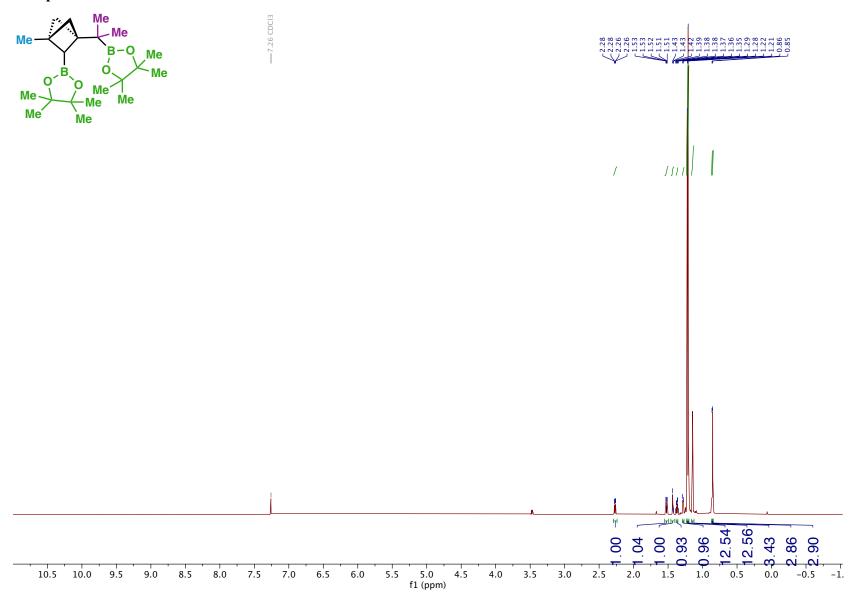

Compound 17¹H NMR

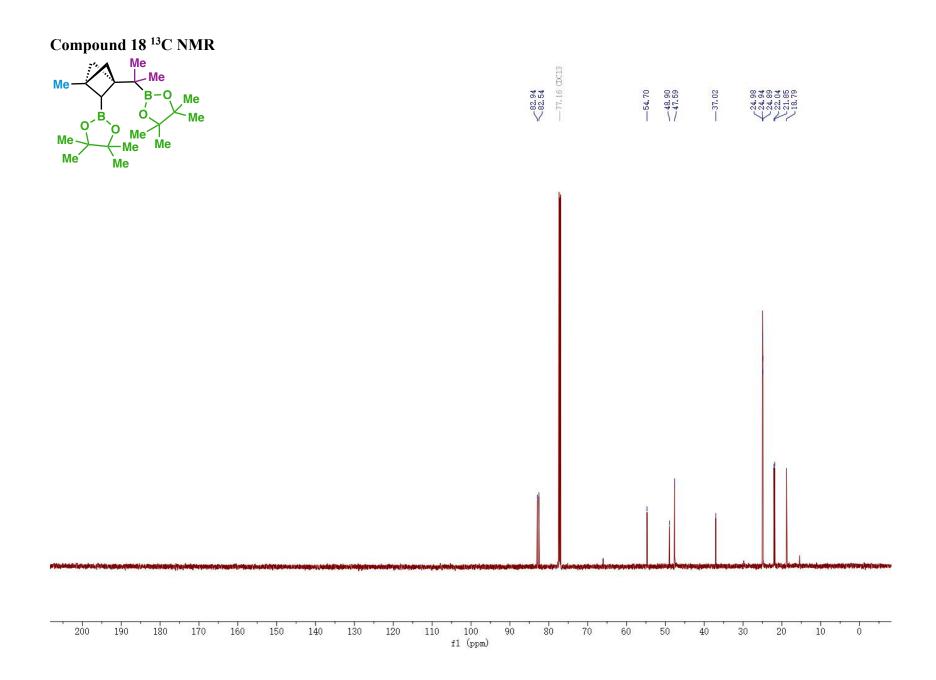

Compound 17¹³C NMR

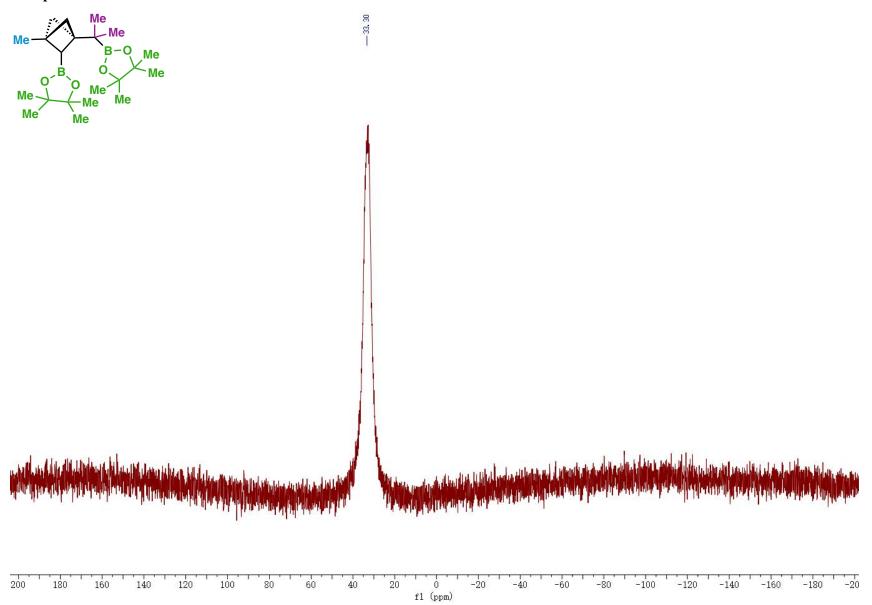

Compound SI-22 ¹H NMR

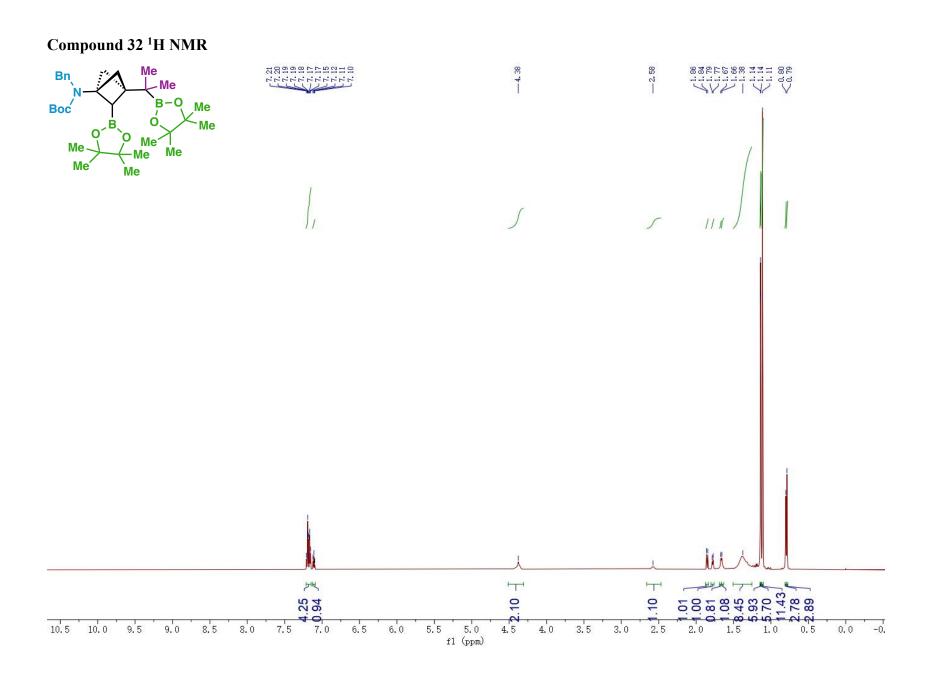


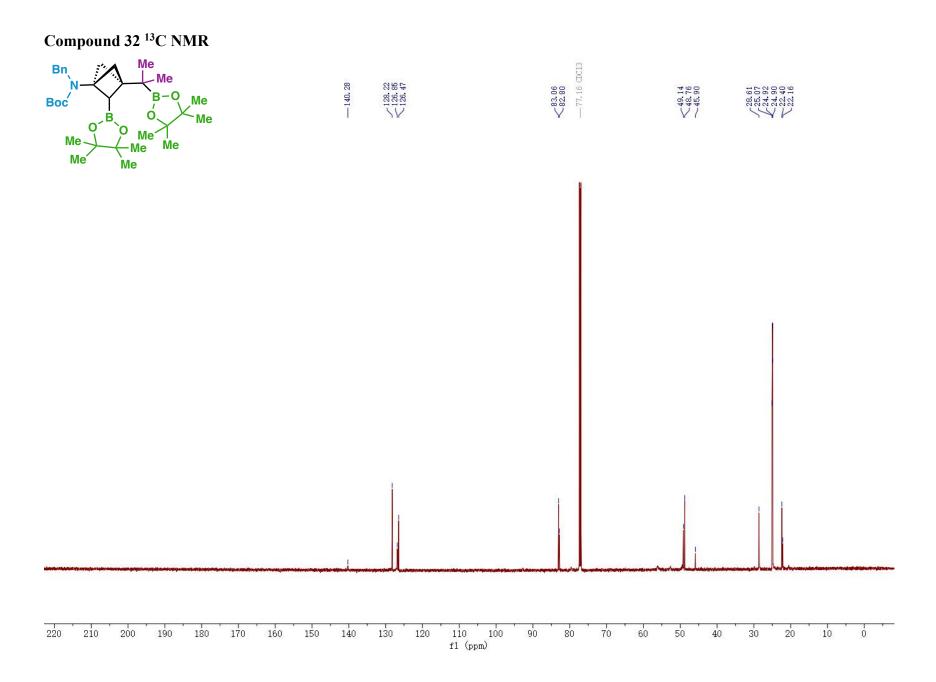
Compound SI-22 ¹³C NMR

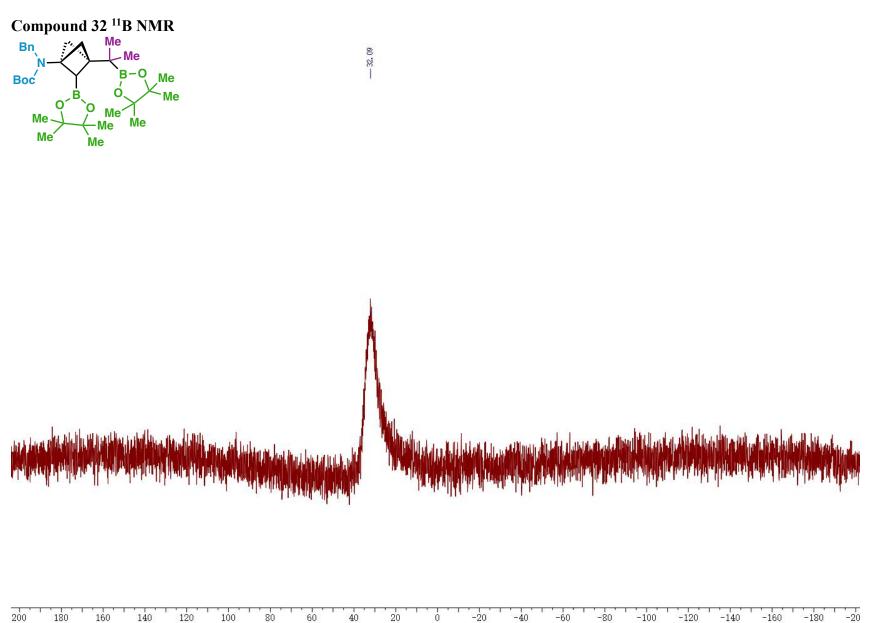



Compound SI-23 ¹H NMR

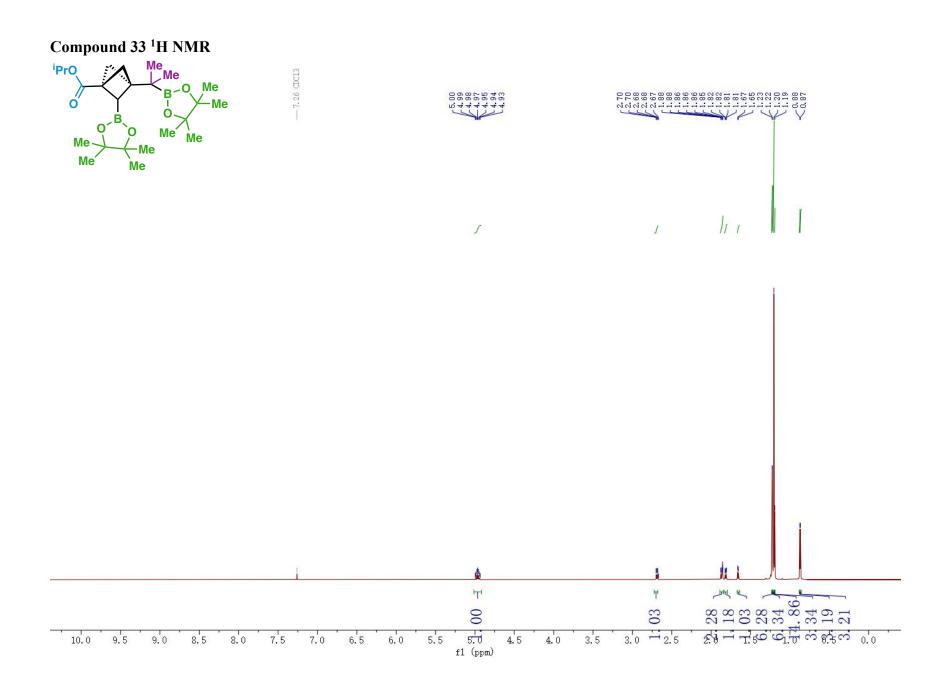


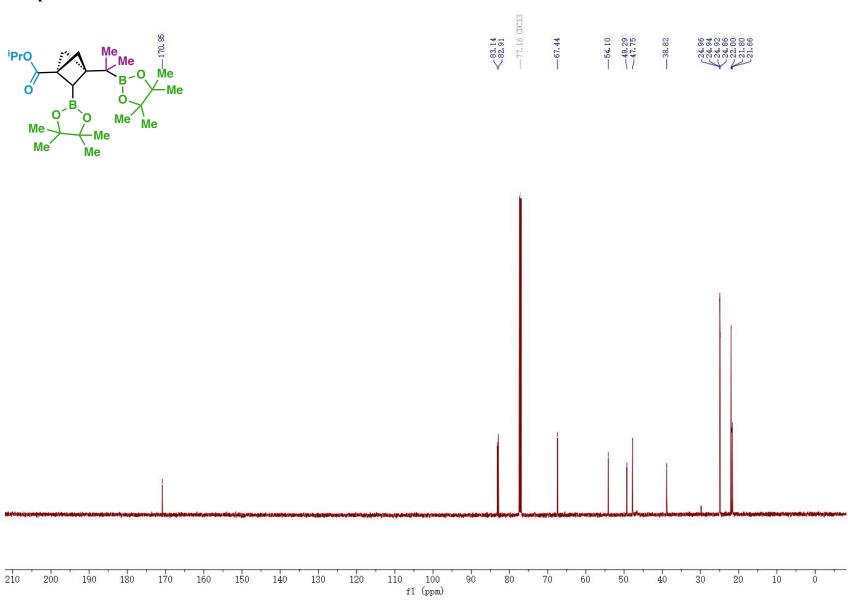

Compound 18¹H NMR

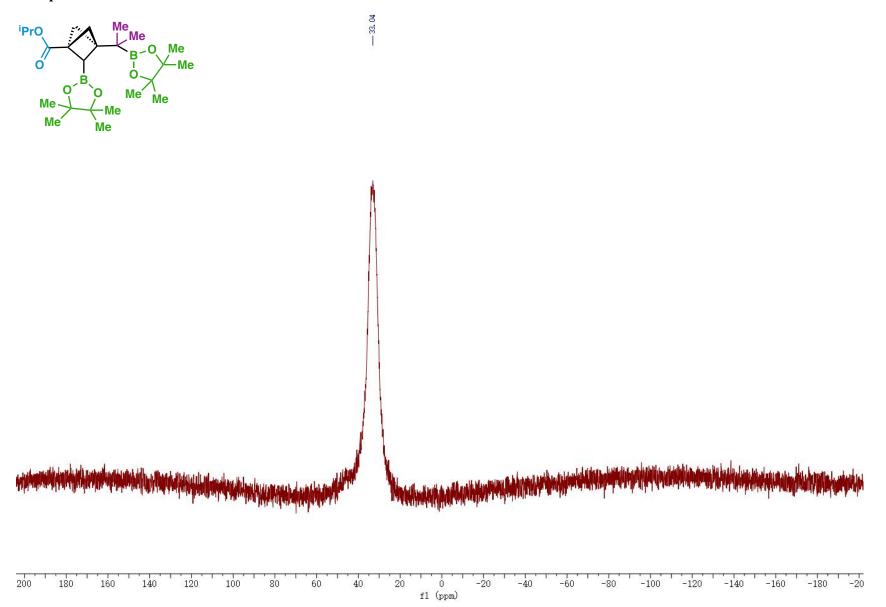


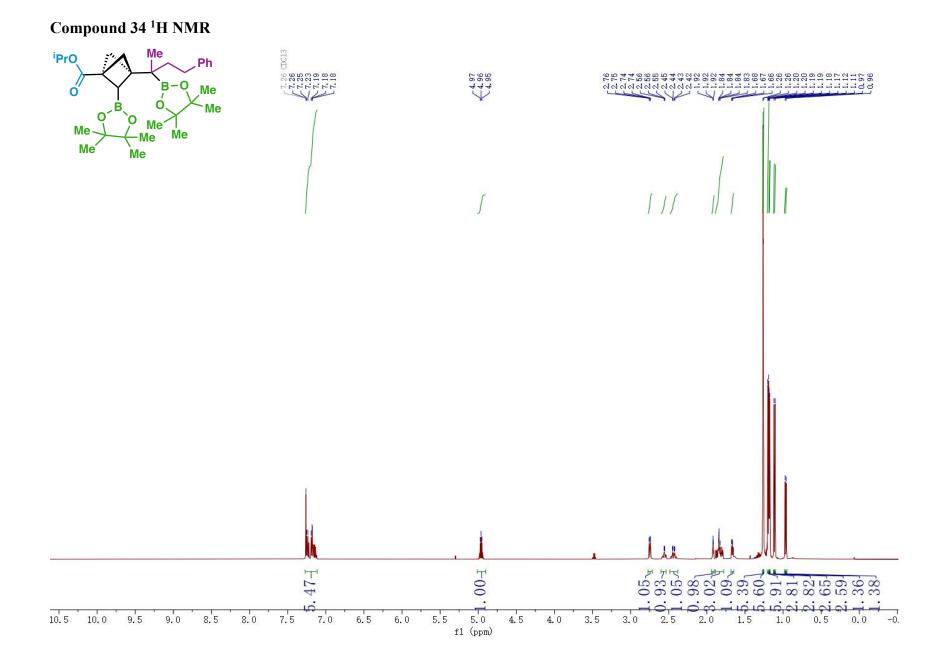


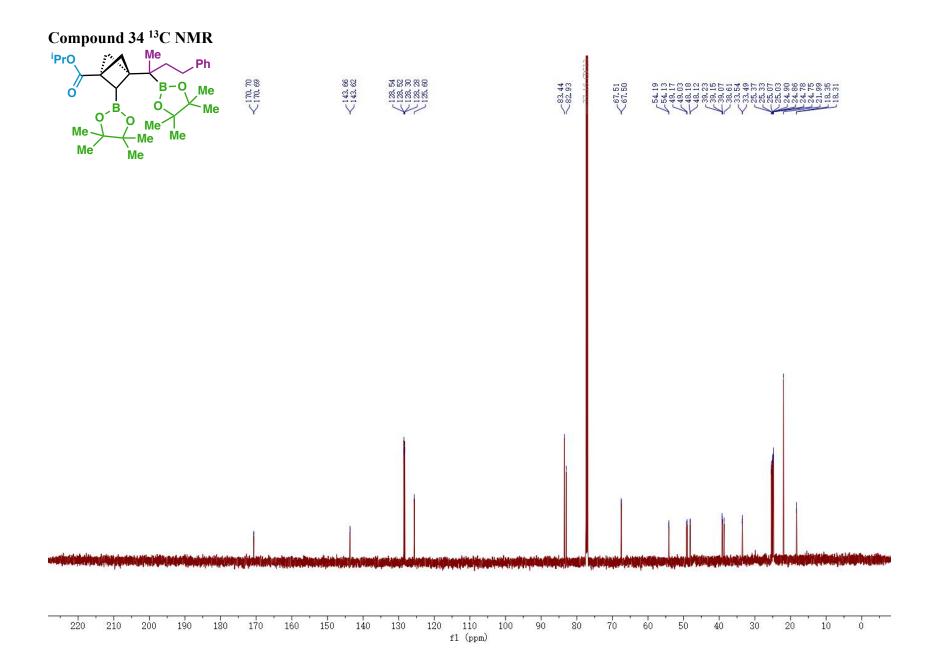
Compound 18¹¹B NMR

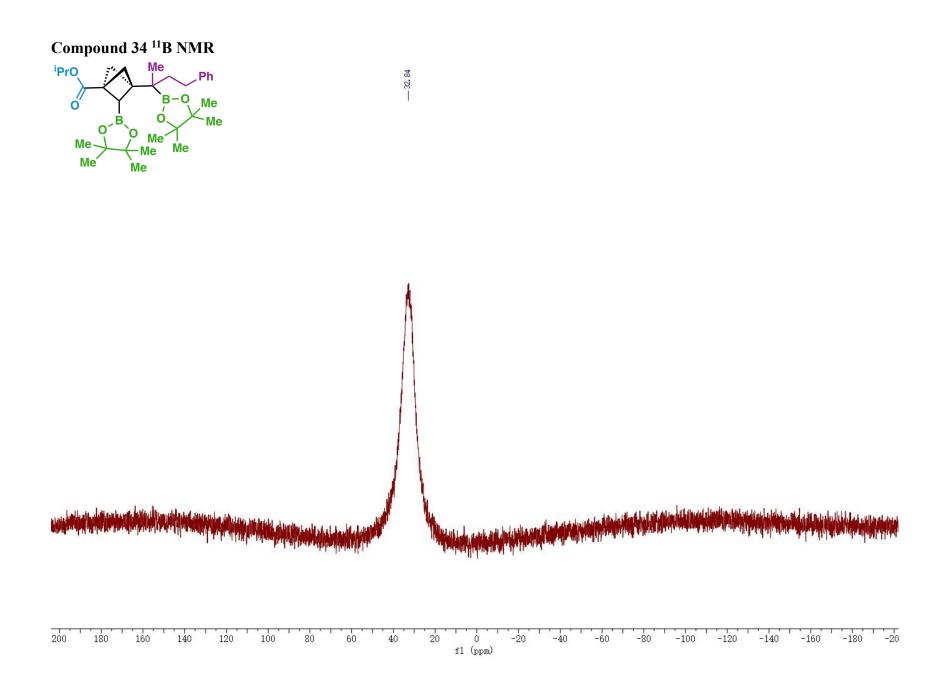


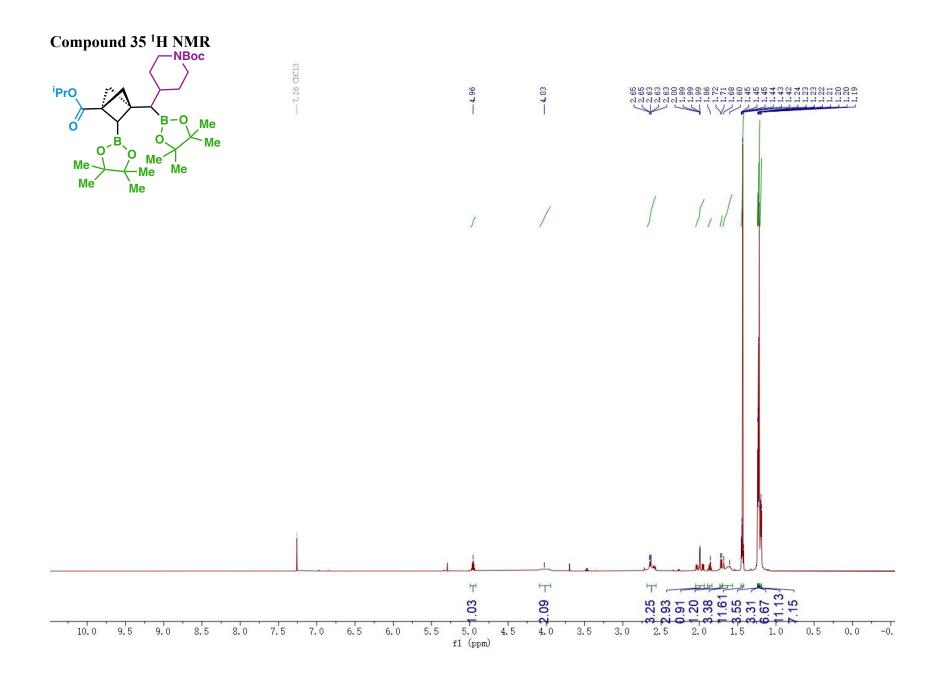


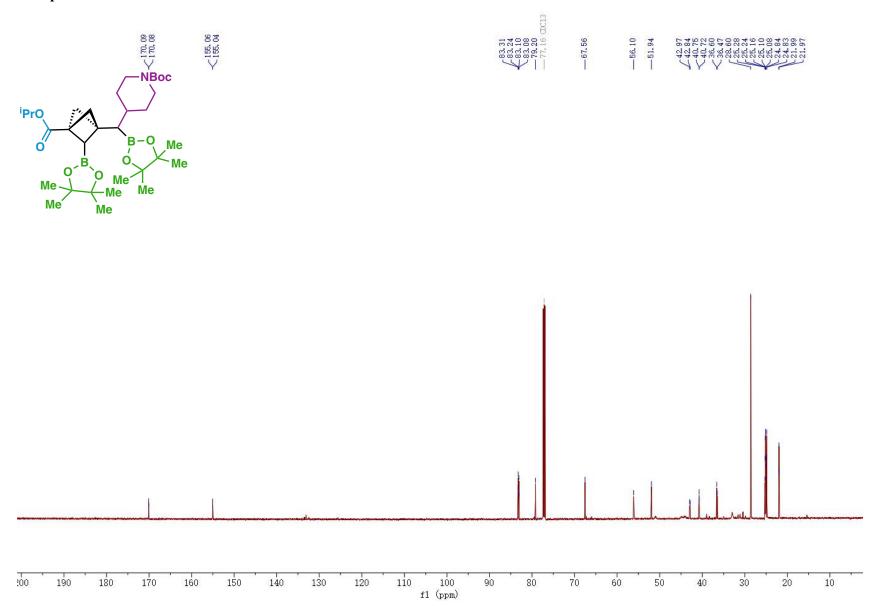


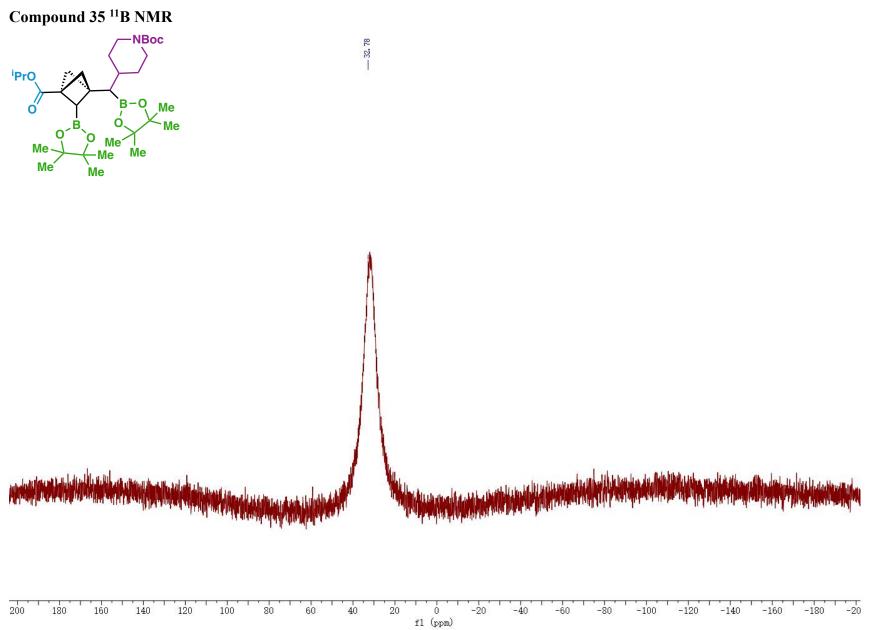


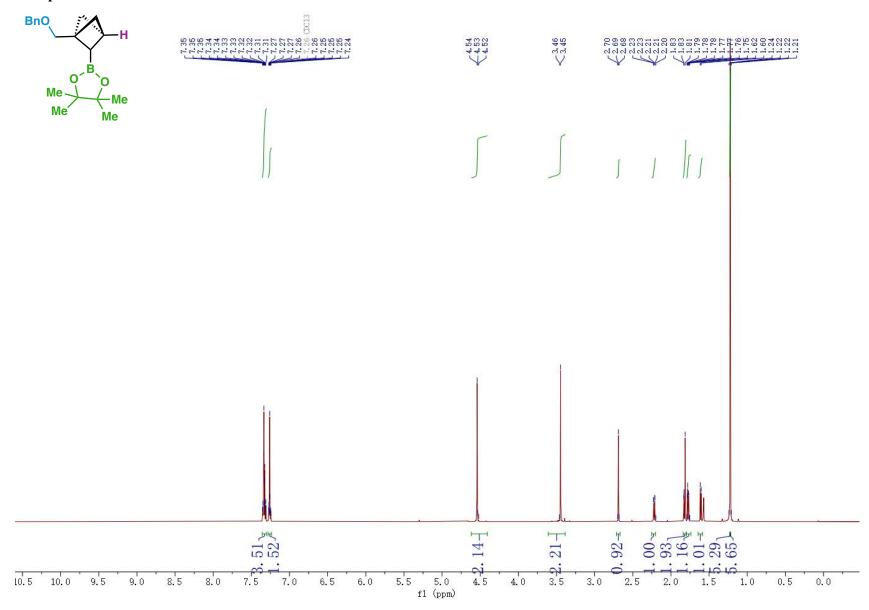

Compound 33 ¹³C NMR

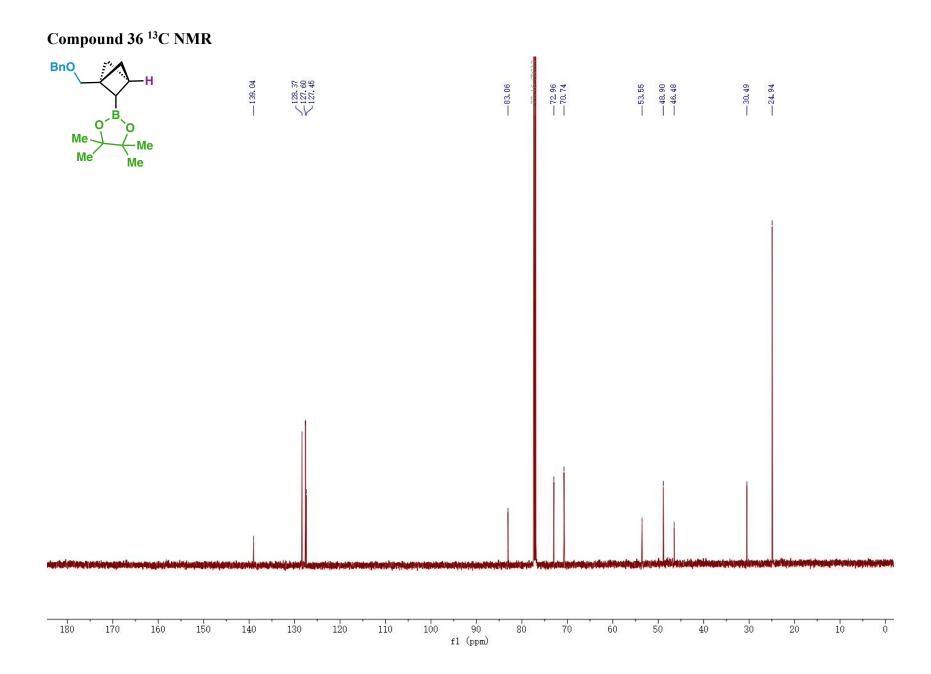



Compound 33 ¹¹B NMR

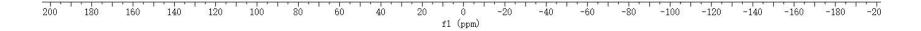


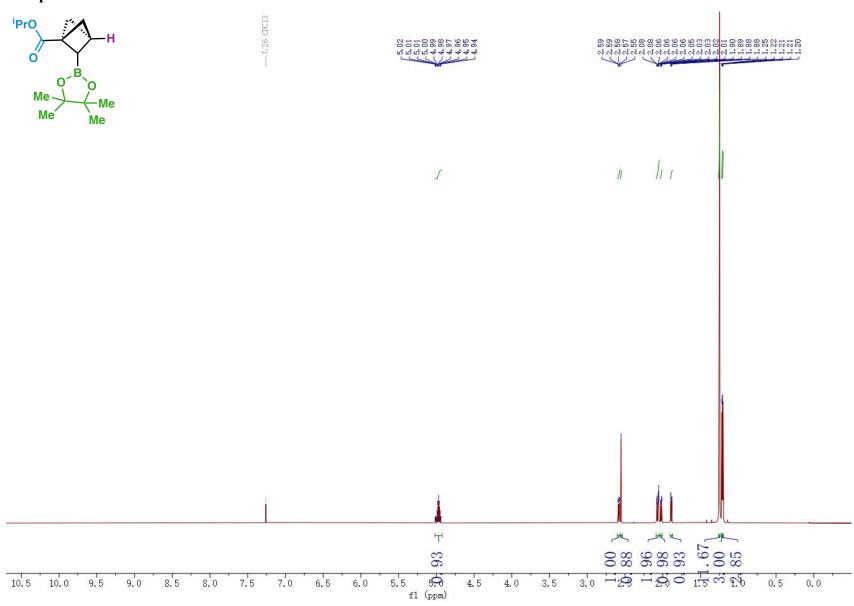


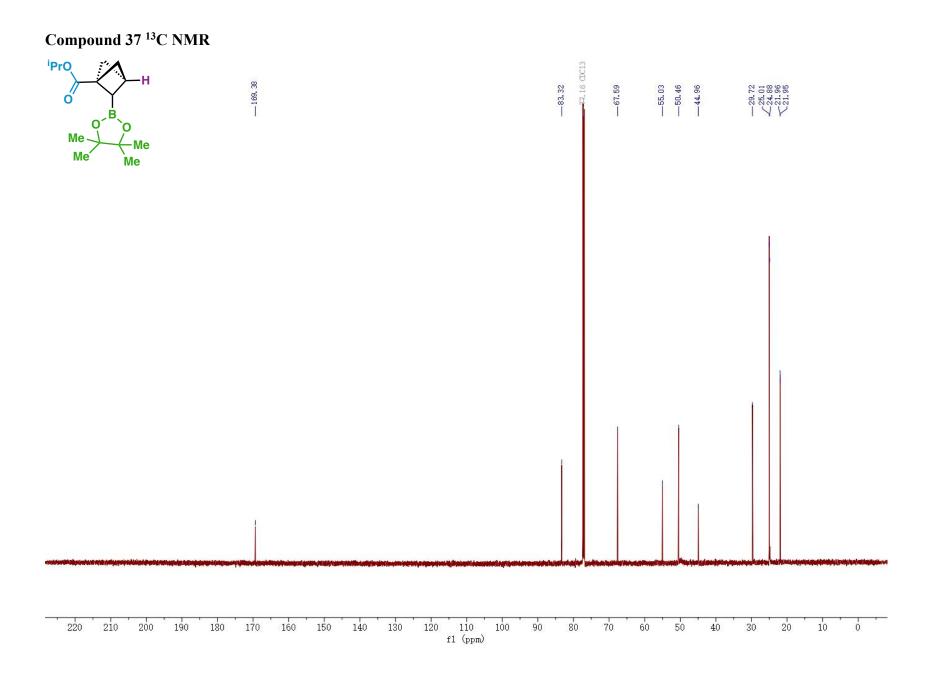

Compound 35¹³C NMR

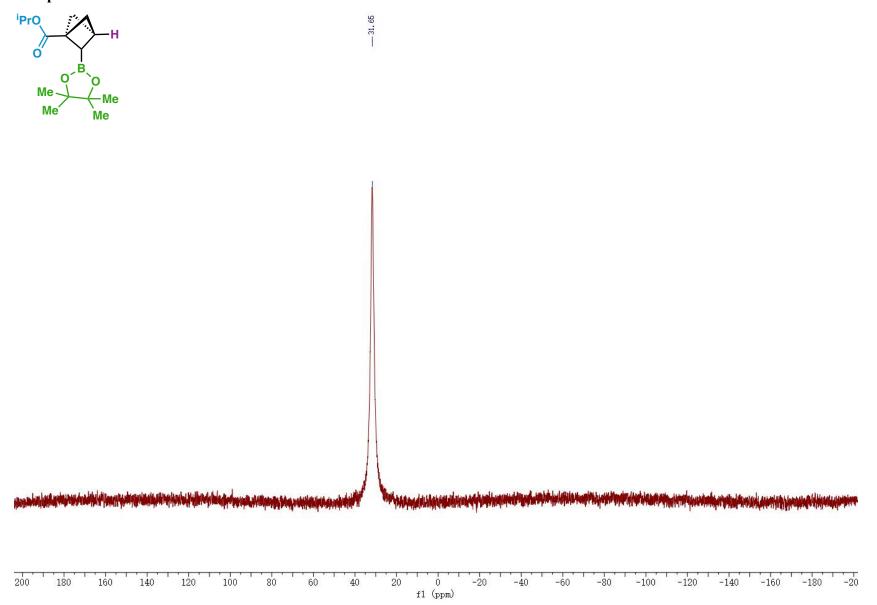


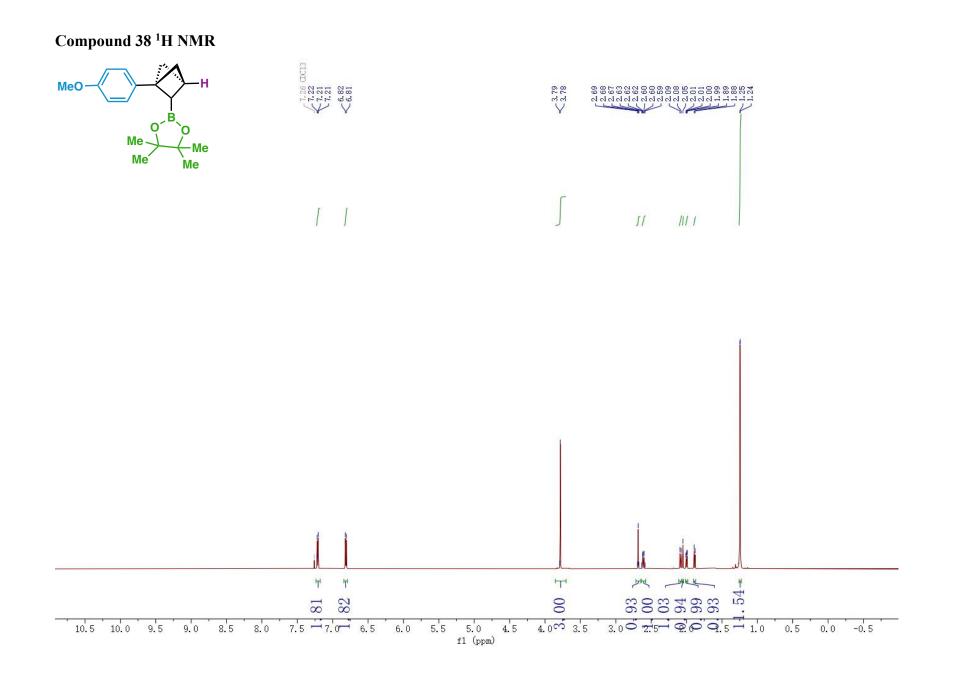
Compound 36 ¹H NMR

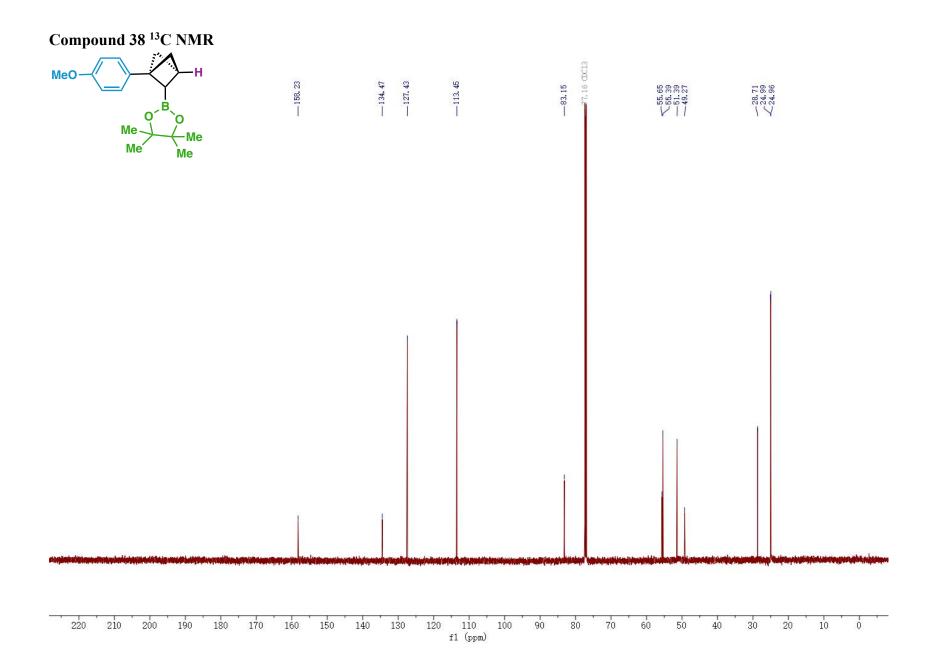


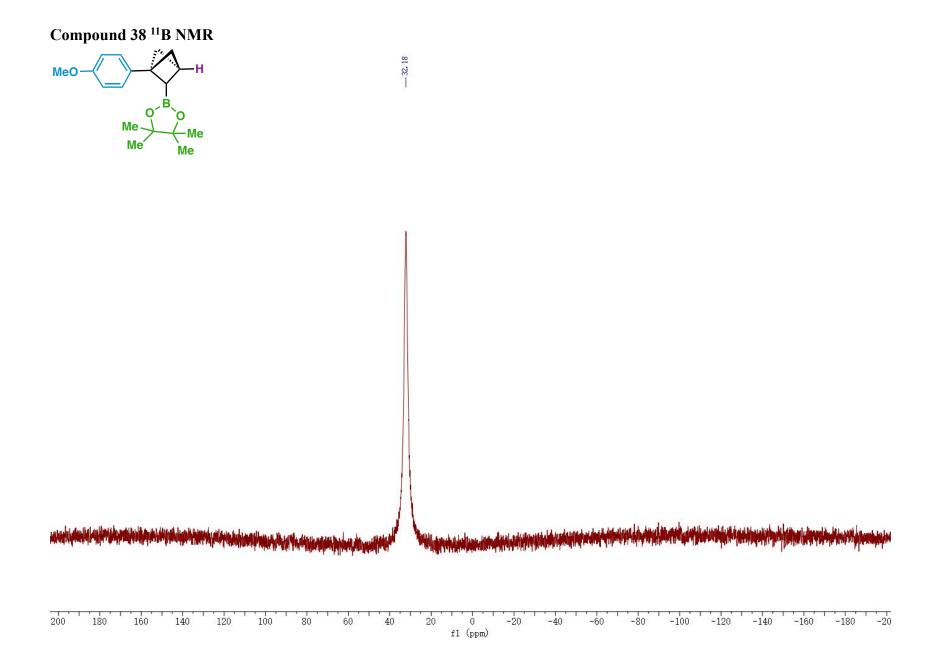

S314

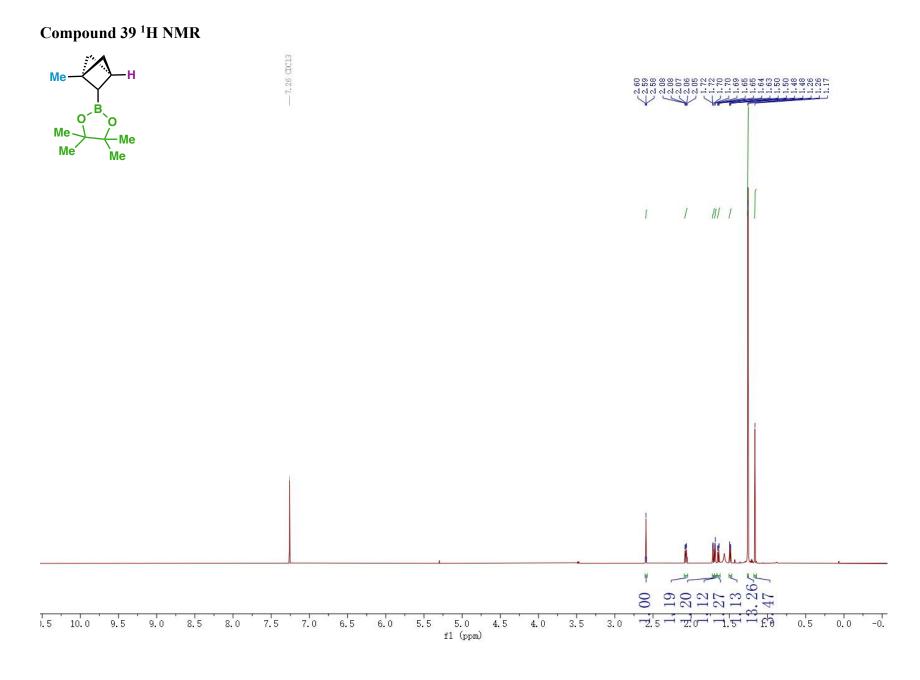

Compound 36¹¹B NMR

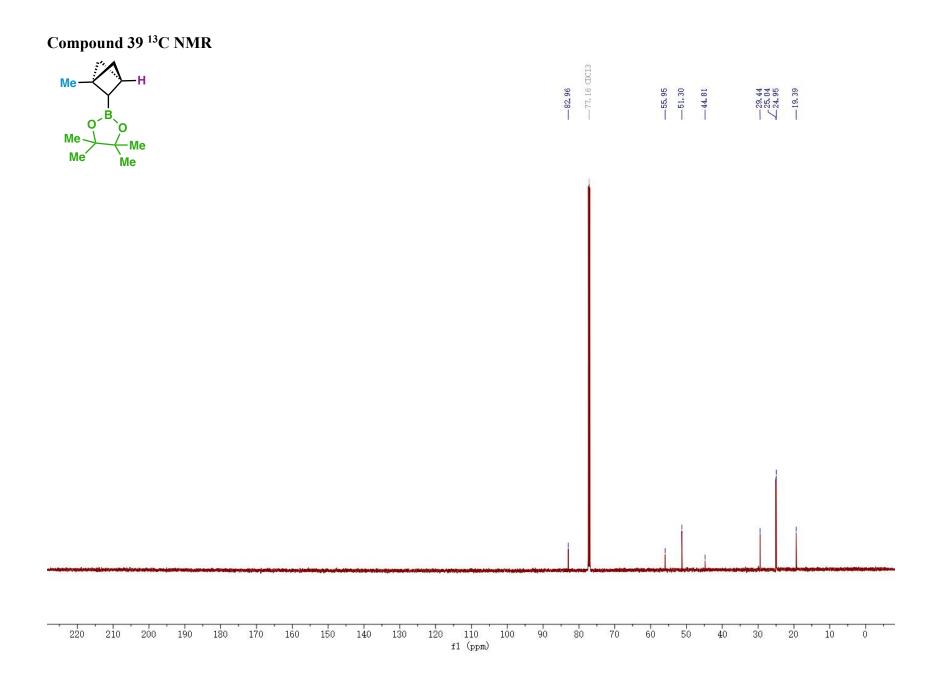

Compound 37¹H NMR

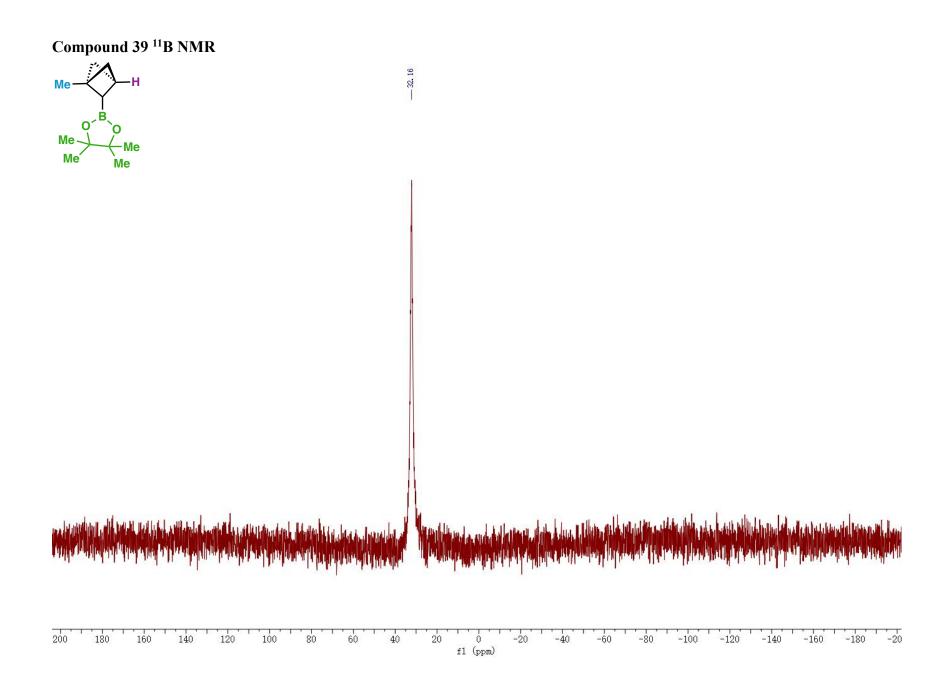


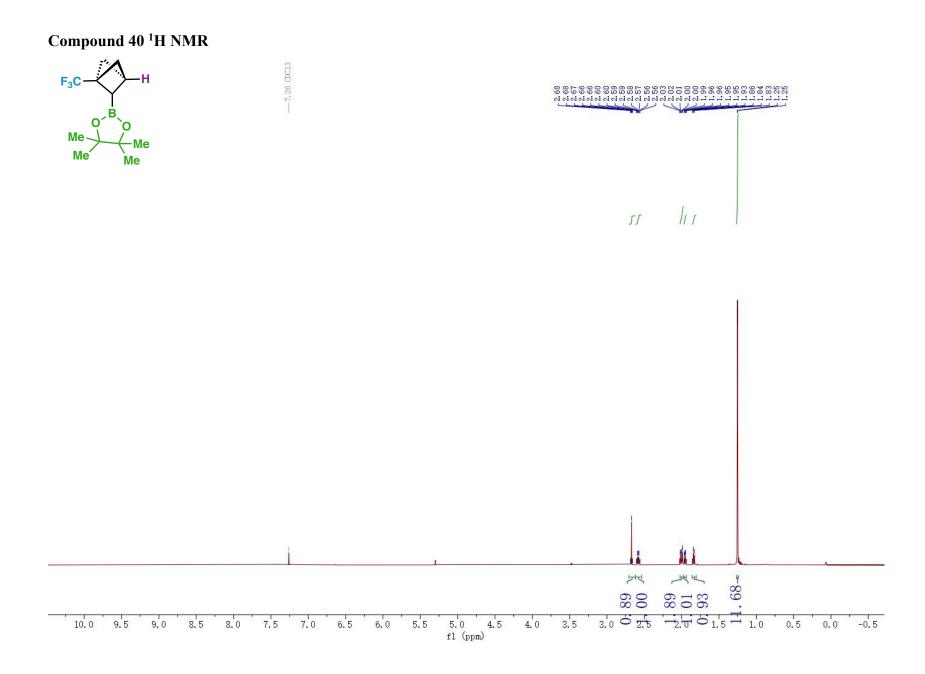


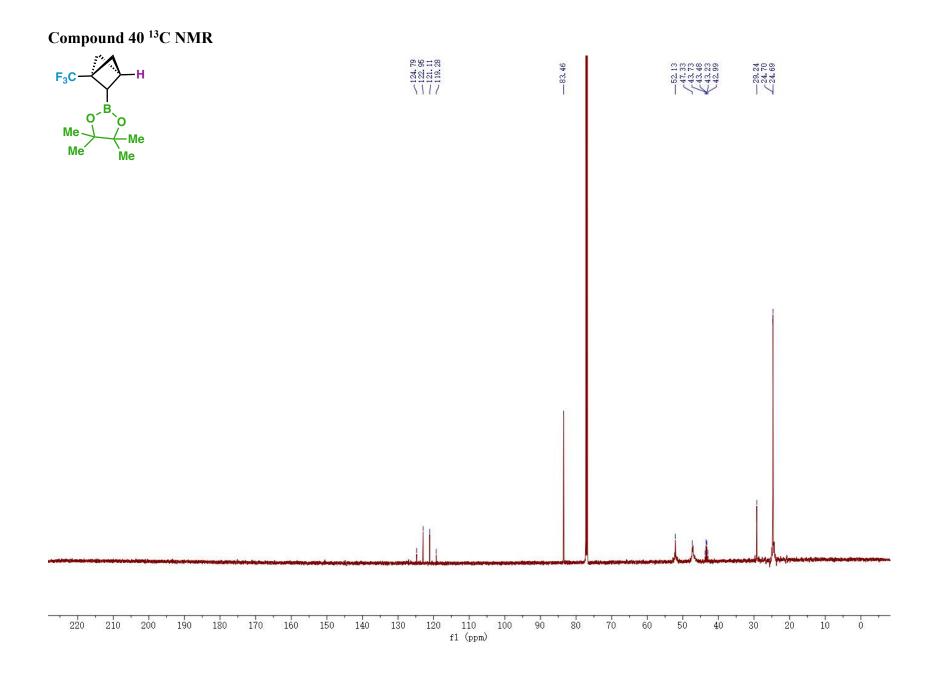

S317


Compound 37¹¹B NMR

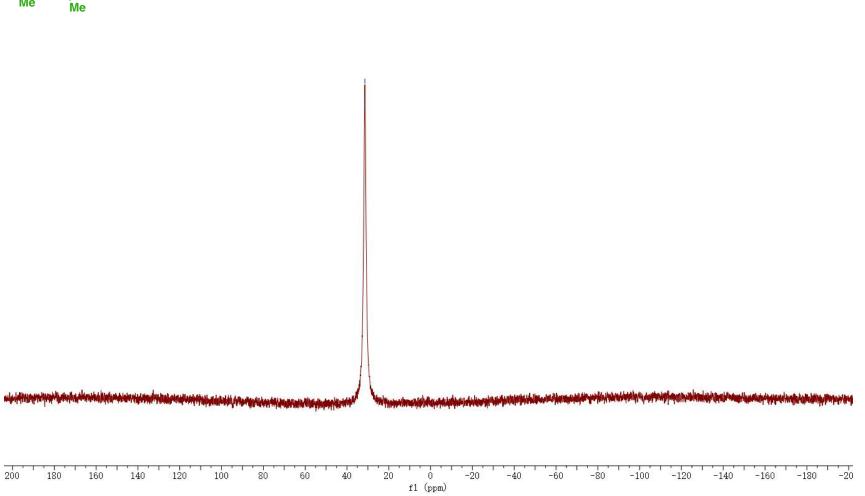


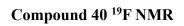


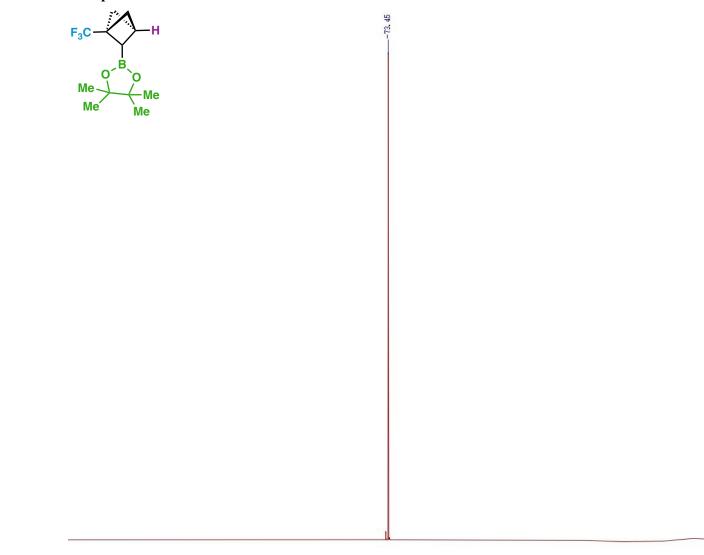




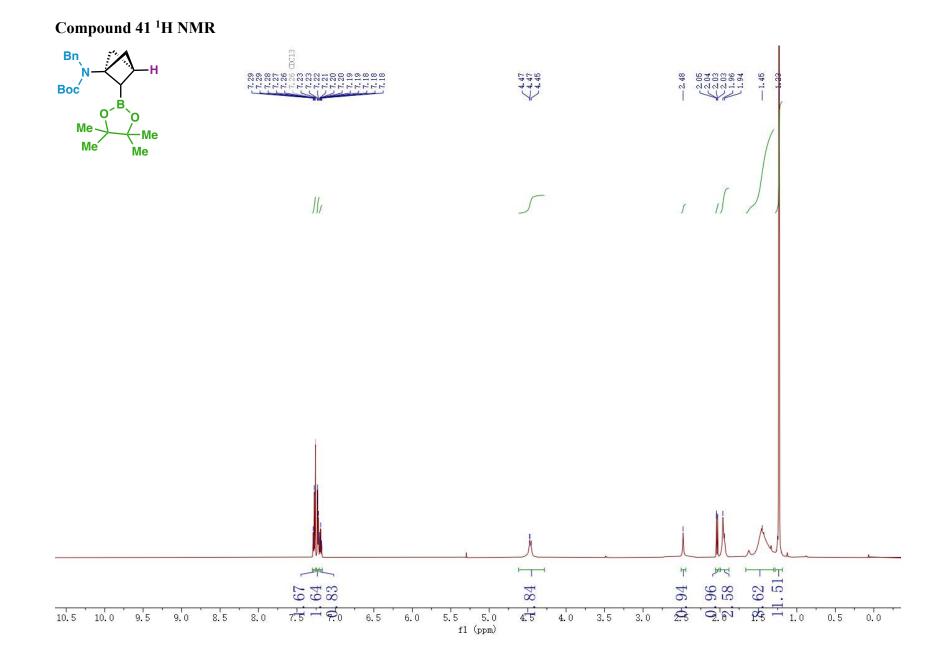


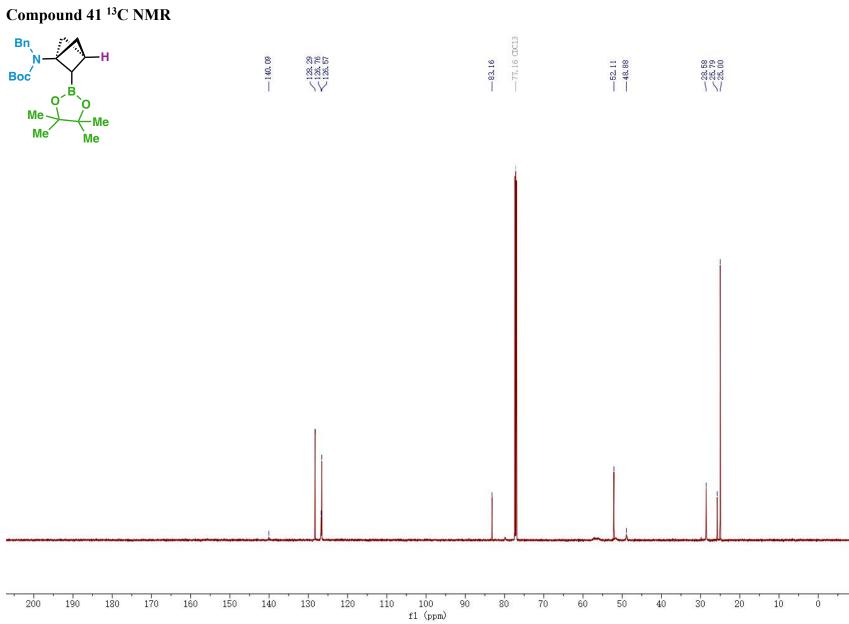


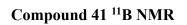


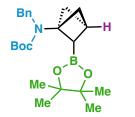


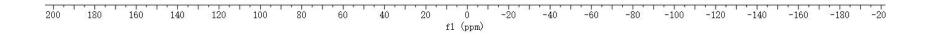
Compound 40¹¹B NMR

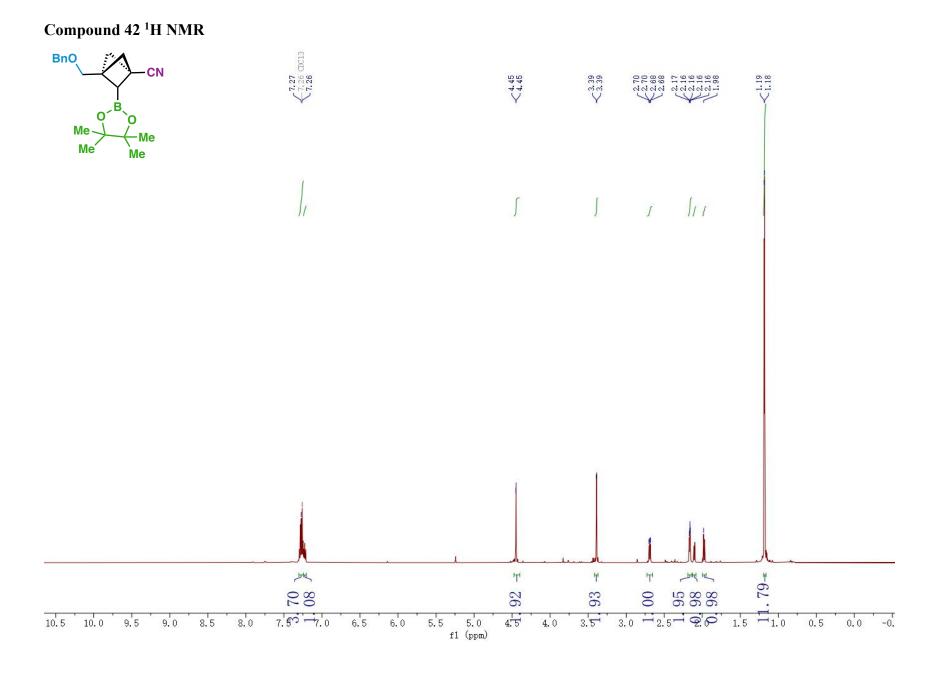


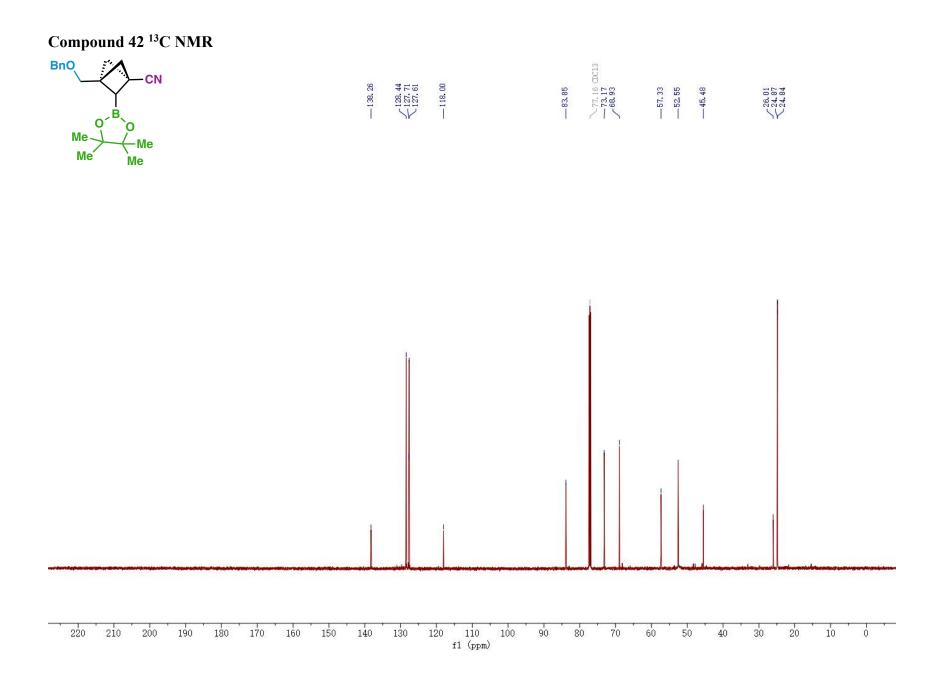


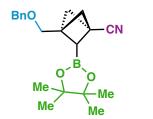


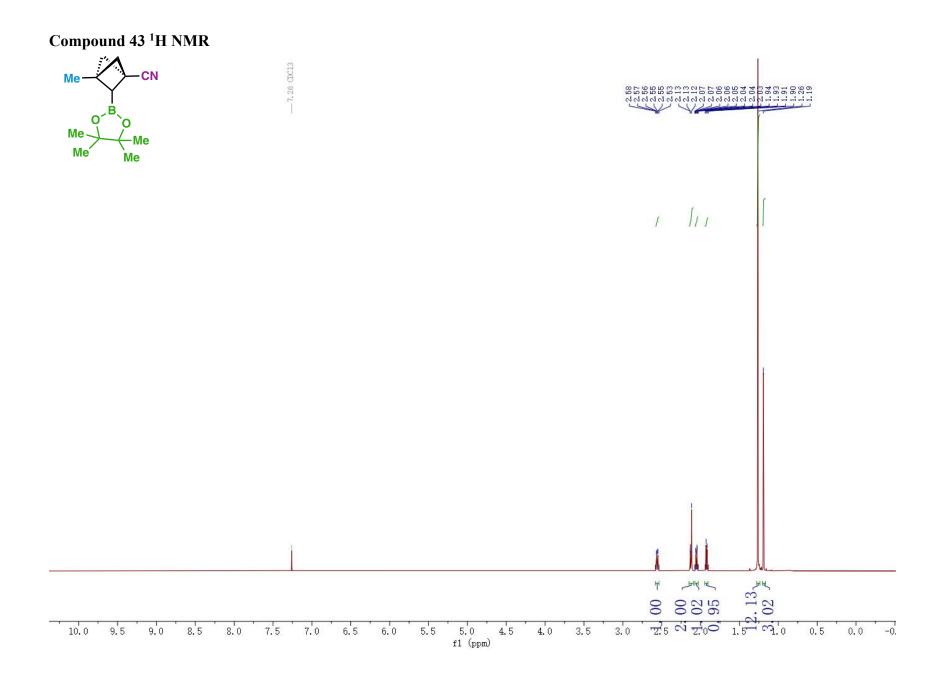

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

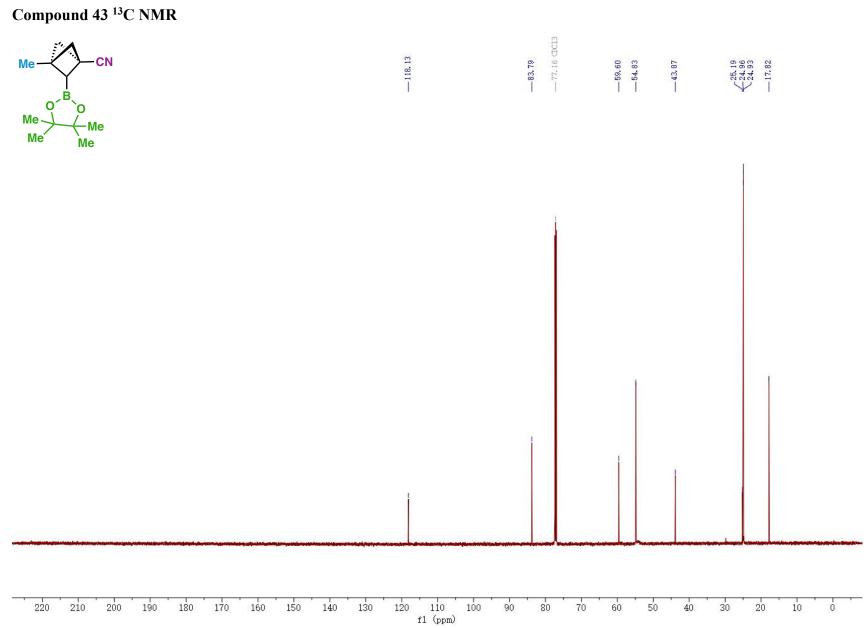


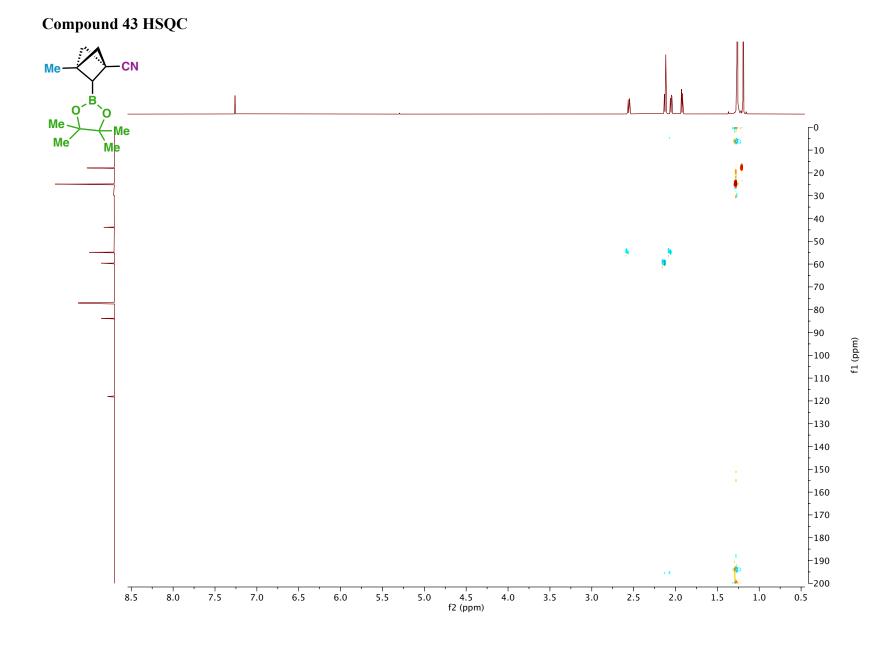


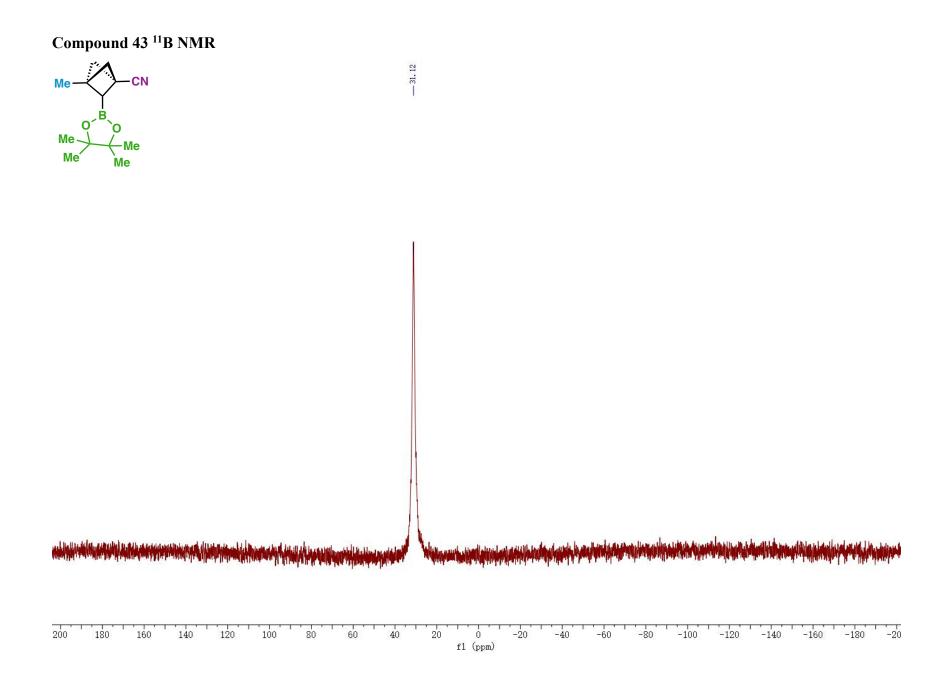


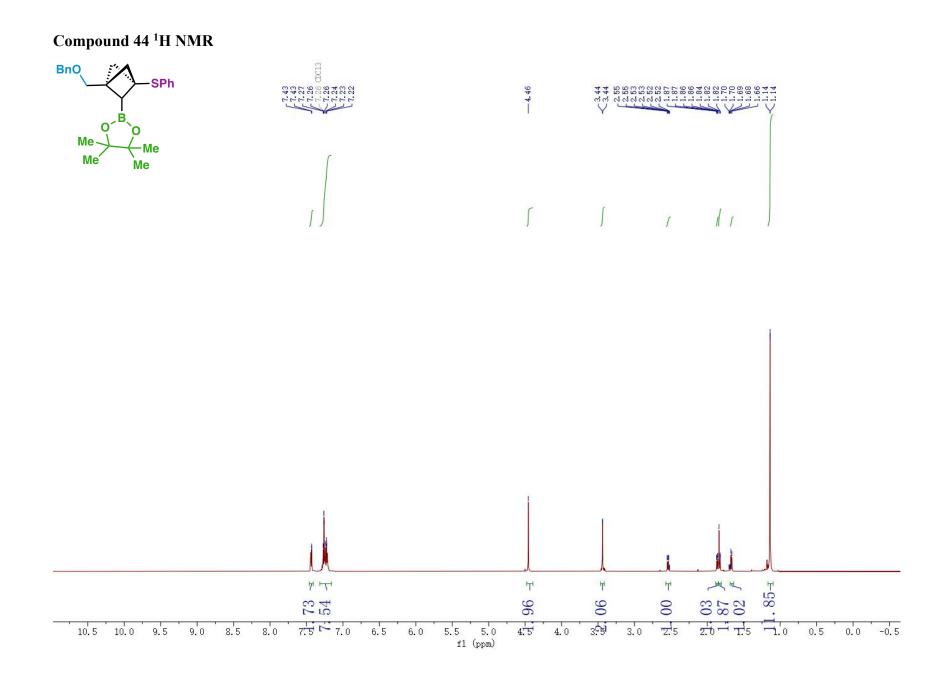


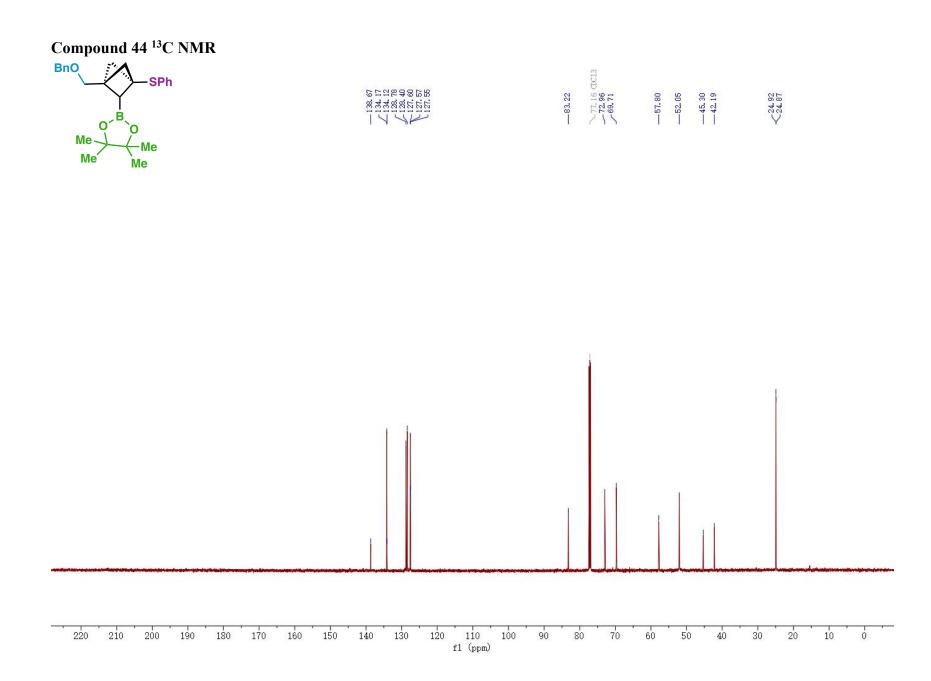


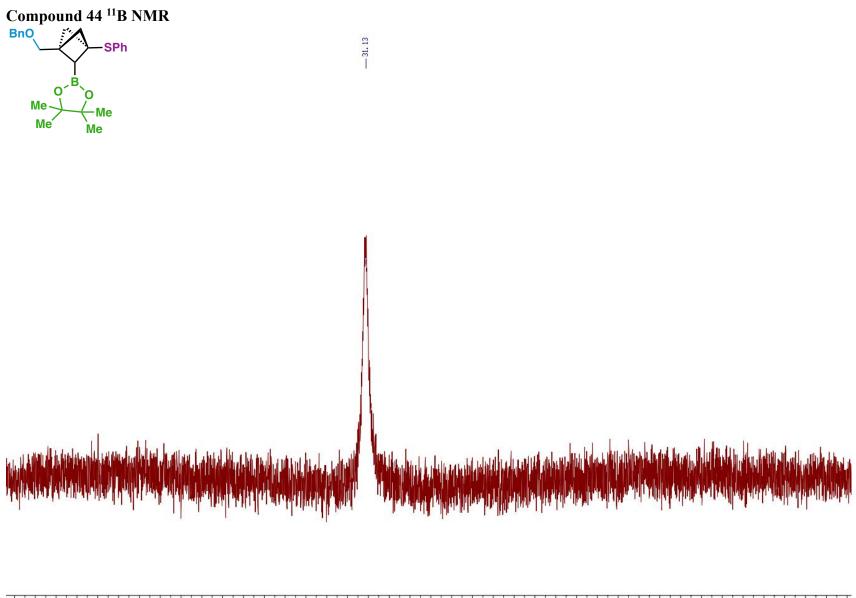



Compound 42¹¹B NMR

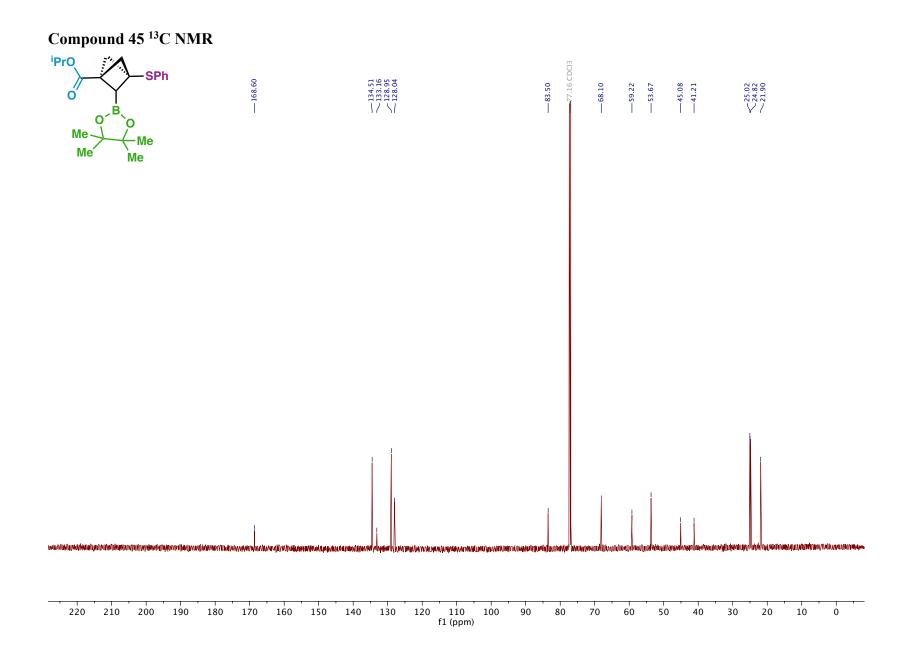


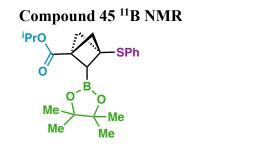


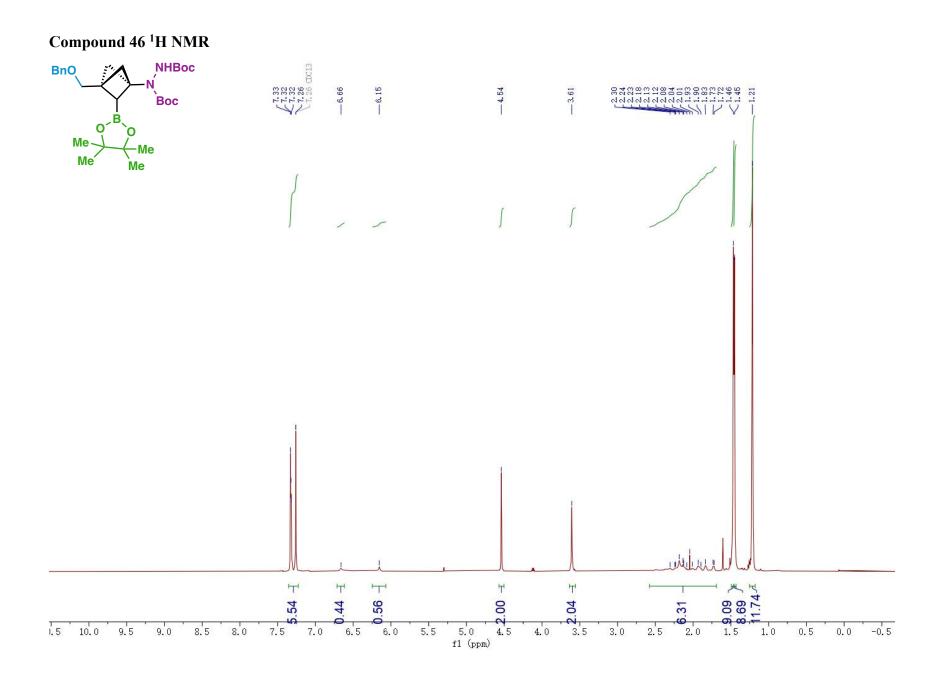


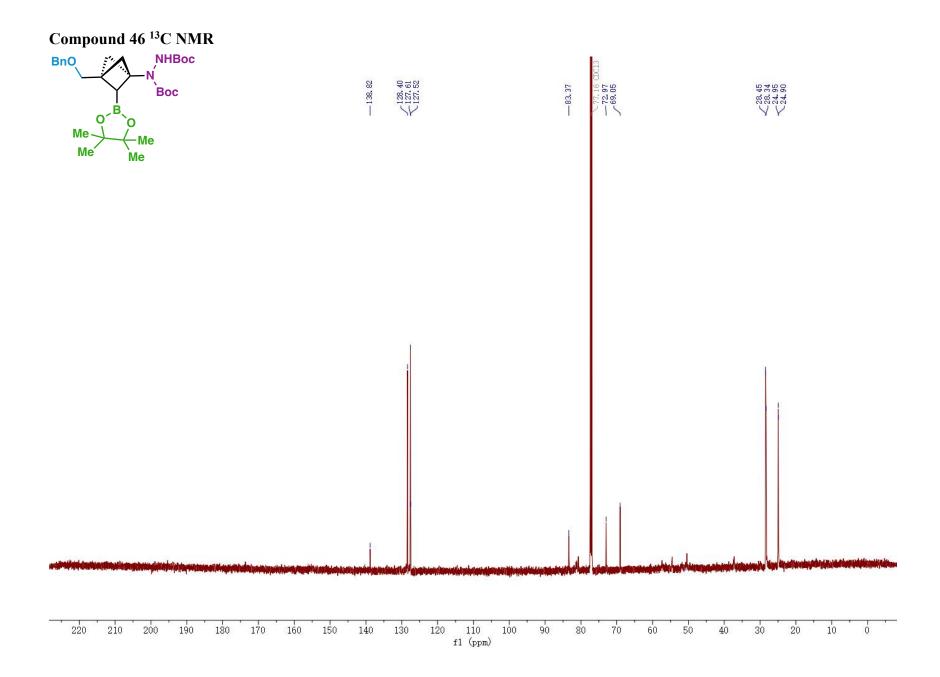


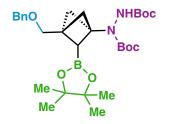
S337

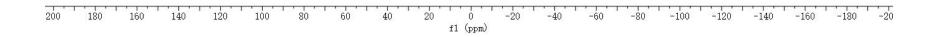


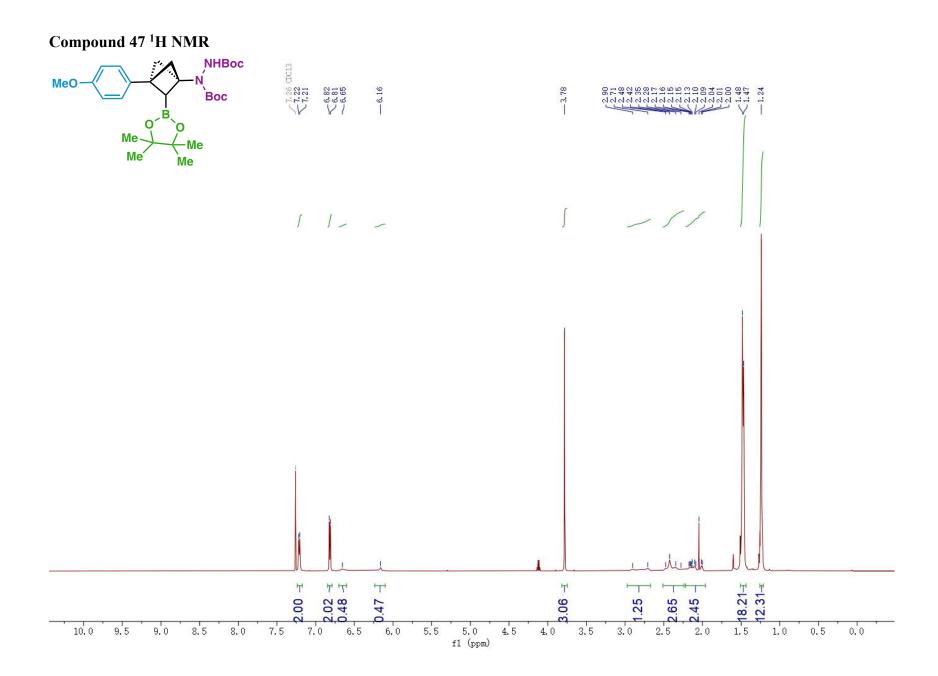


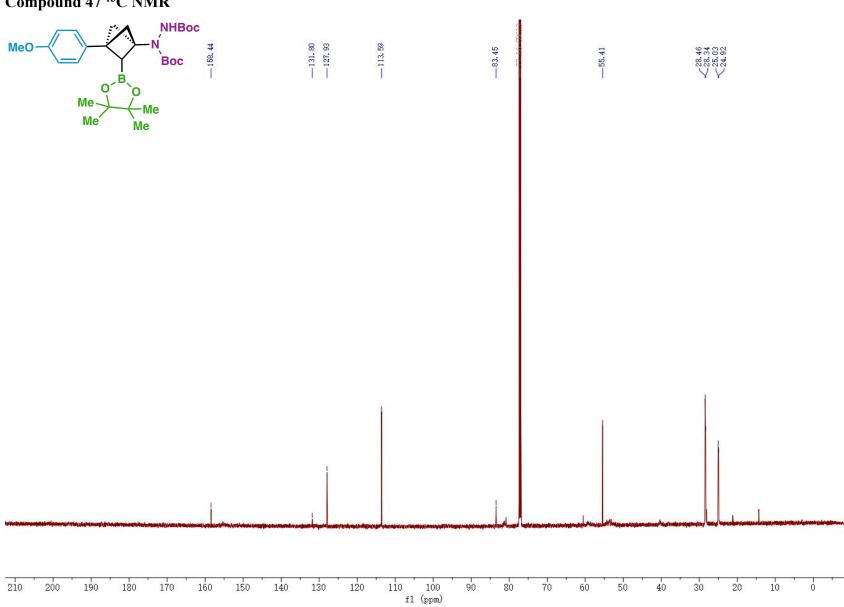

200 -180 -20 -160 180 160 140 120 100 80 60 40 20 -20 -40 -60 -80 -100 -120 -140 0 f1 (ppm)


Compound 45 ¹H NMR Ę'e. ⁱPrO CDC13 SPh 2.91 2.89 2.89 2.89 -2.20 1.221.211.191.191.171.1722689667 Ó NNN 10 С Ме Ме Me Me 1 5 11/ 1 1 I. 14 € Ч ۲ - HAL HL 68 58 98 00 95 91 93 93 5 5.9 fl (ppm) 7.5 0 7.0 2.002001.5-49.0 3.0 10.5 10.0 9.5 8.5 8.0 6.5 5.5 4.5 4.0 3.5 0.5 0.0 6.0 9.0

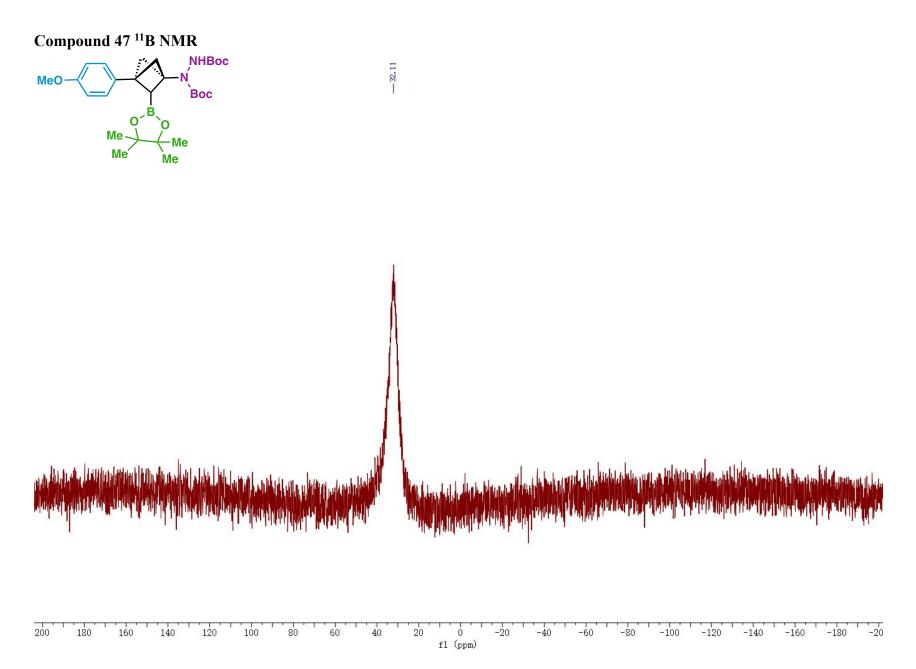


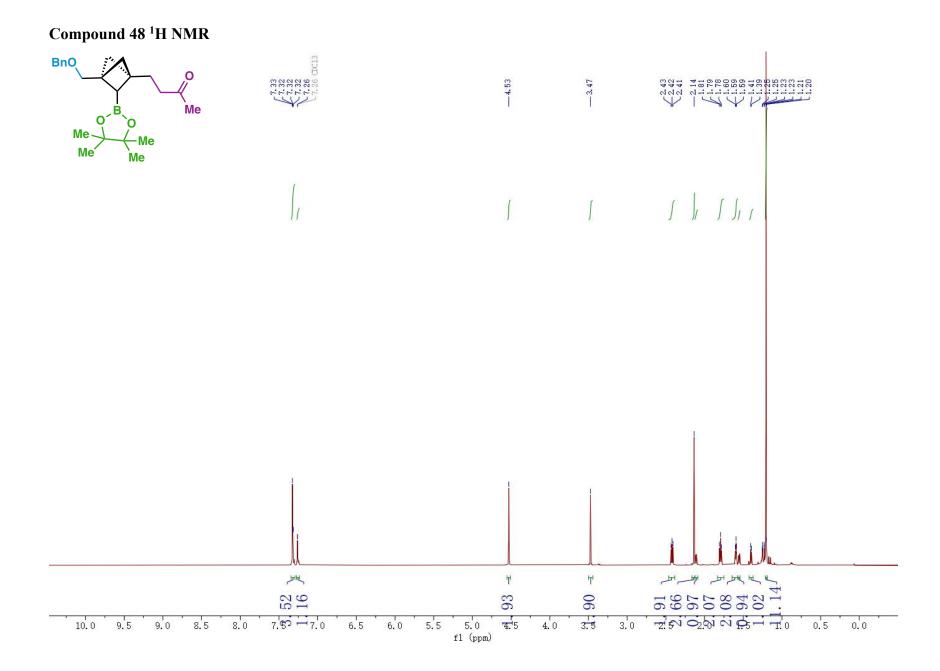

200 180 160 140 120 100 80 60 40 20 -20 -40 -60 -80 -120 -160 -20 0 f1 (ppm) -100 -140 -180

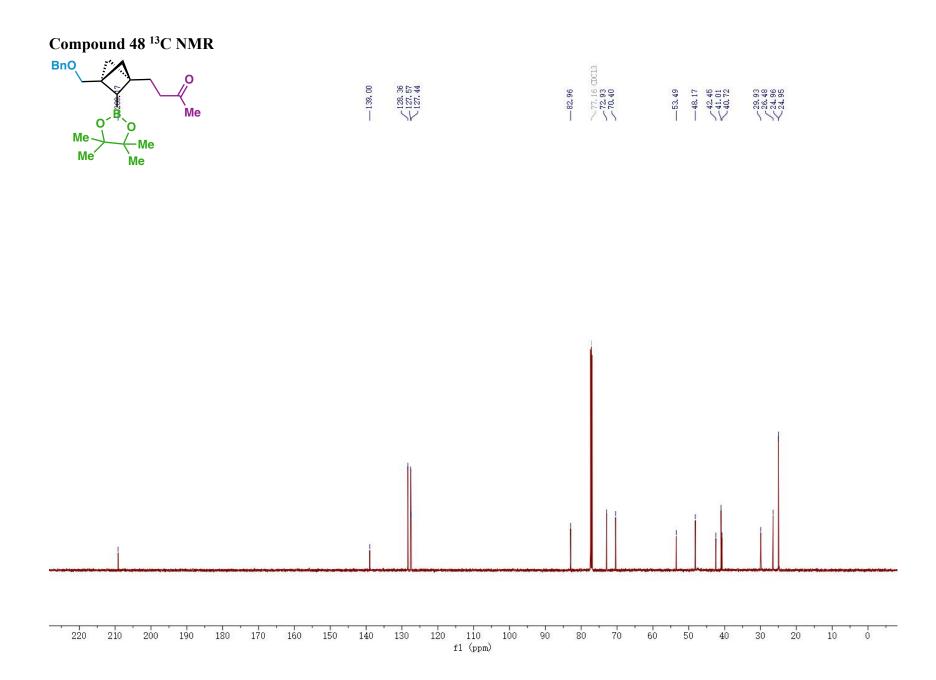


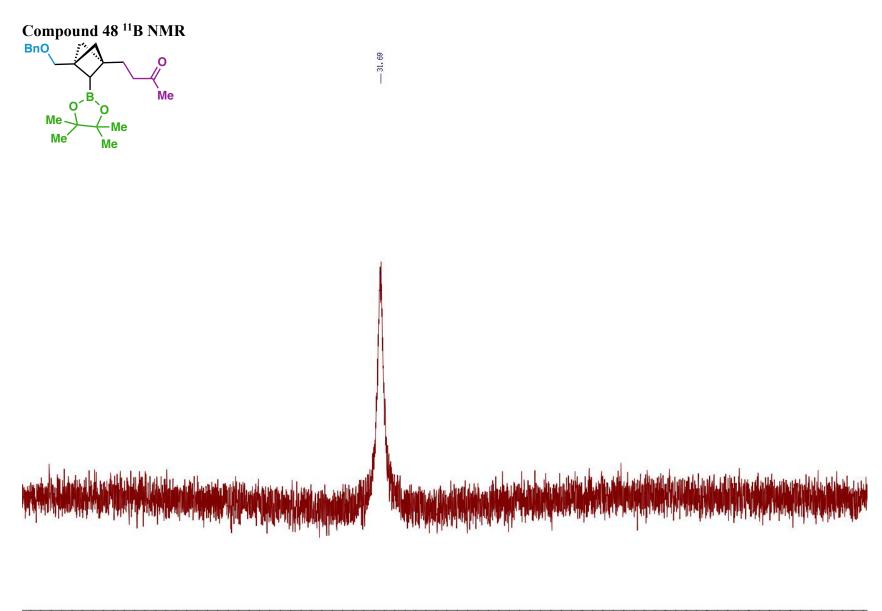


Compound 46¹¹B NMR

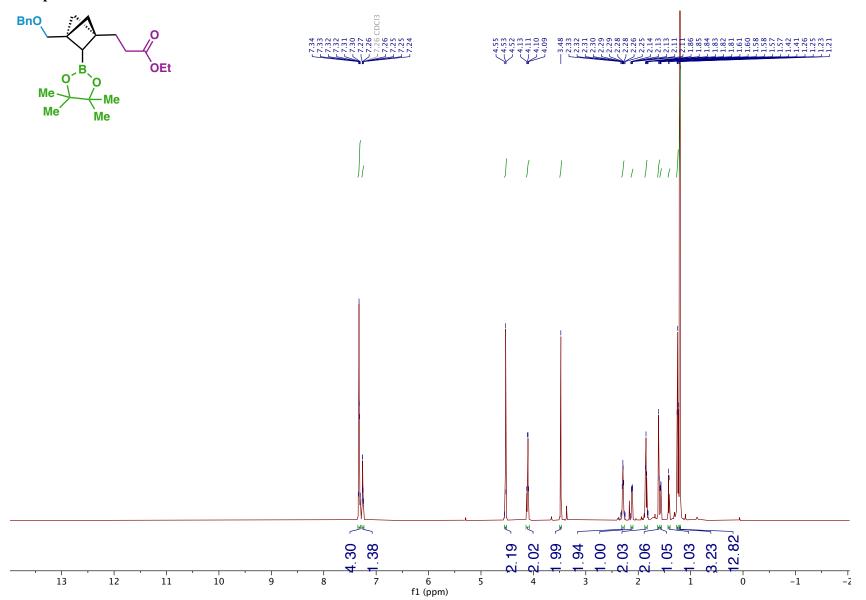


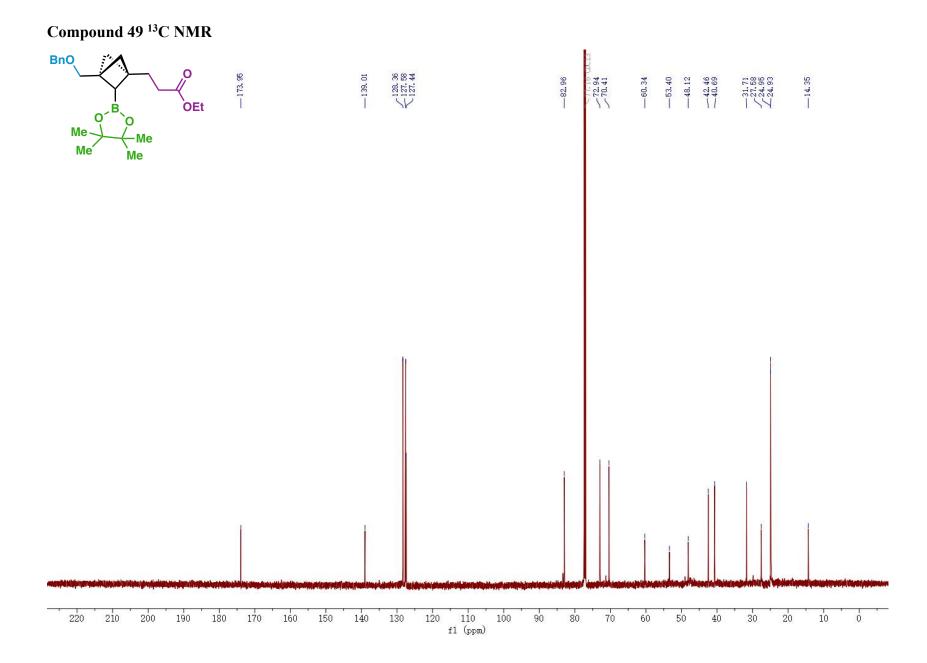


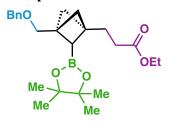


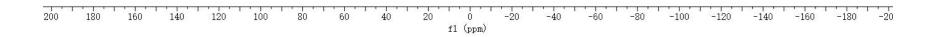


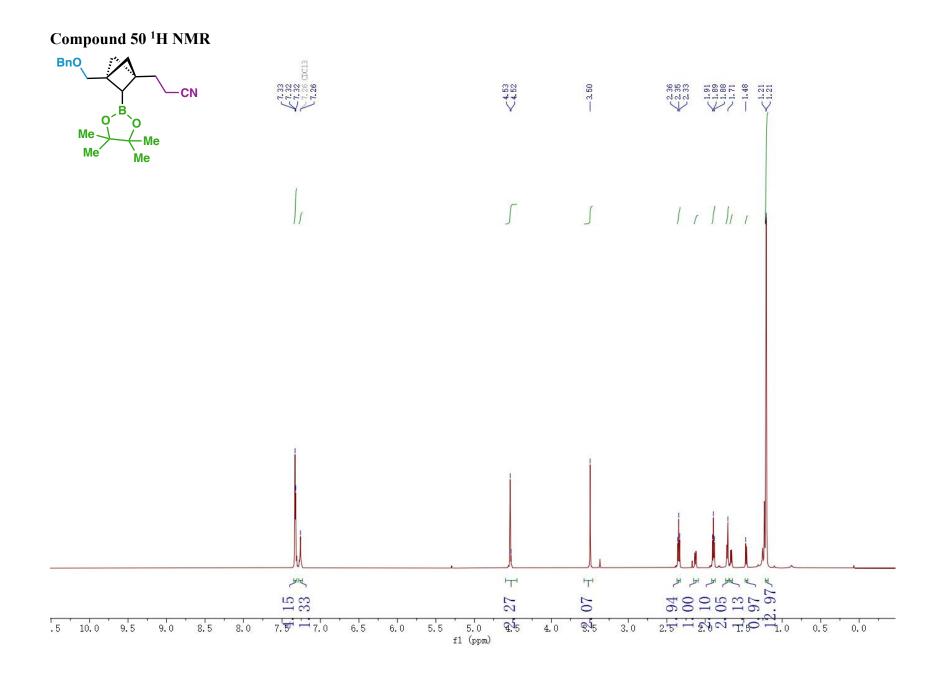
Compound 47¹³C NMR

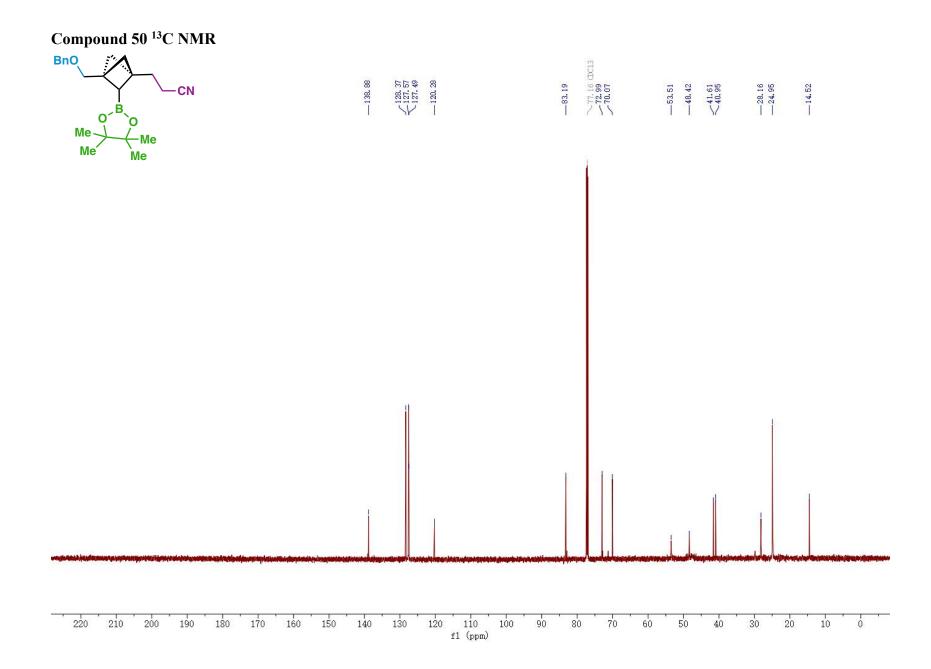




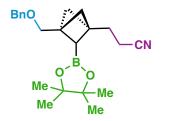

200 -20 -180 180 160 140 120 100 60 40 20 -20 -40 -60 -80 -100 -120 -140 -160 80 0 f1 (ppm)

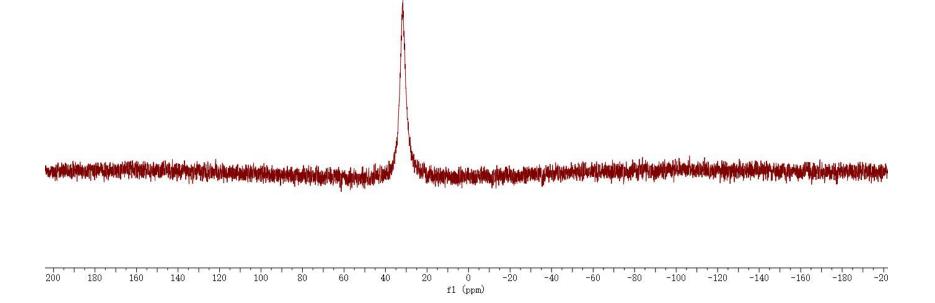

Compound 49¹H NMR

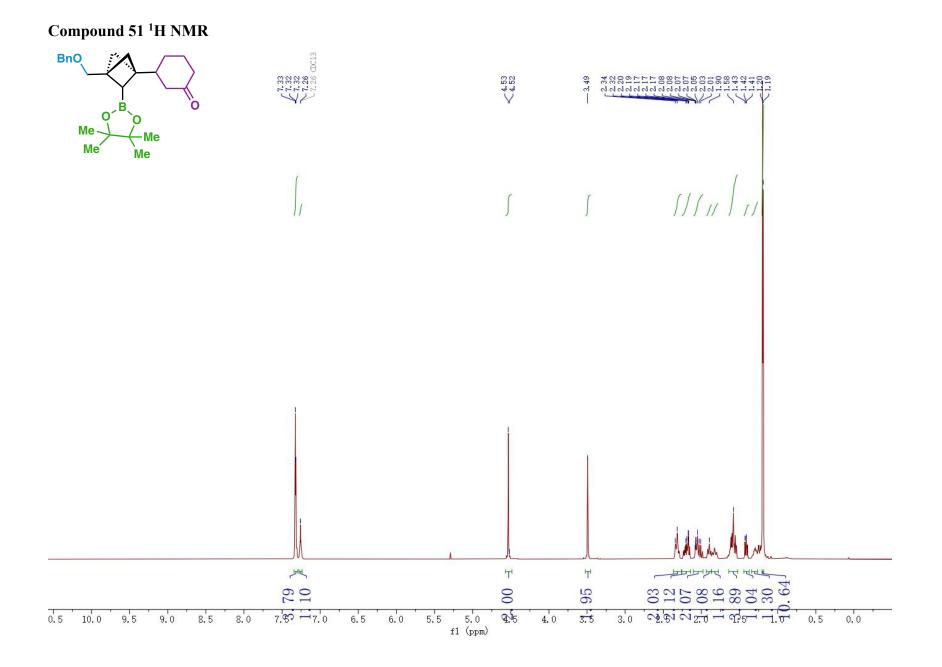


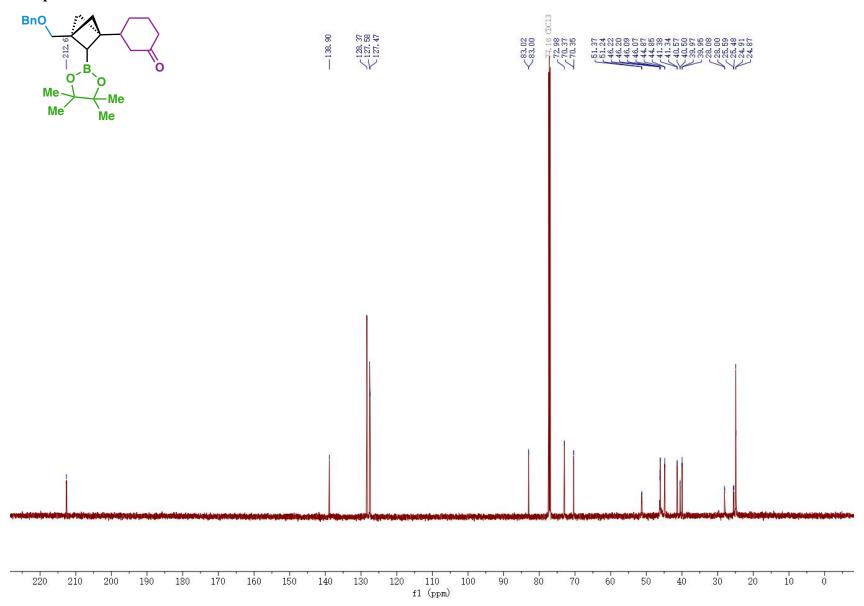


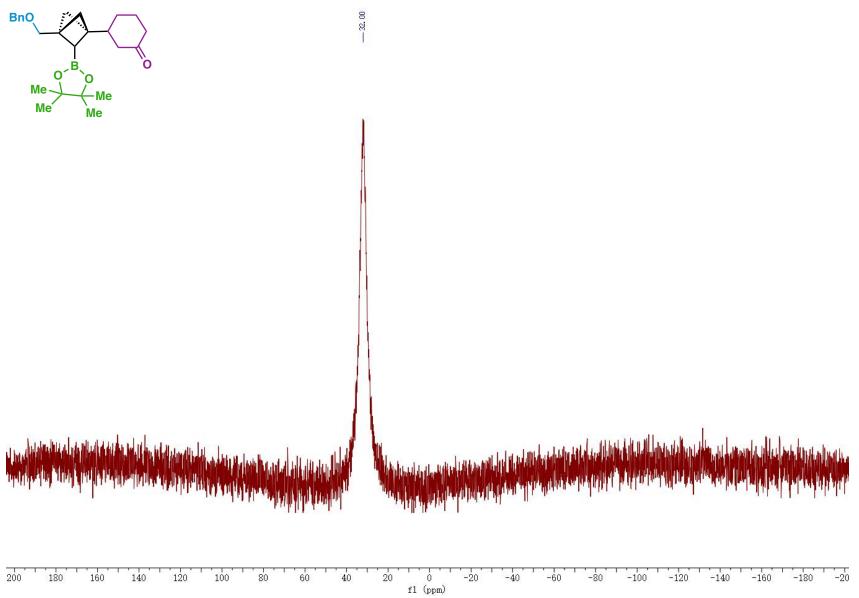
Compound 49¹¹B NMR

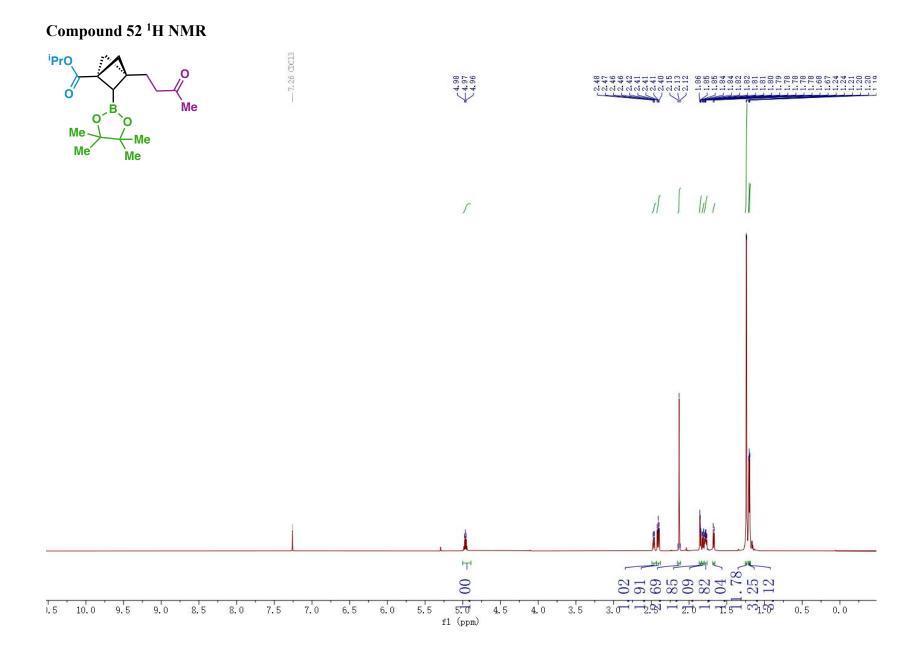


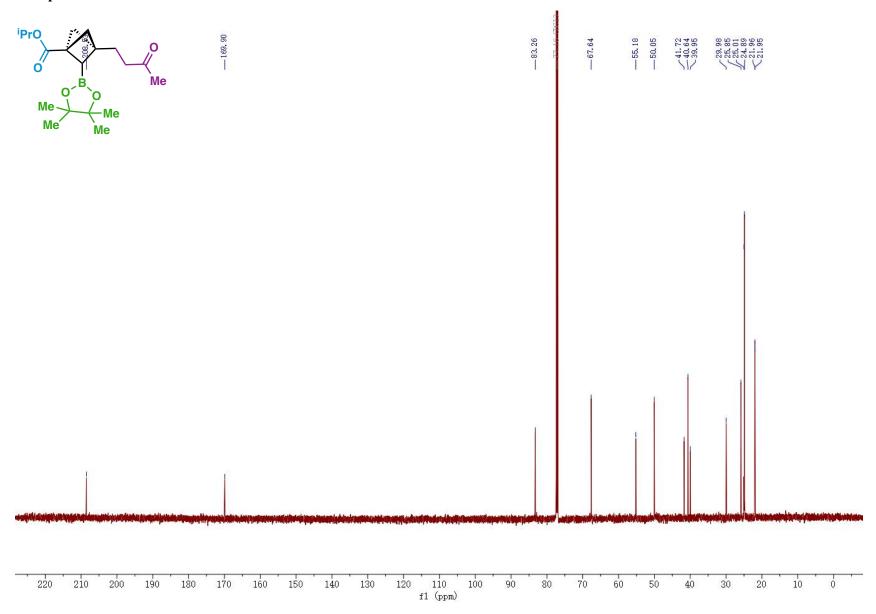


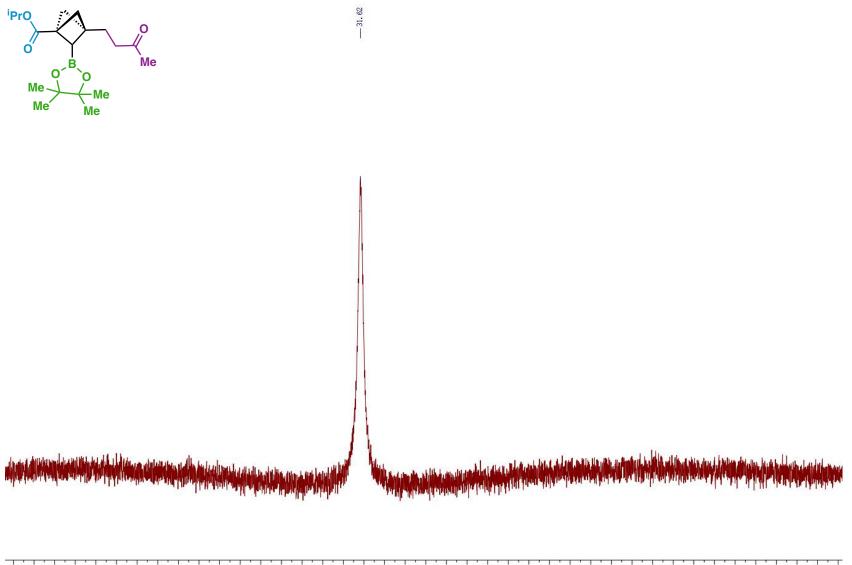


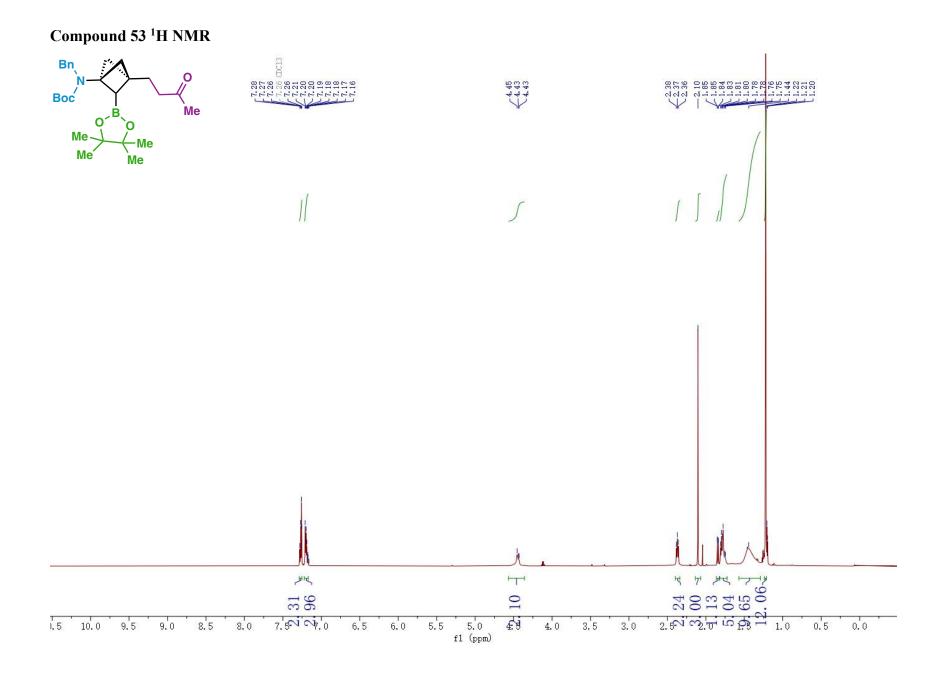

Compound 50¹¹B NMR

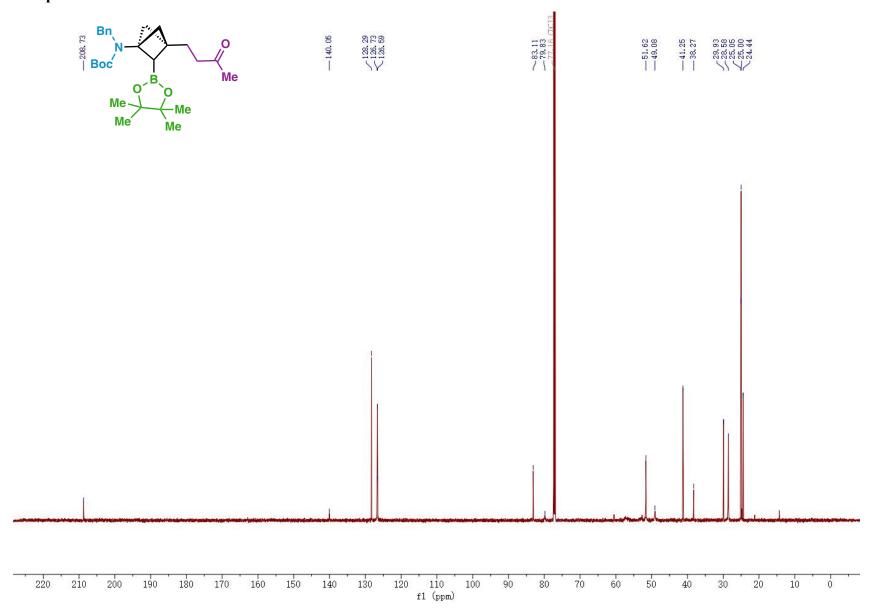


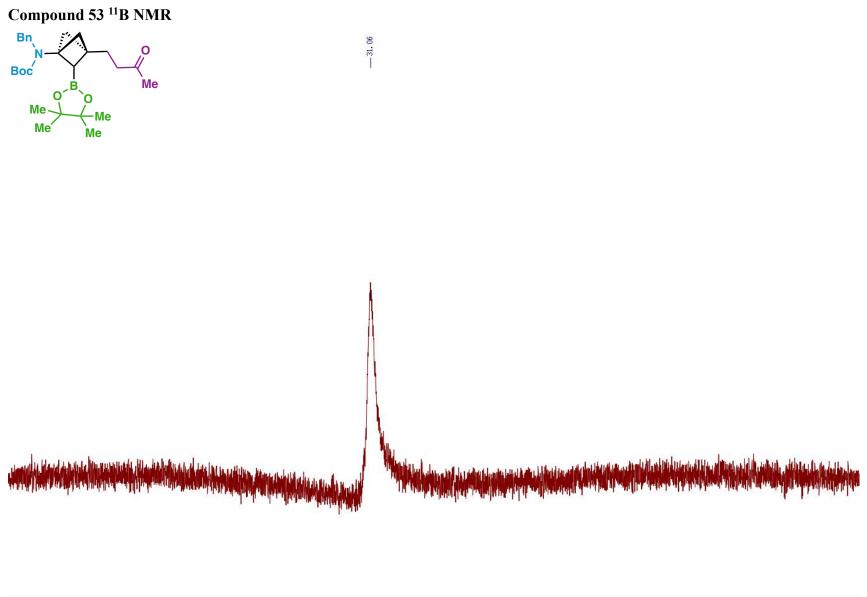

Compound 51 ¹³C NMR

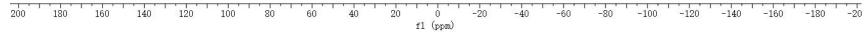

Compound 51 ¹¹B NMR

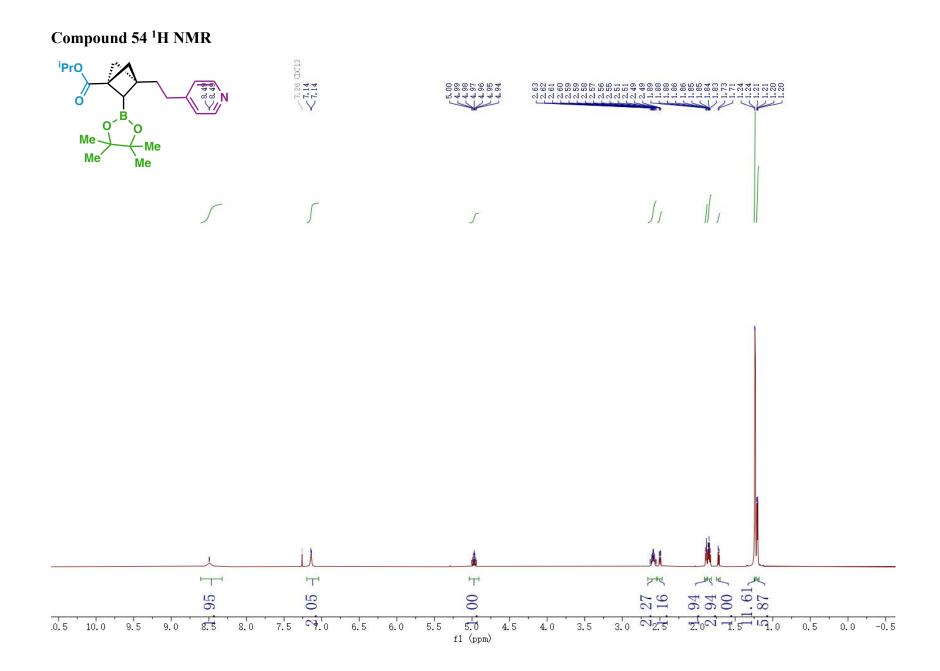


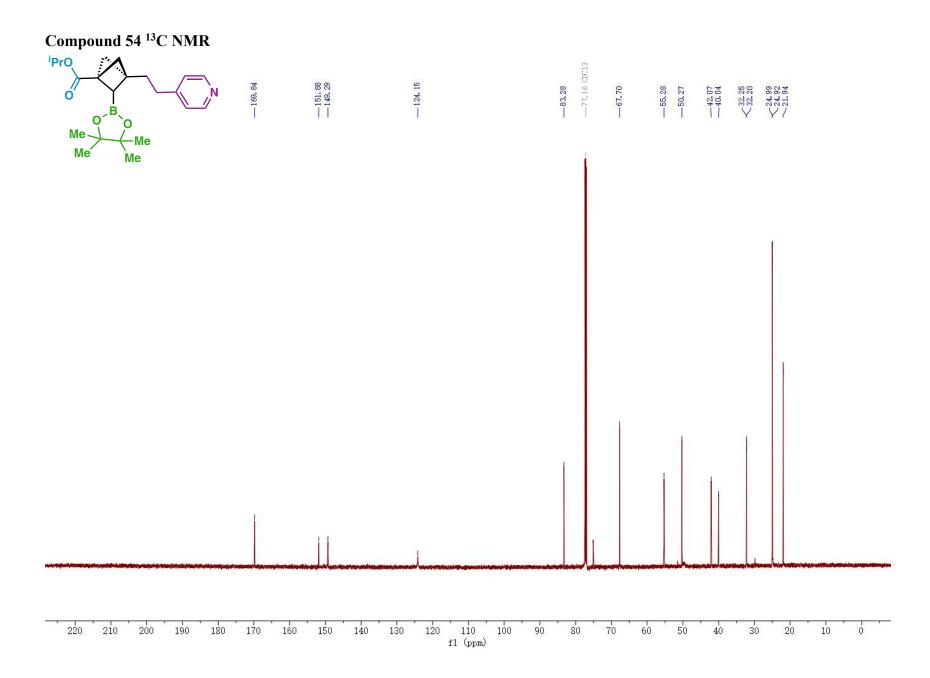

Compound 52 ¹³C NMR

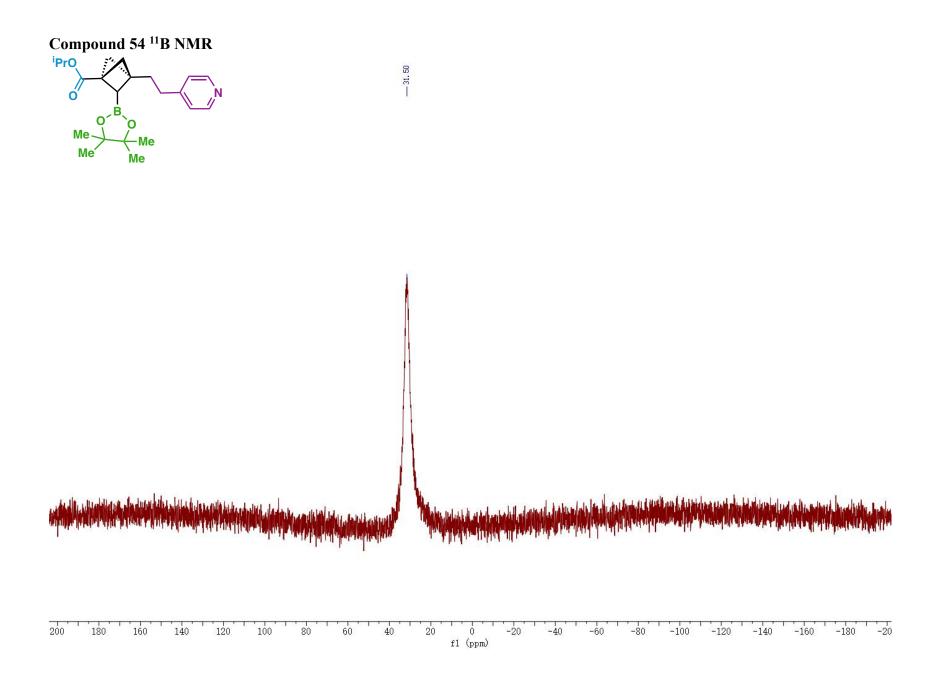

Compound 52¹¹B NMR

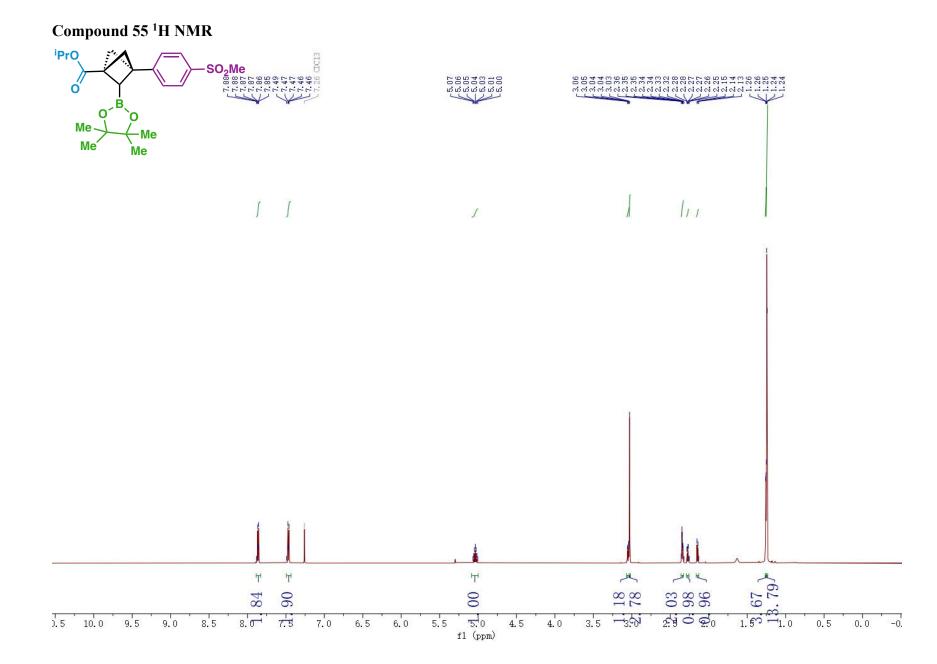


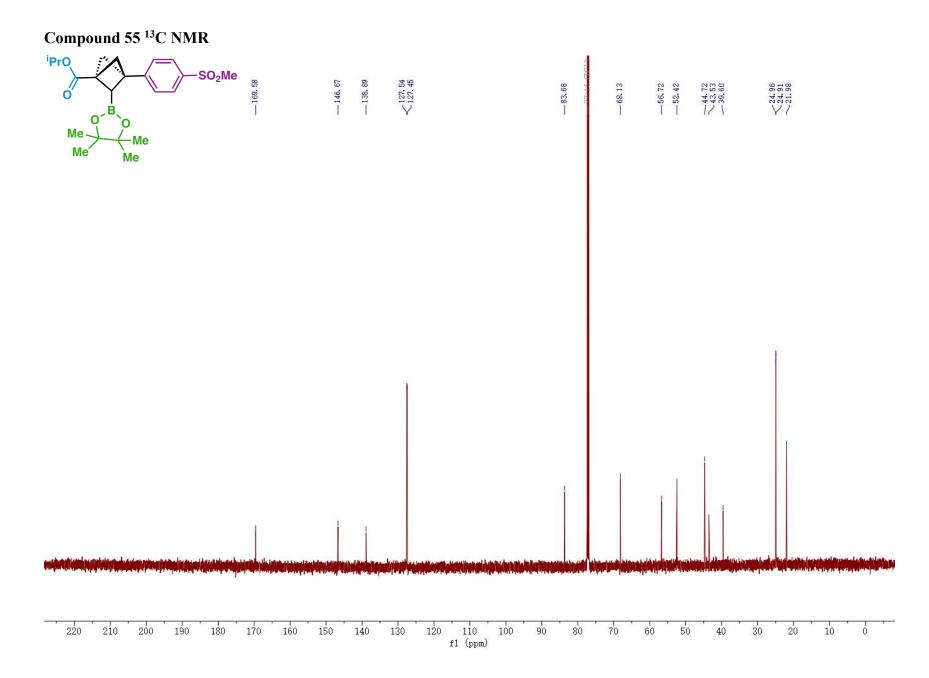

200 -20 180 160 120 100 -20 -100 -120 140 80 60 40 20 0 f1 (ppm) -40 -60 -80 -140 -160 -180

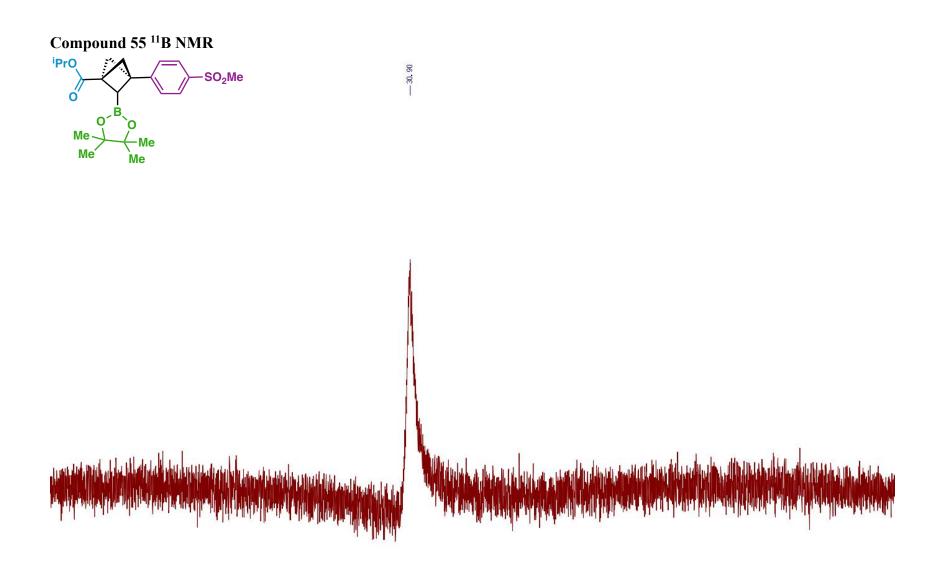


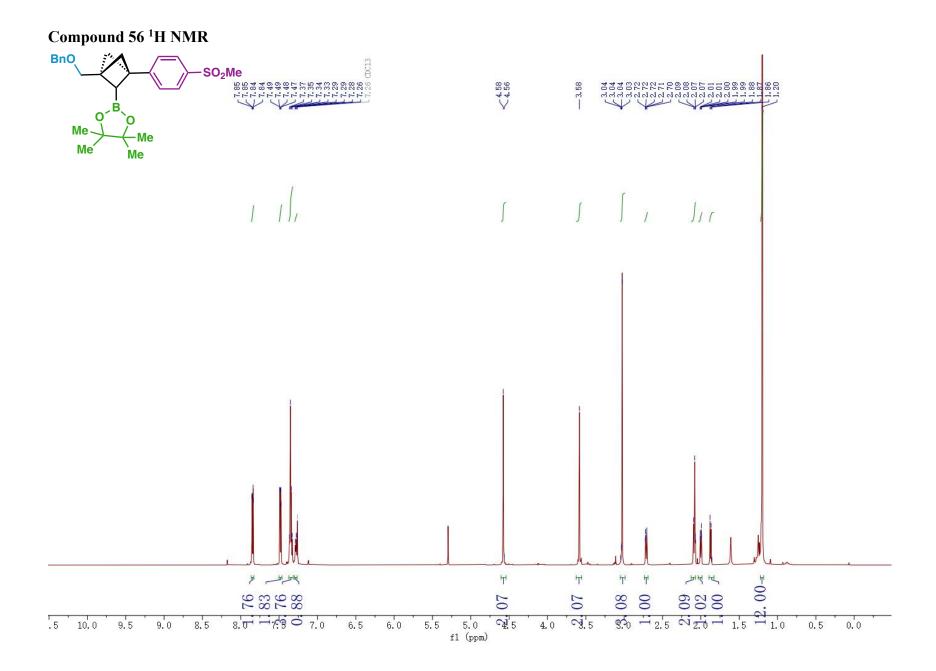

Compound 53 ¹³C NMR

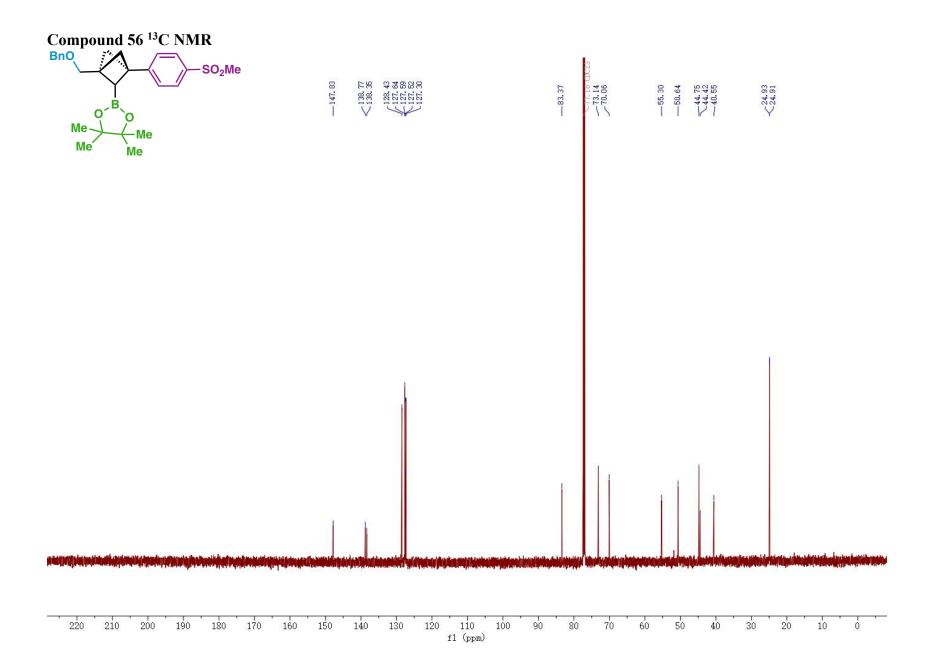


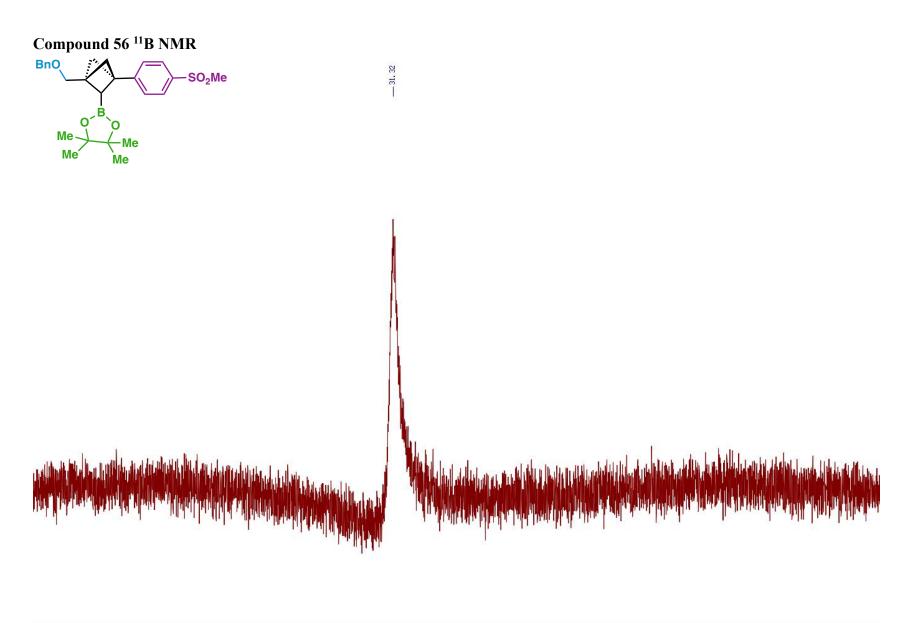


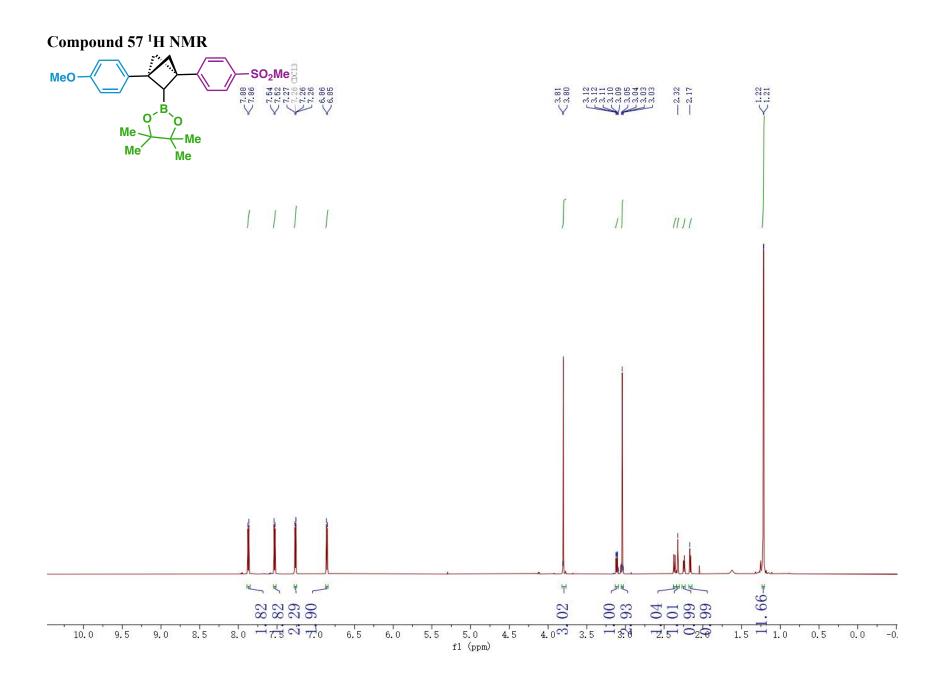


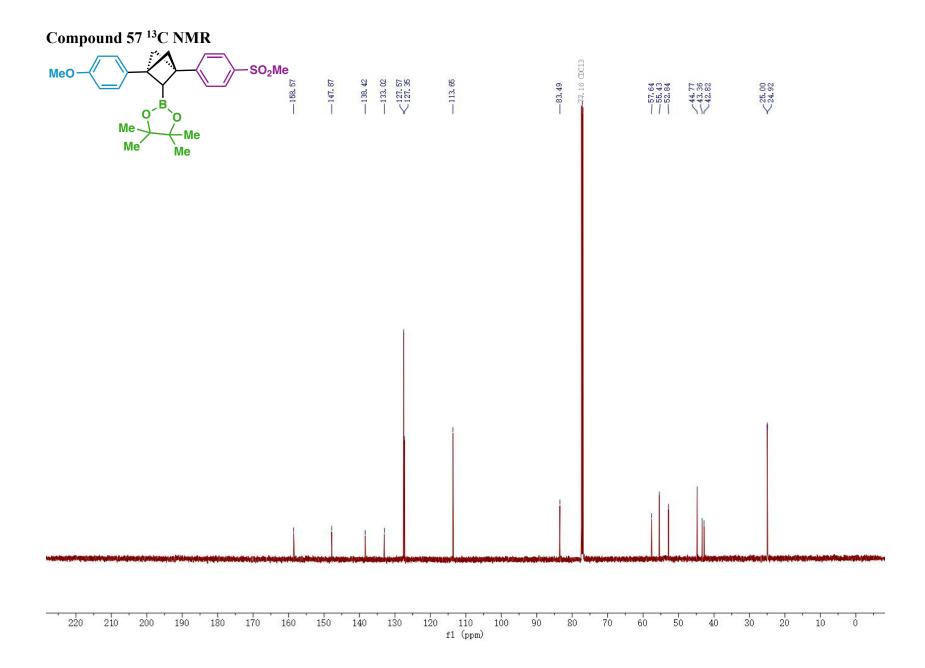


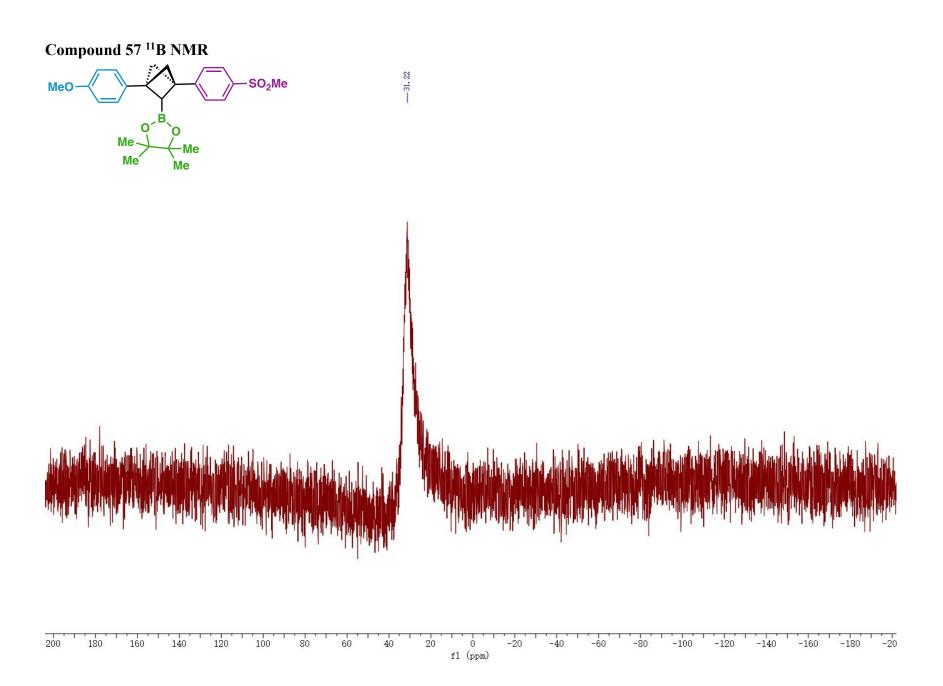


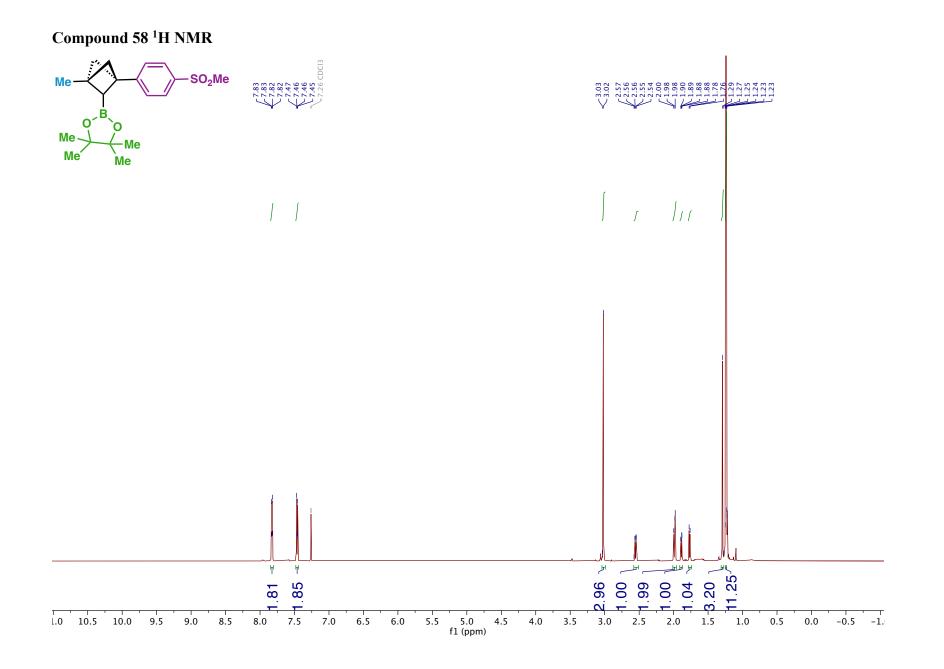


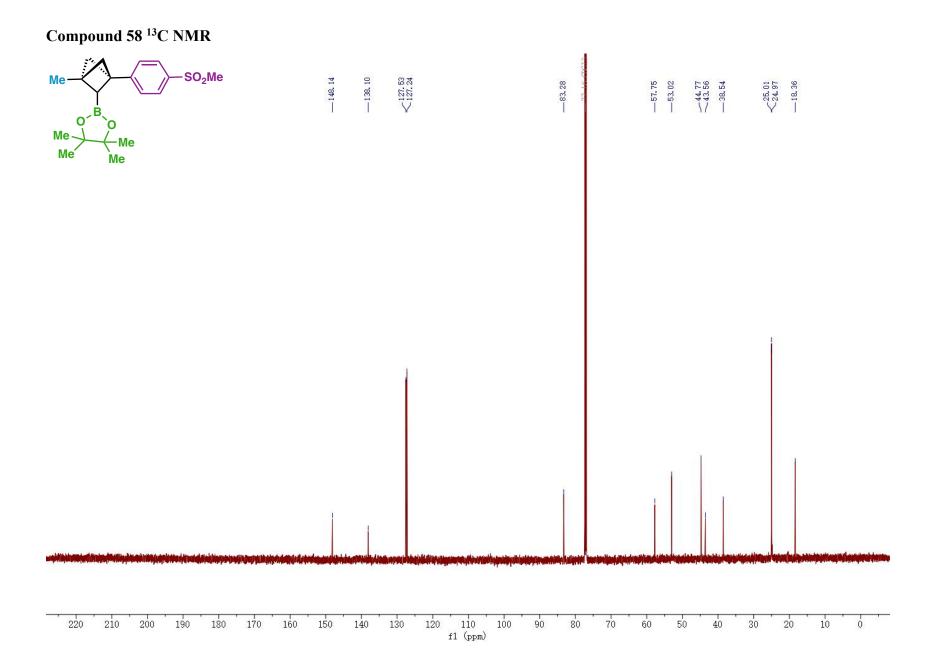


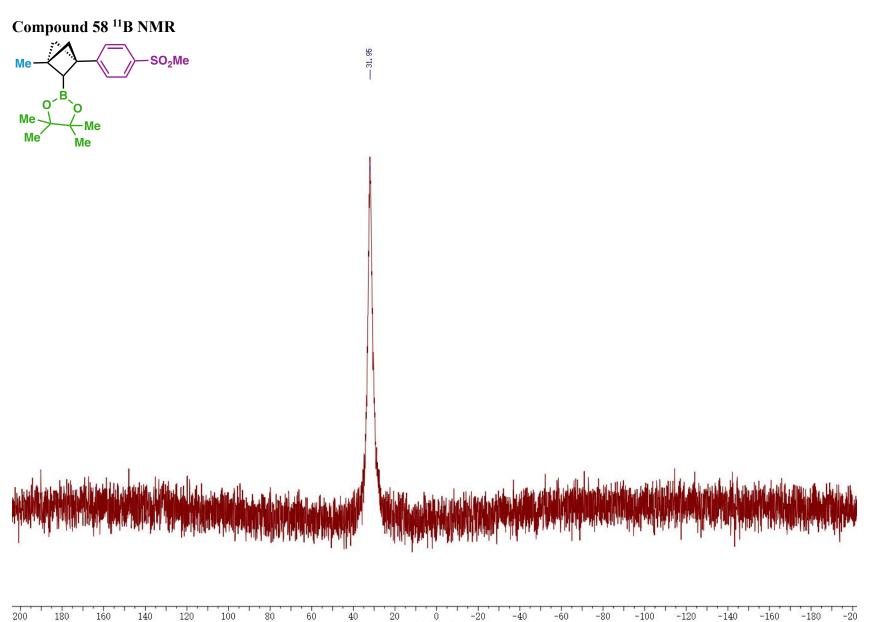

200 -20 -160 -180 180 160 140 120 100 80 60 40 20 -20 -40 -60 -80 -100 -120 -140 0 f1 (ppm)

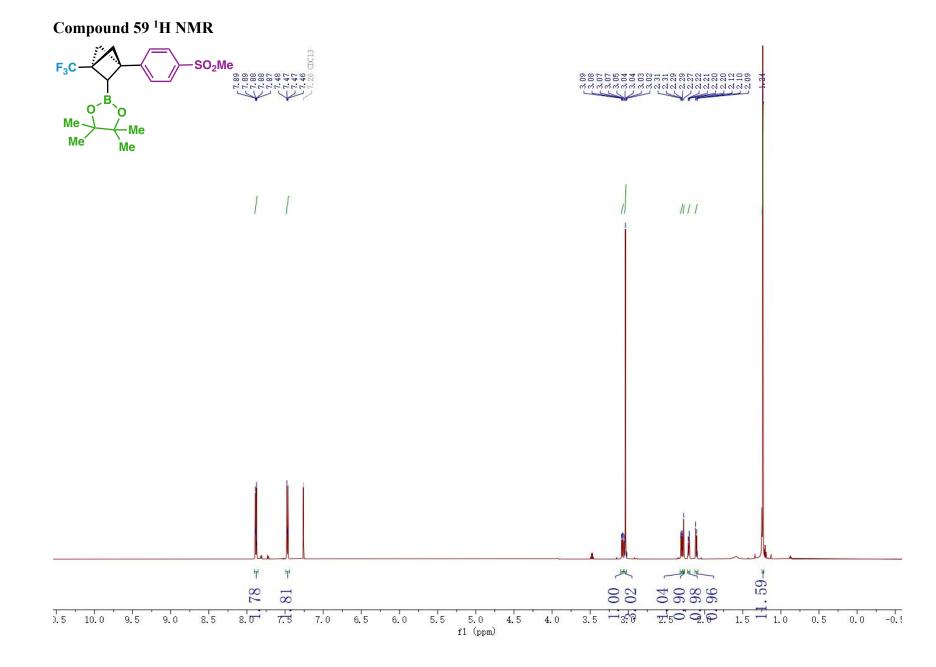


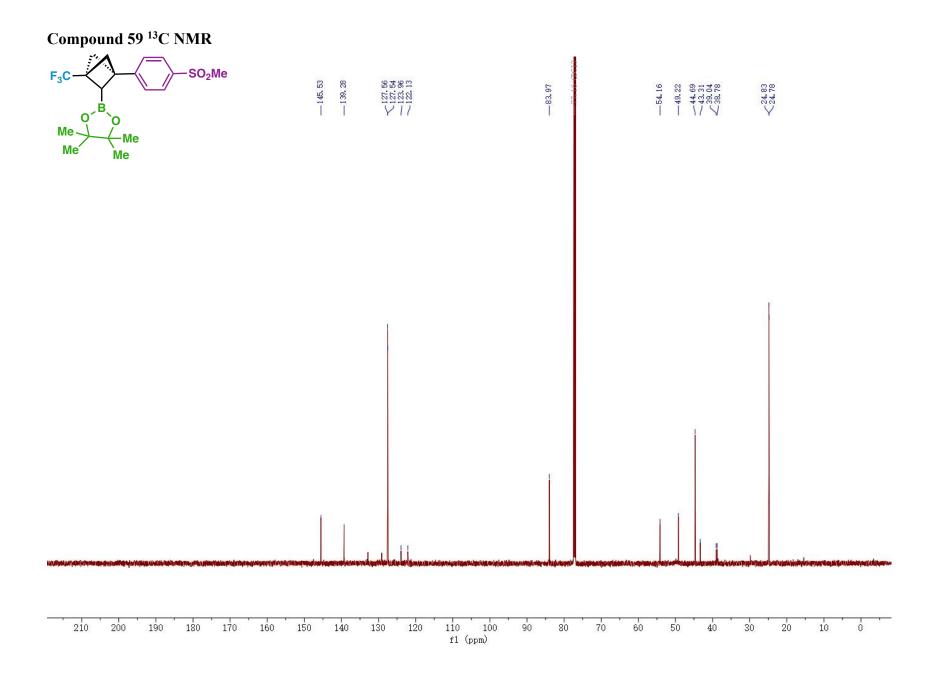


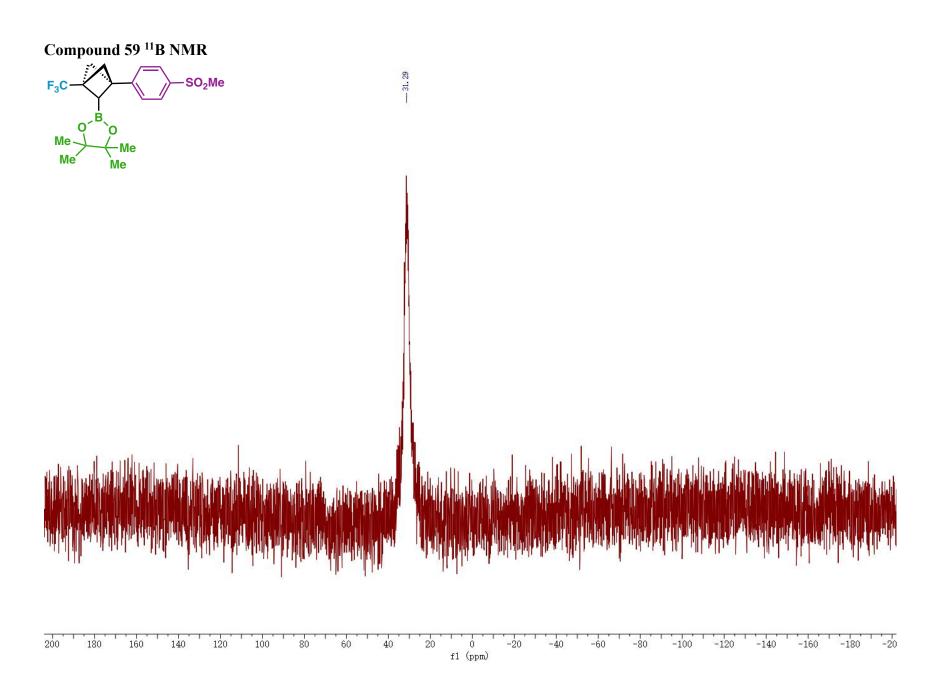


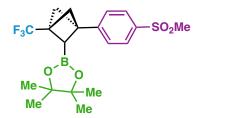

200 -20 180 160 140 120 100 80 40 20 -80 -100 -120 -140 -160 -180 60 -20 -40 -60 0 f1 (ppm)

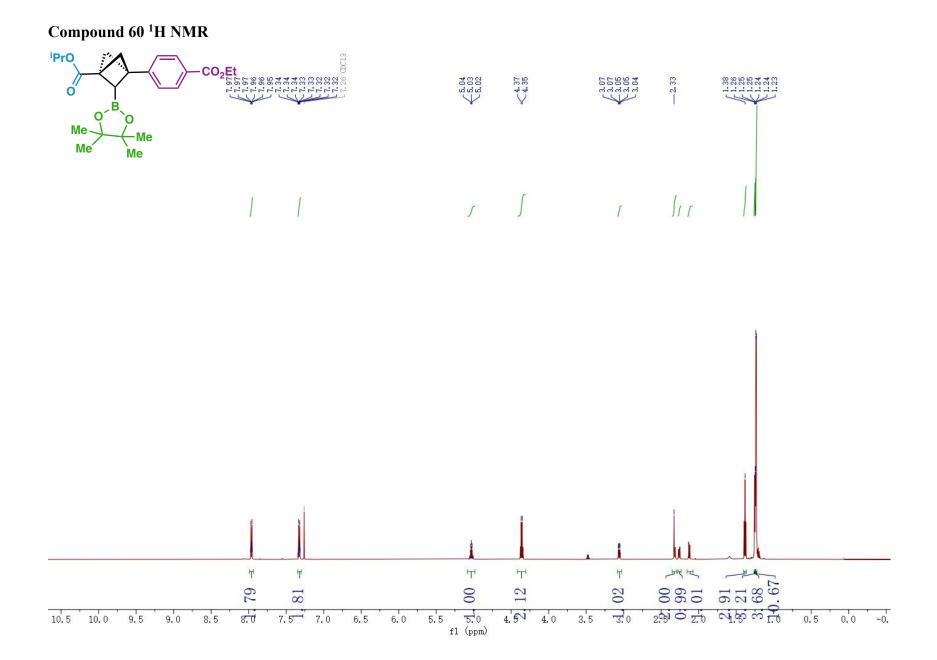


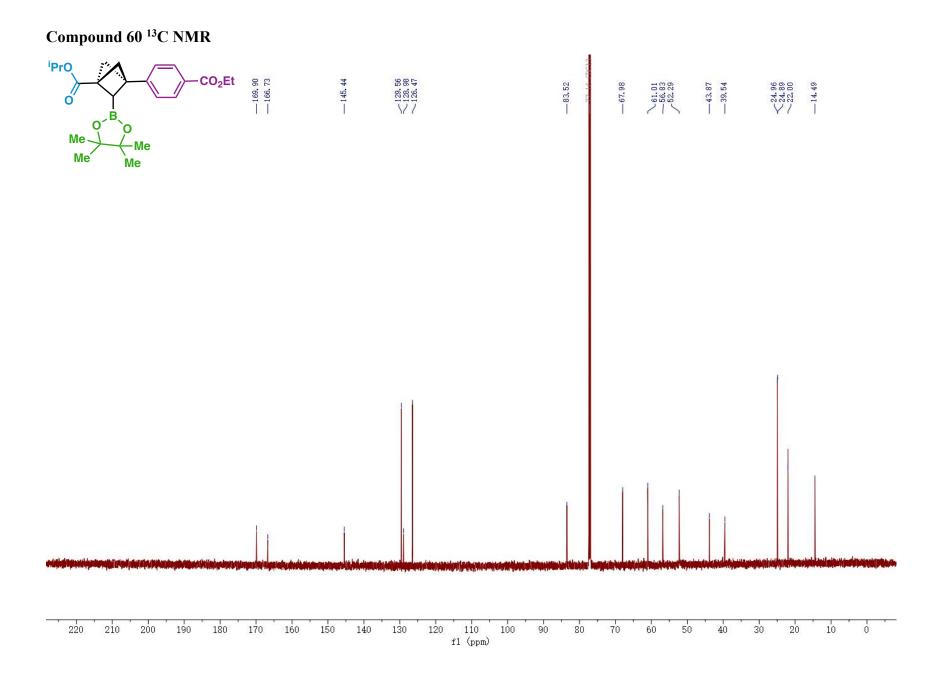


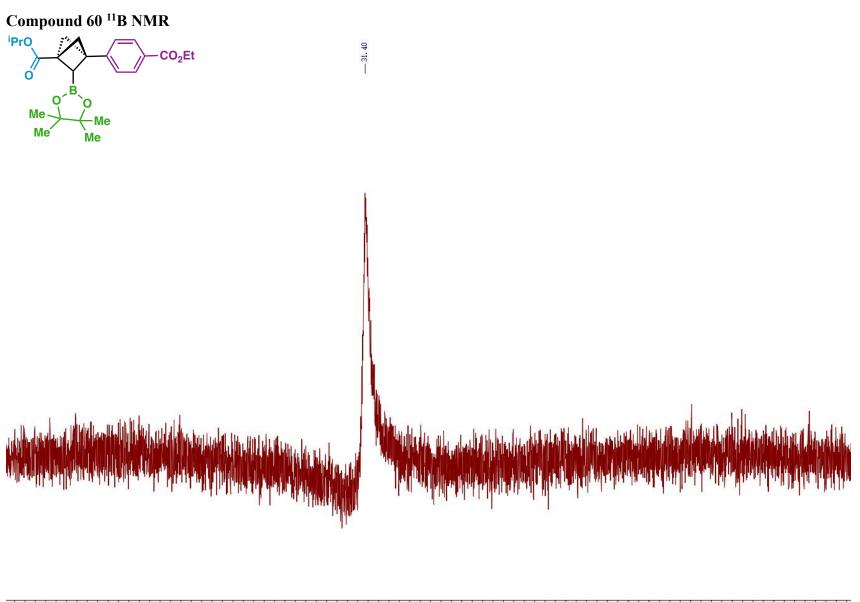


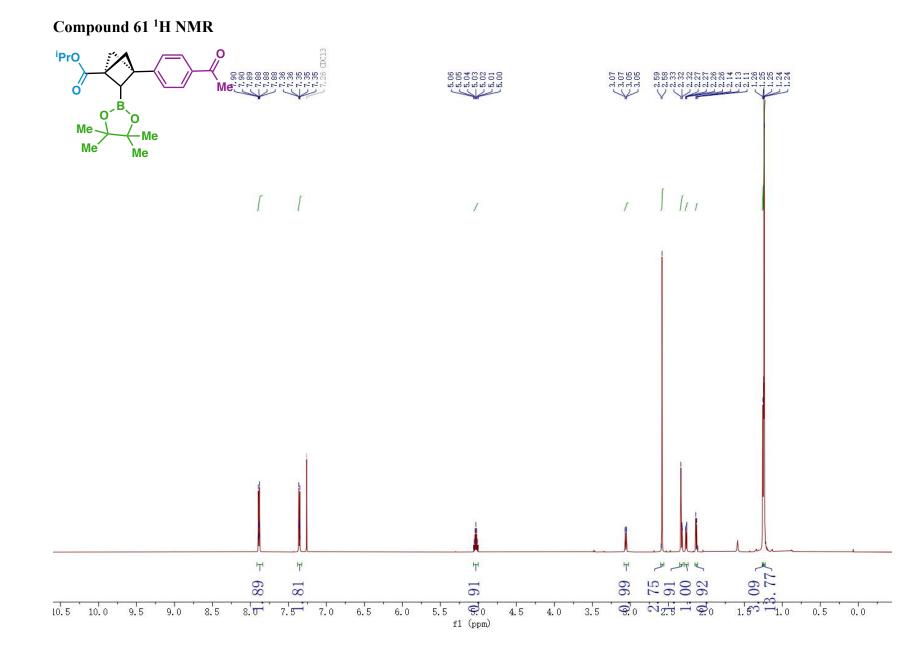


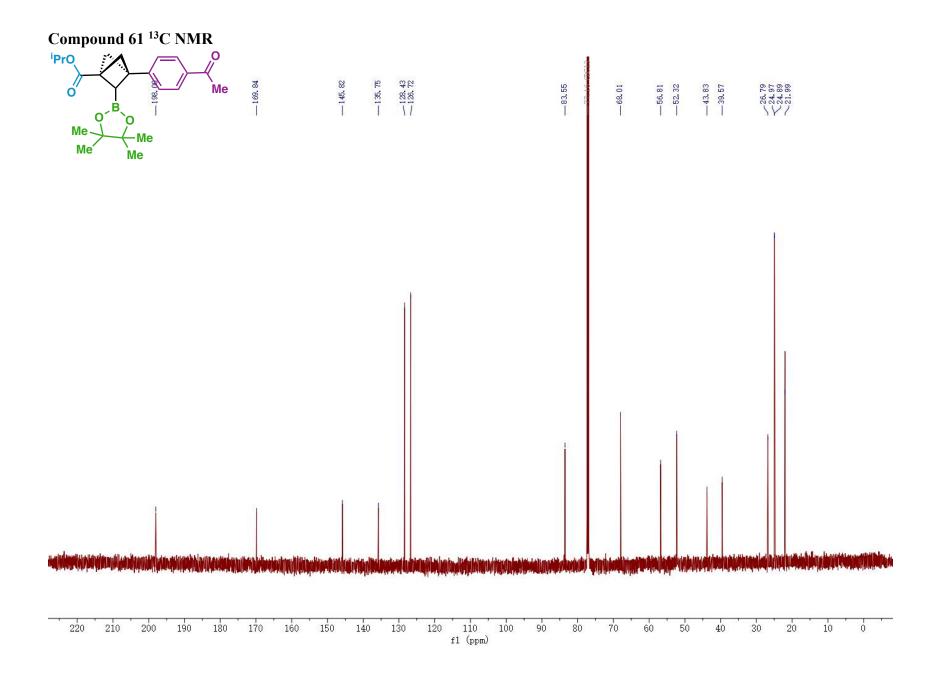


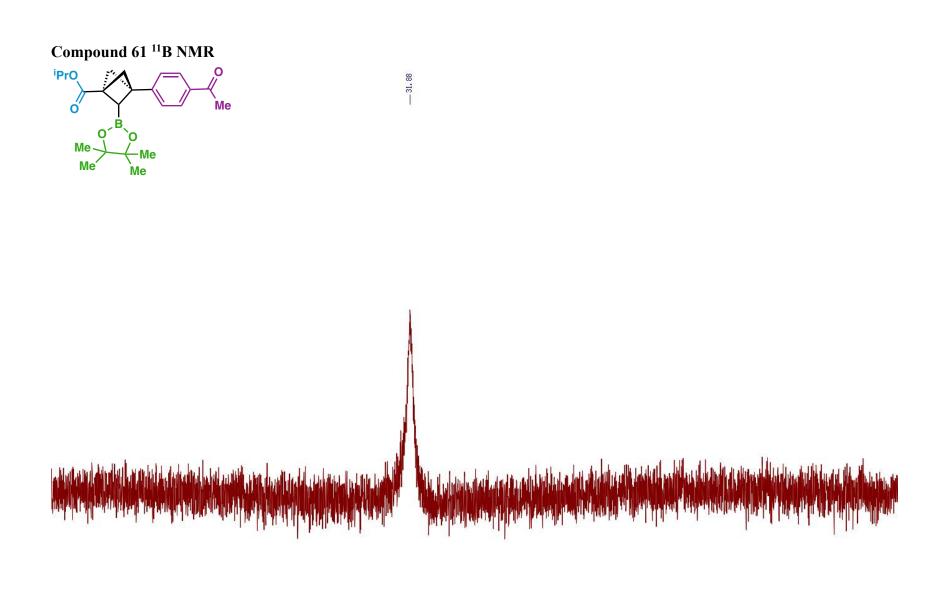


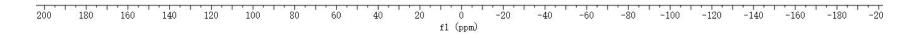


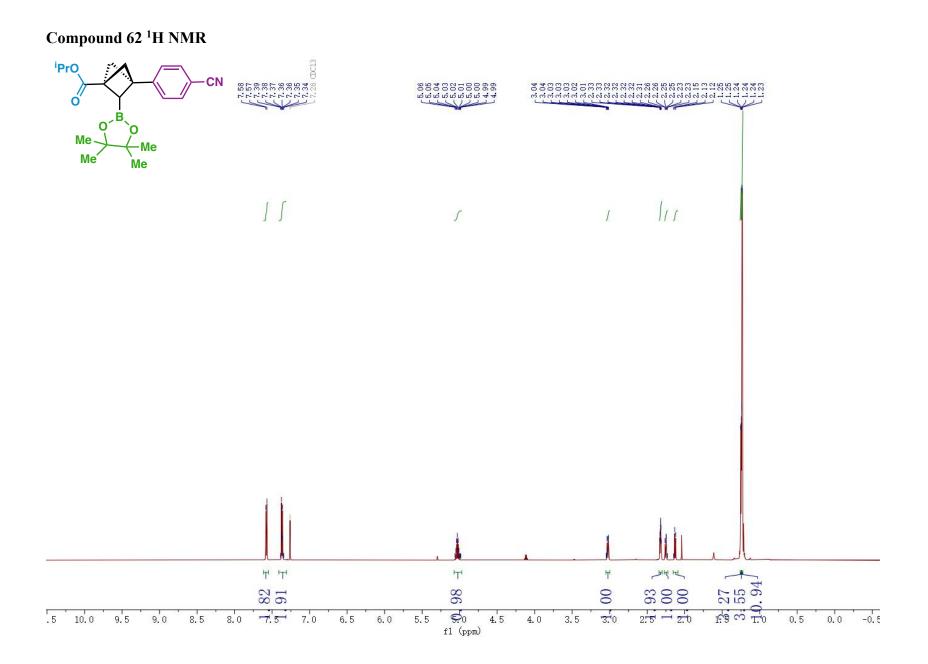

Compound 59¹⁹F NMR

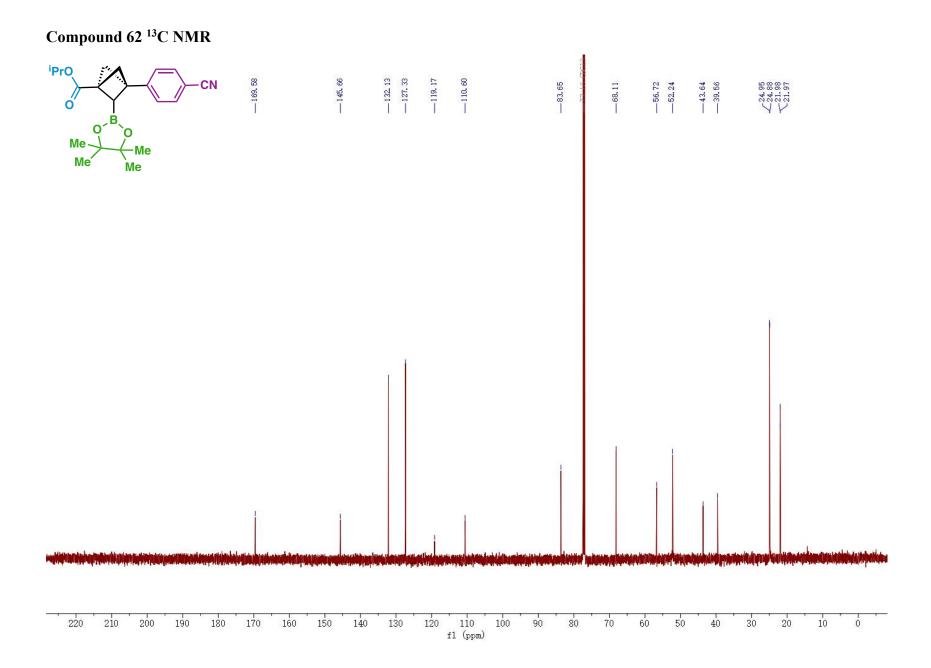

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

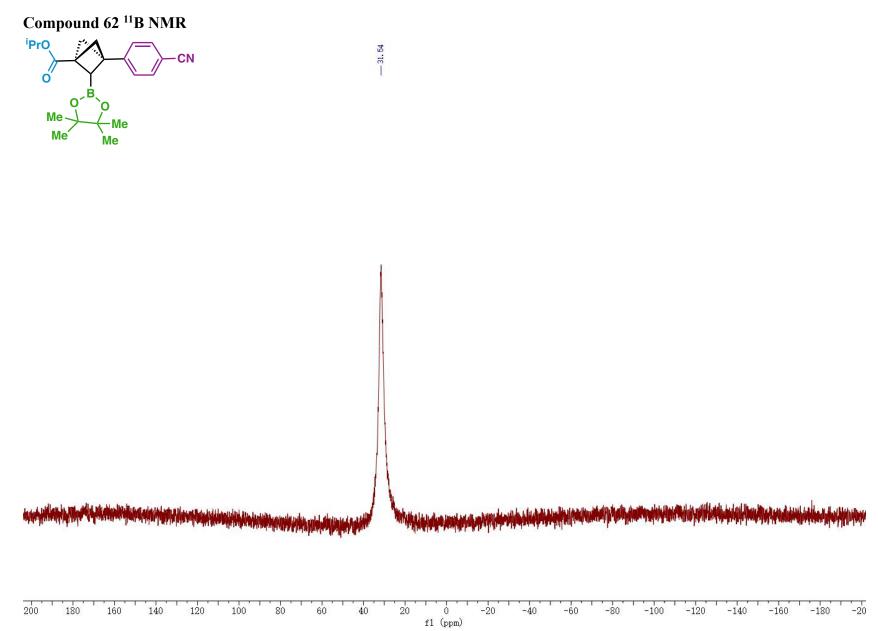


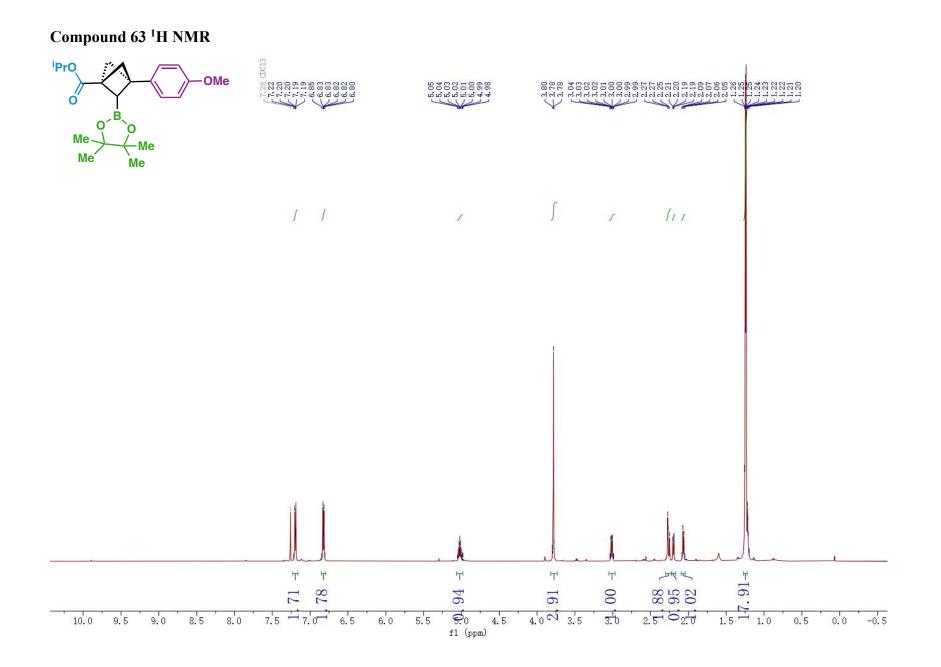


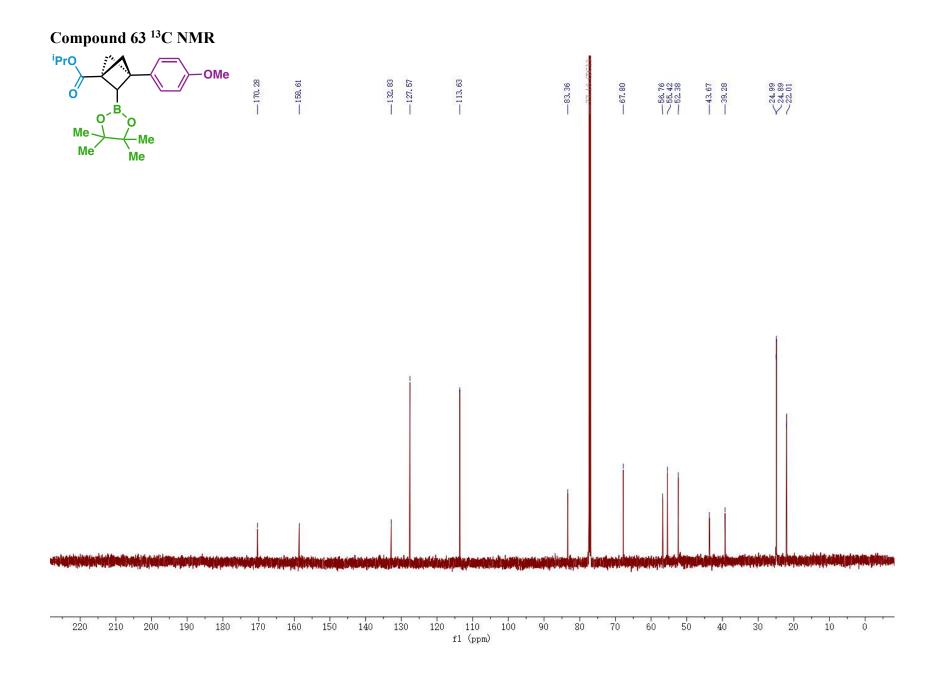


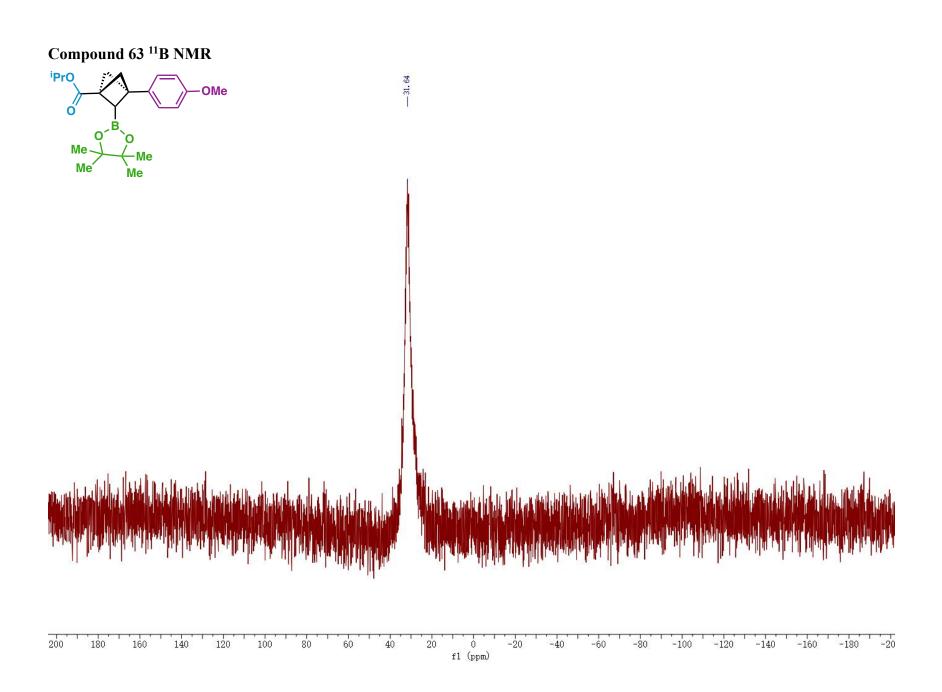

200 -20 -160 -180 180 160 140 120 100 80 60 40 20 -20 -40 -60 -80 -100 -120 -140 0 f1 (ppm)

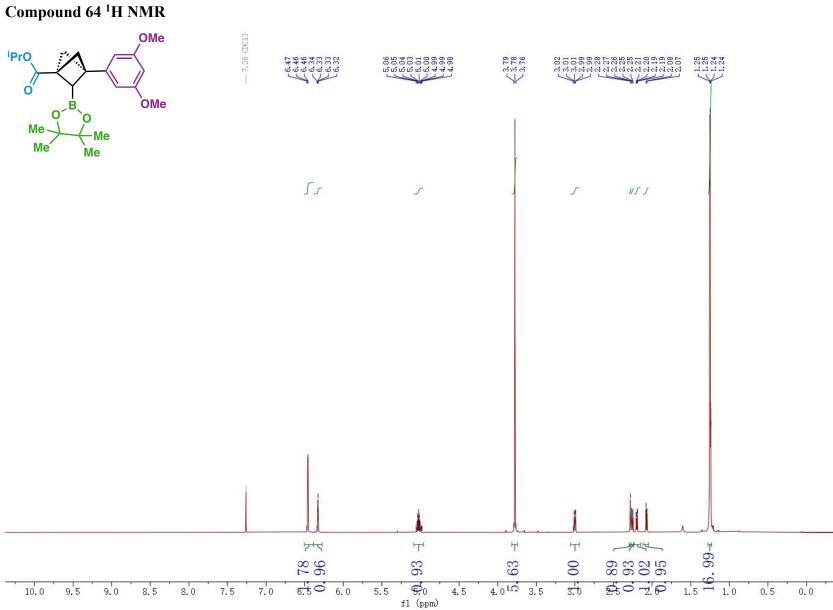


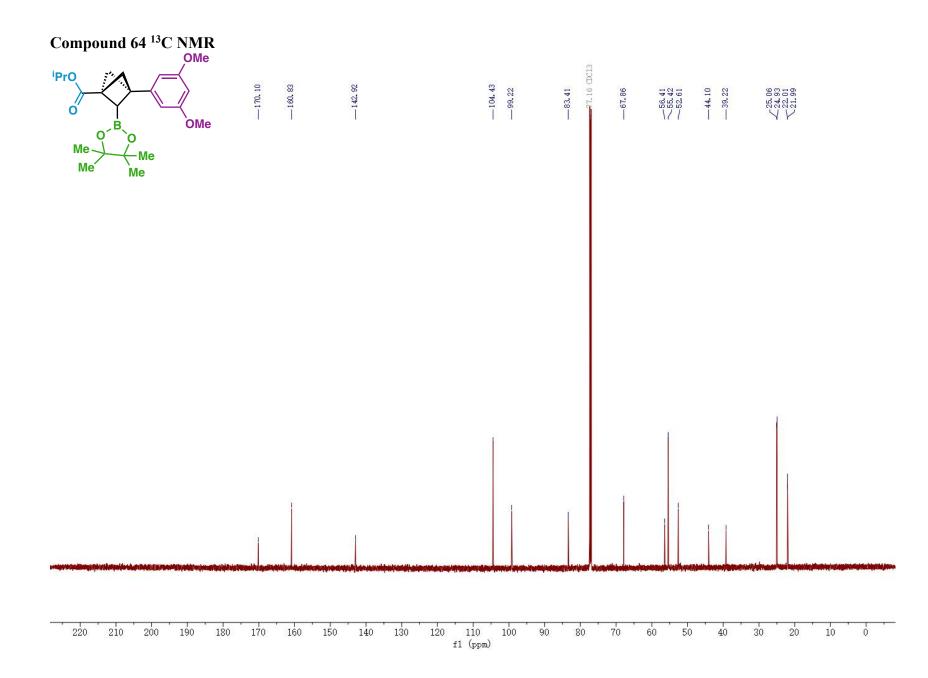


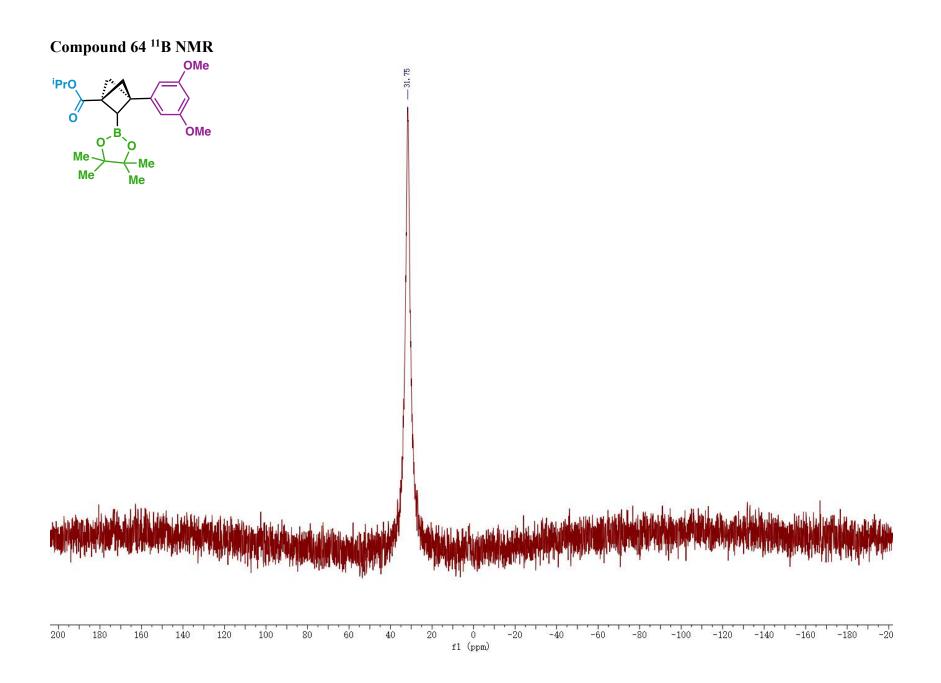


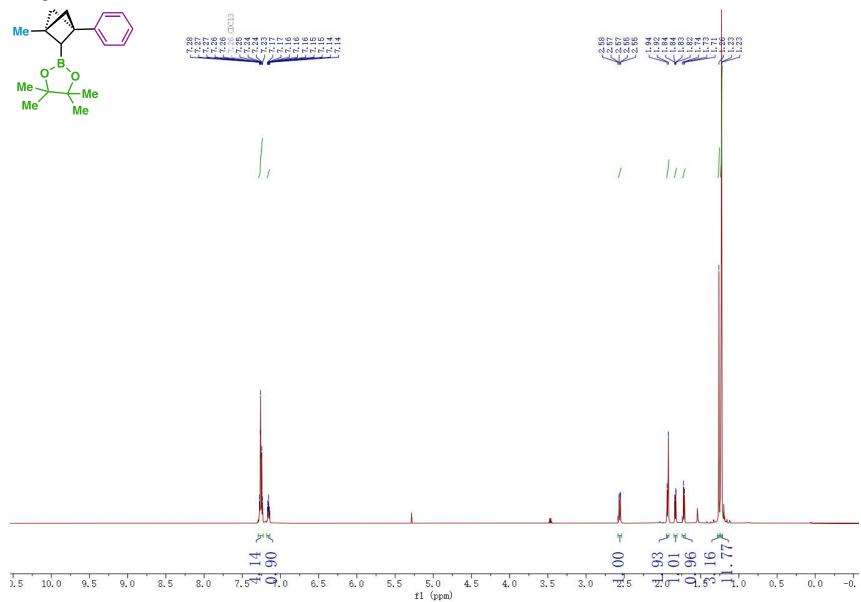


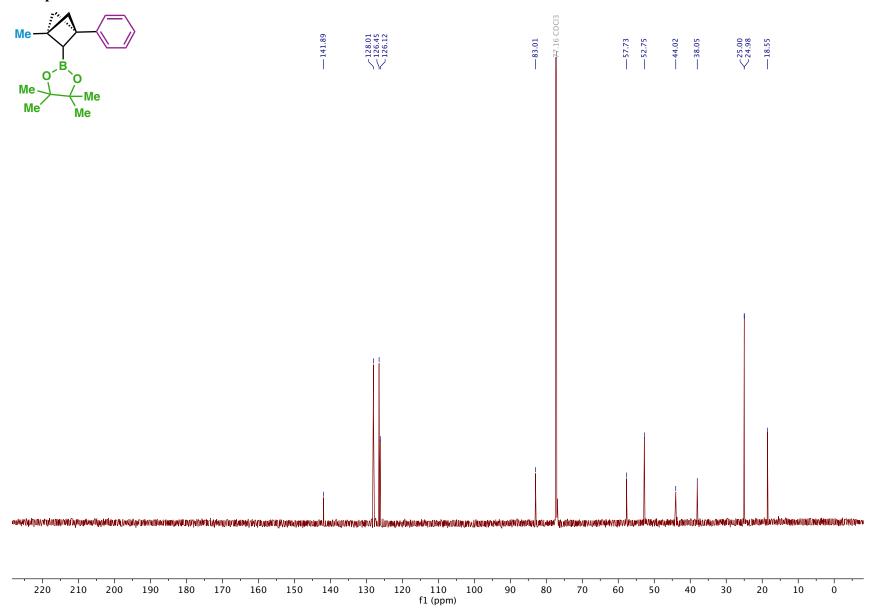


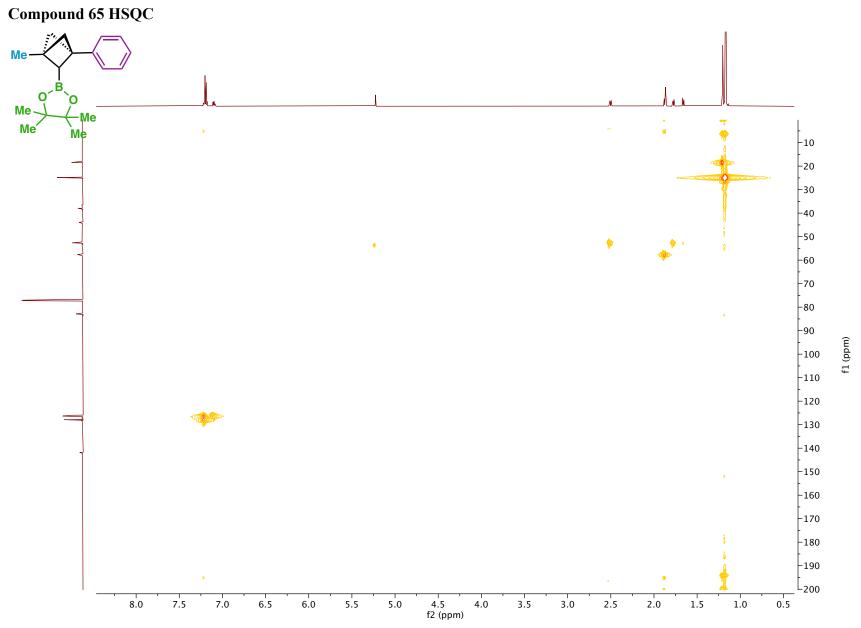


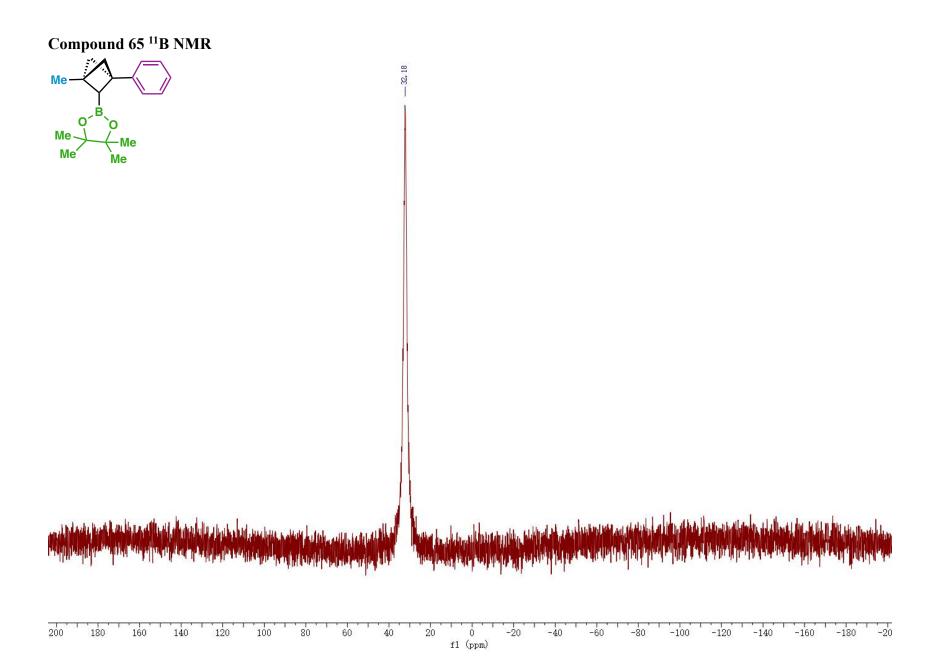


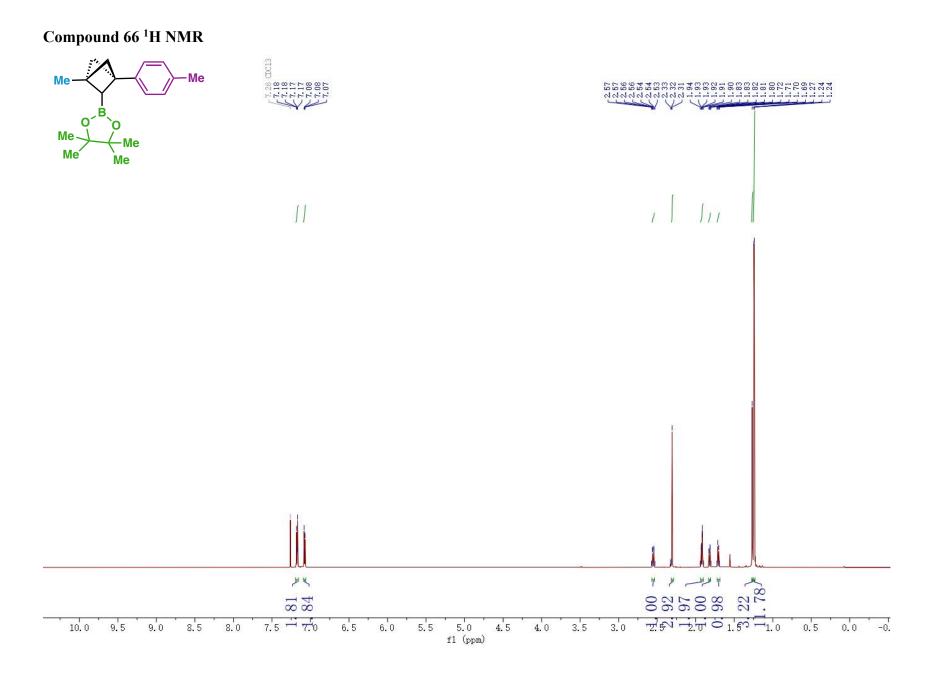


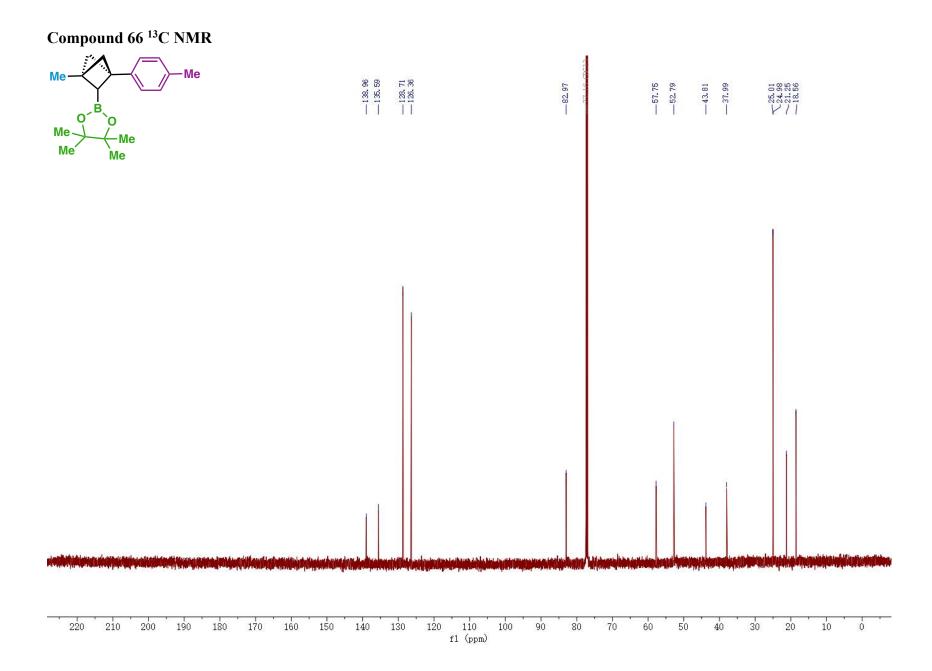


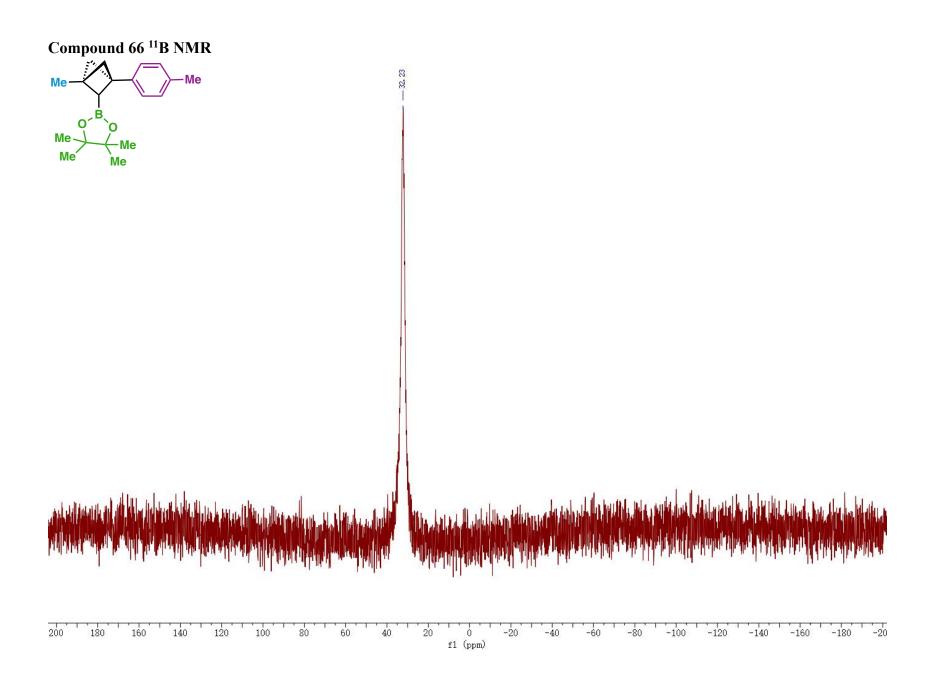


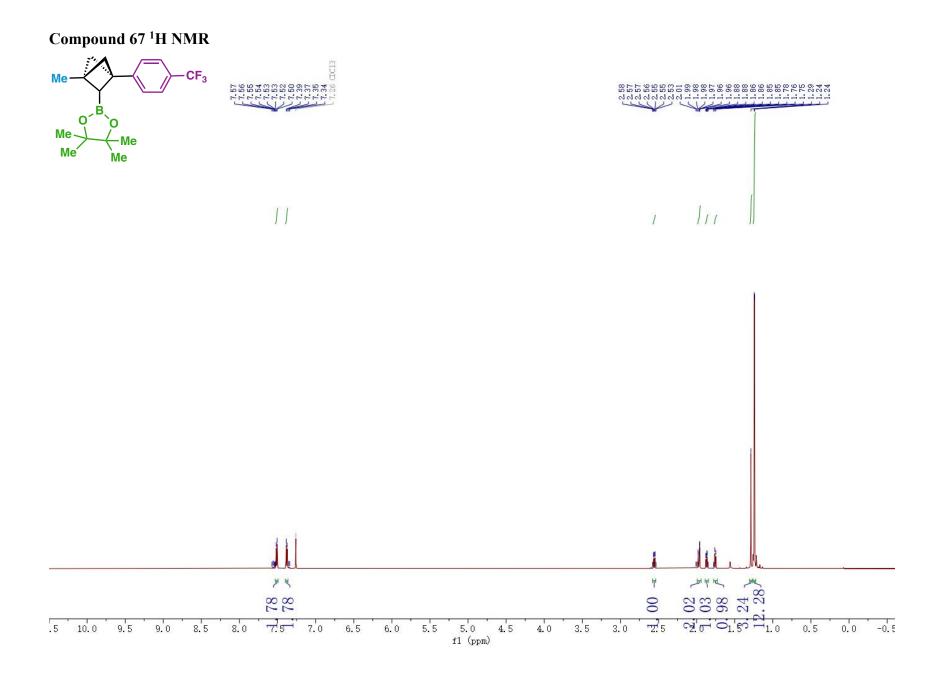


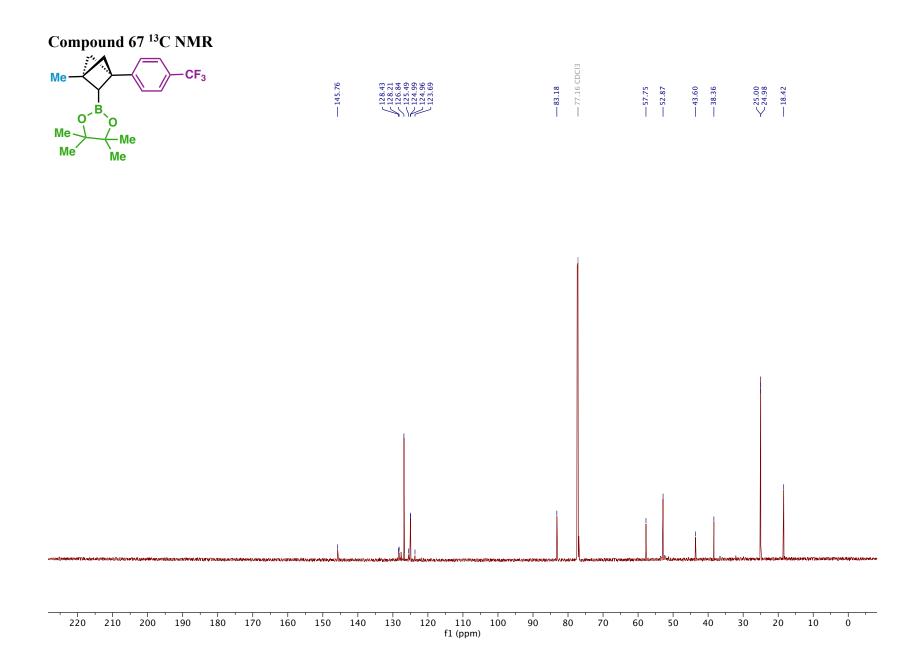

Compound 65 ¹H NMR

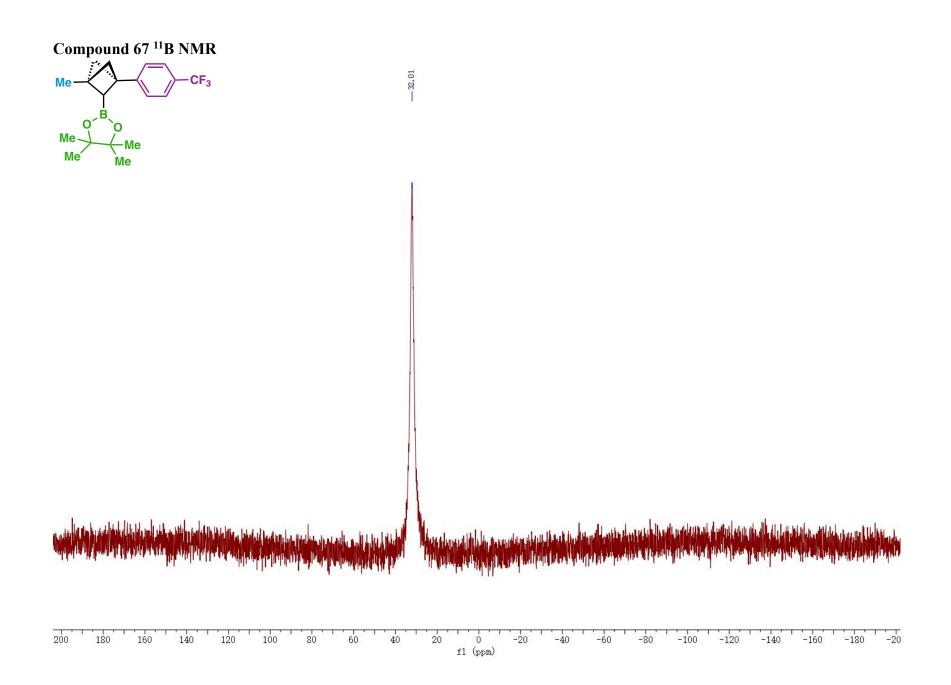


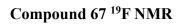

Compound 65¹³C NMR

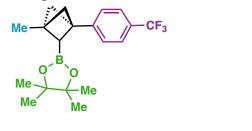


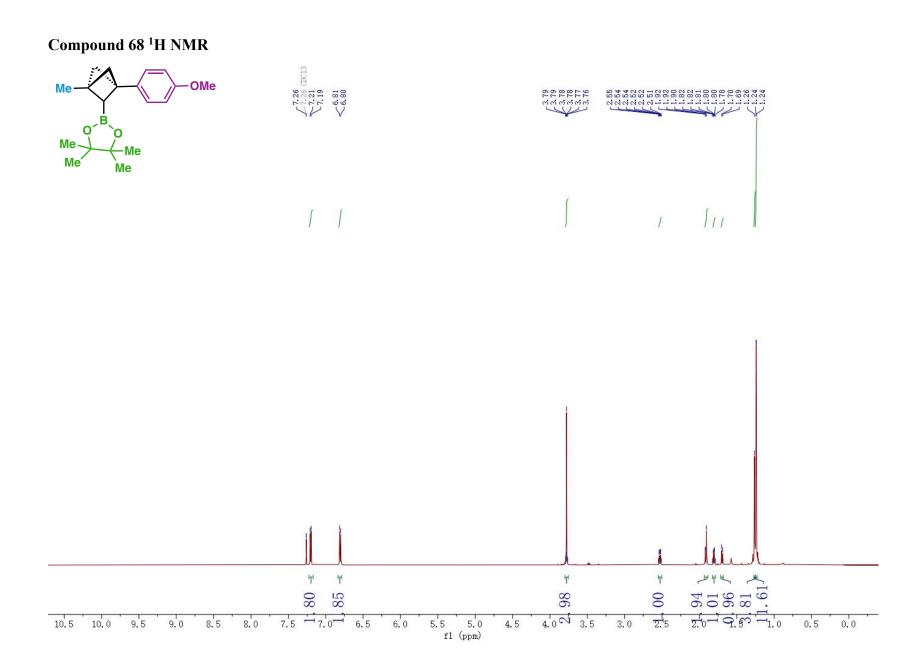


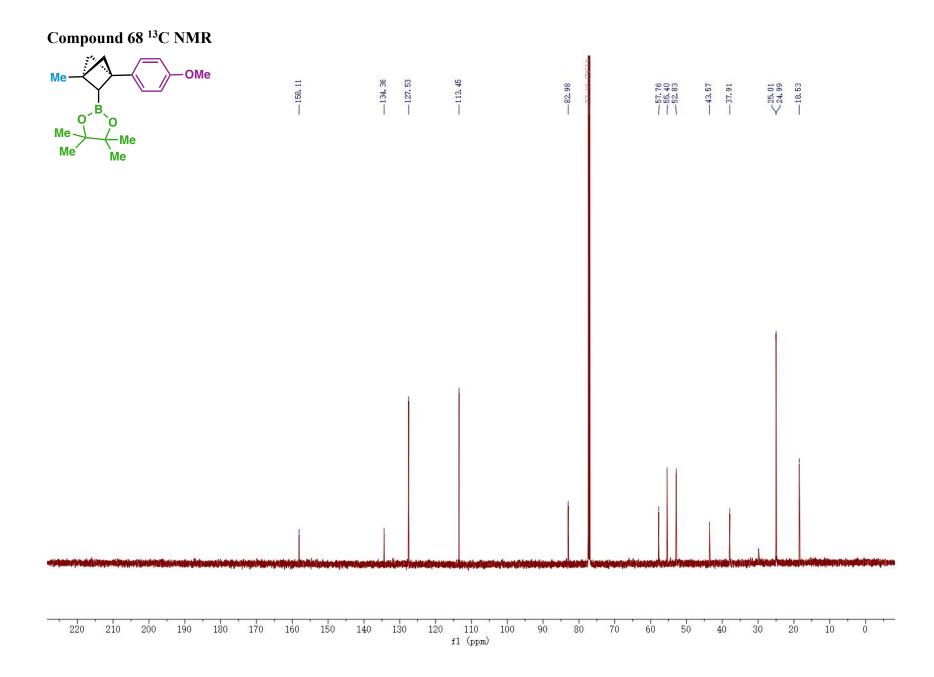


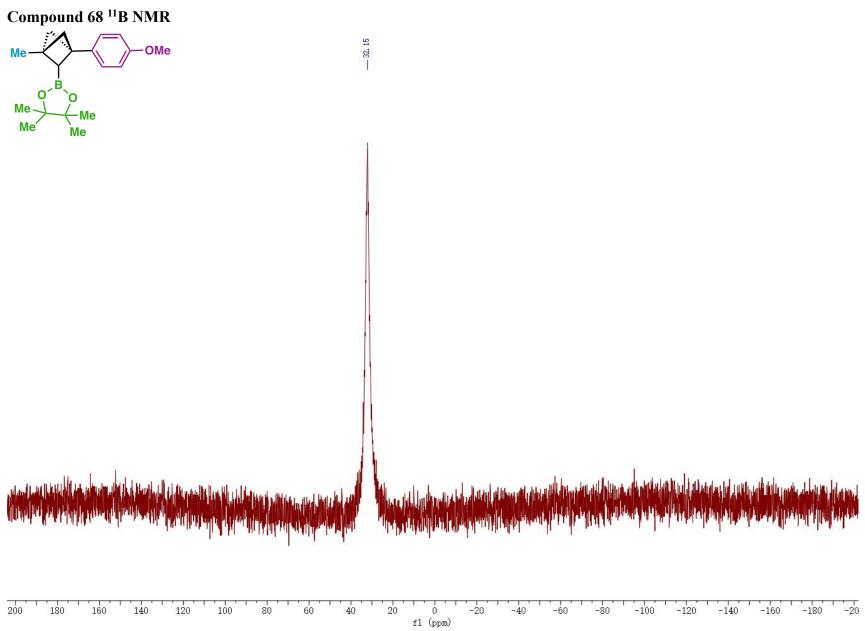


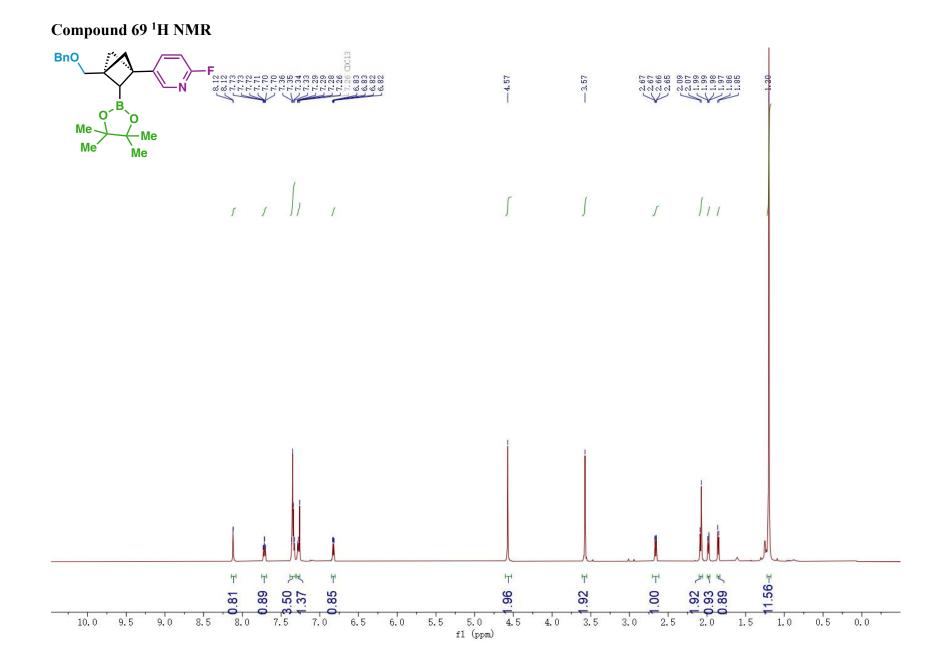


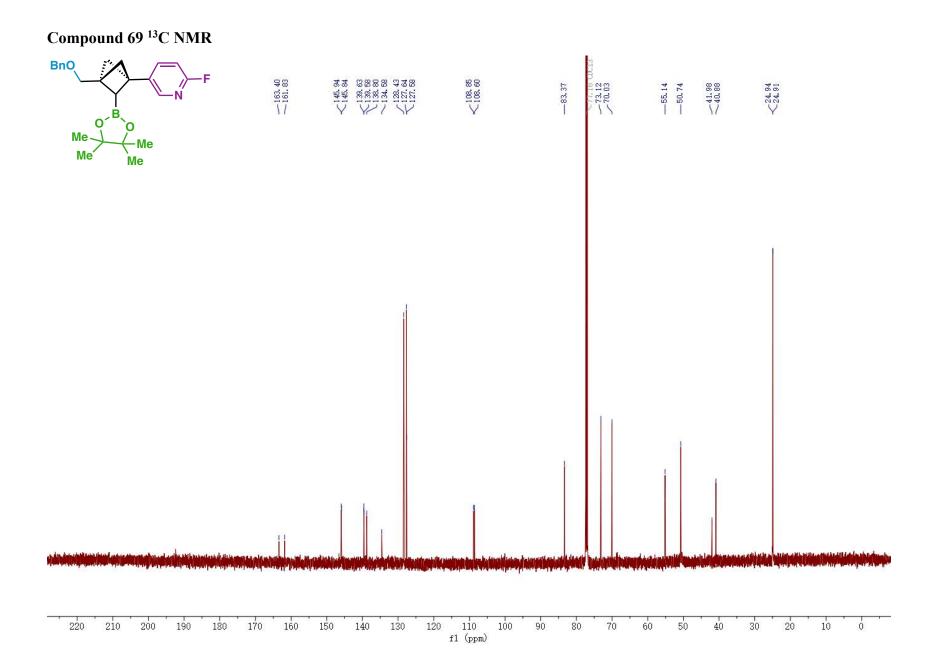


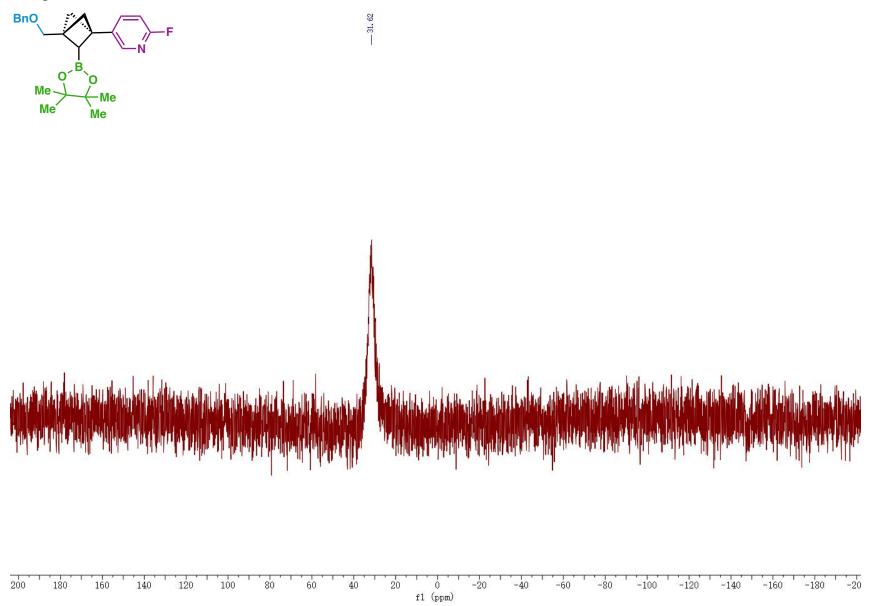


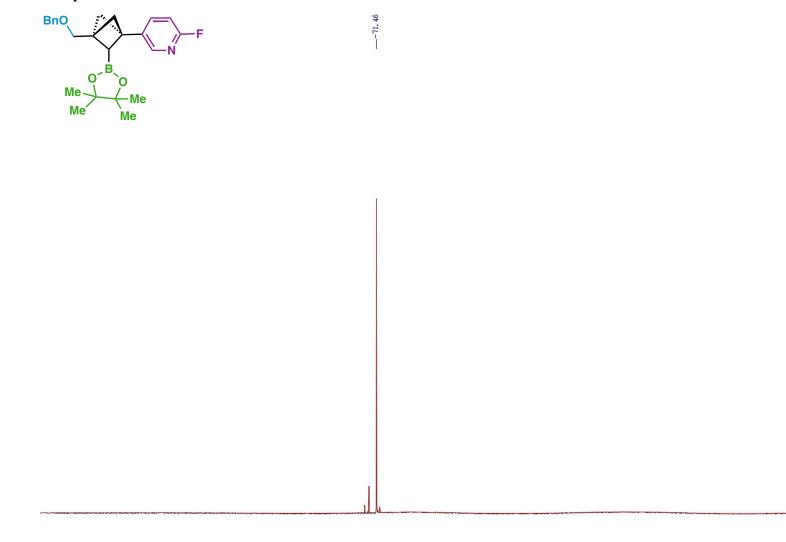


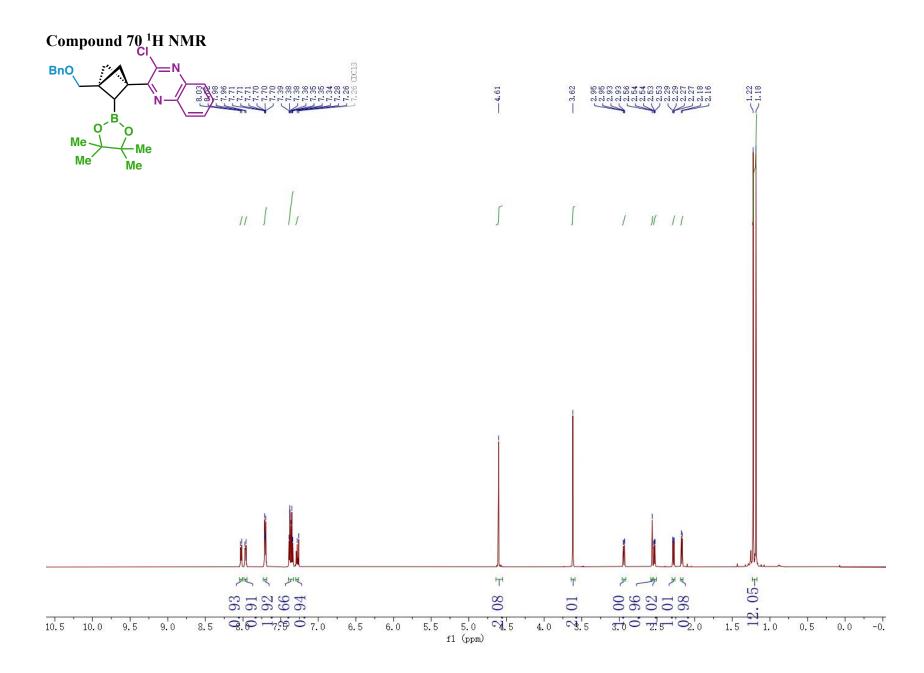


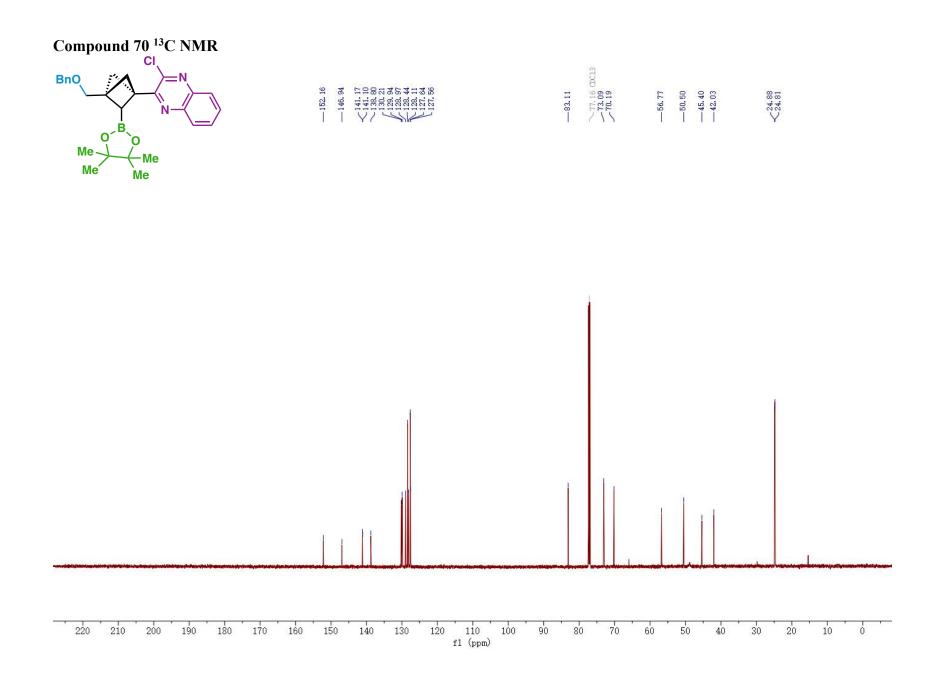



30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

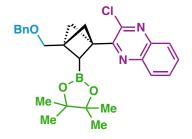


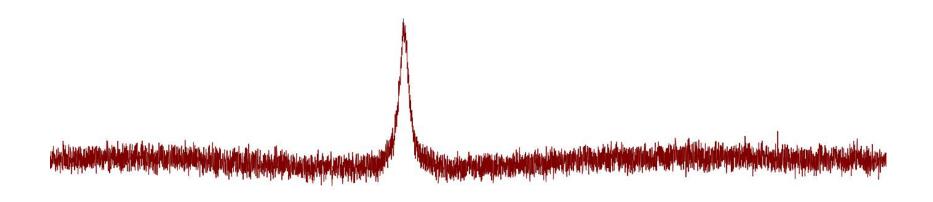


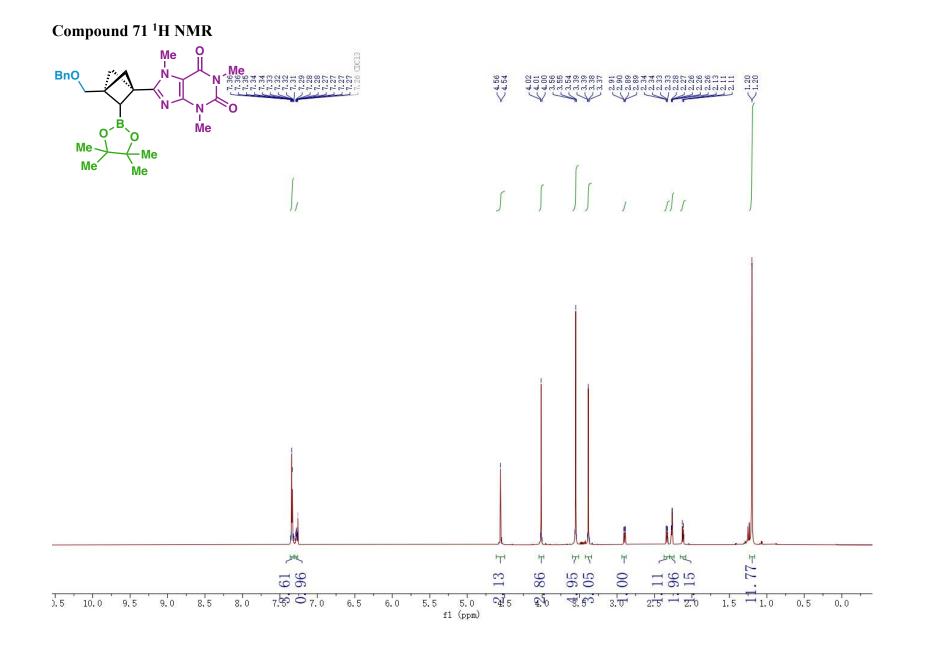

Compound 69¹¹B NMR

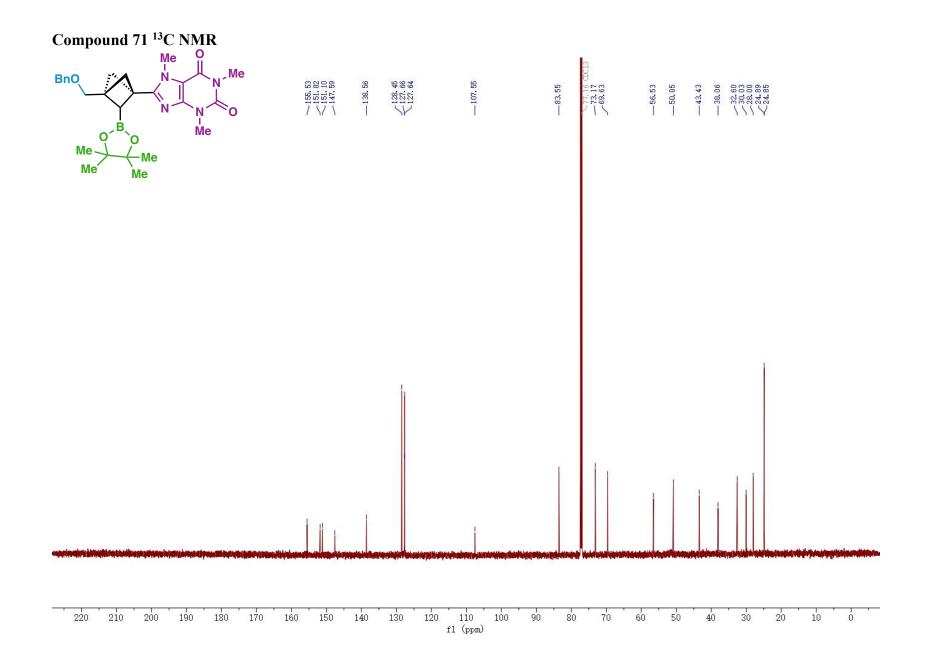


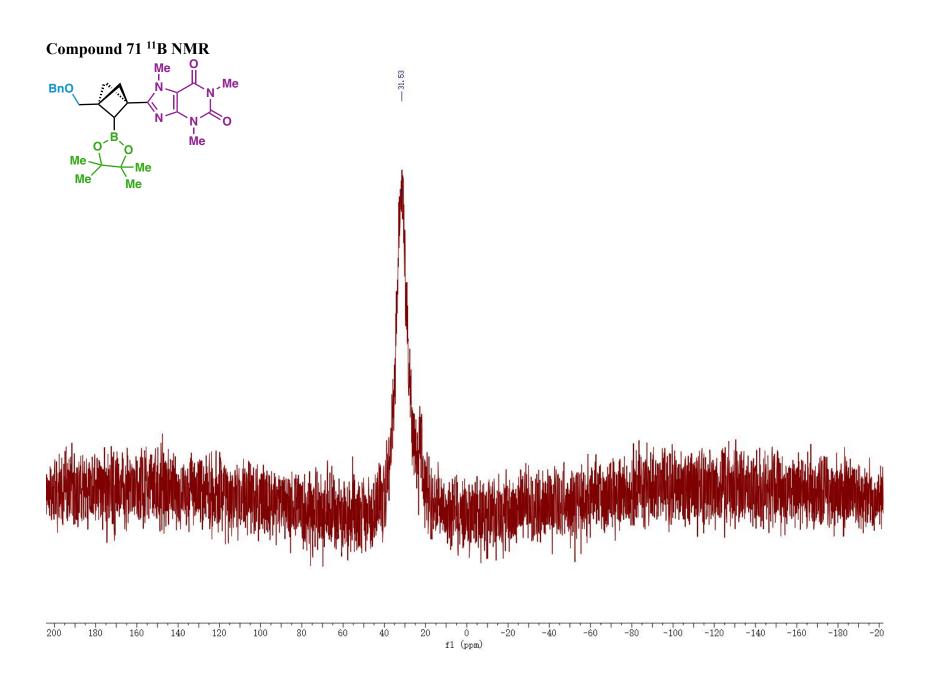
Compound 69¹⁹F NMR

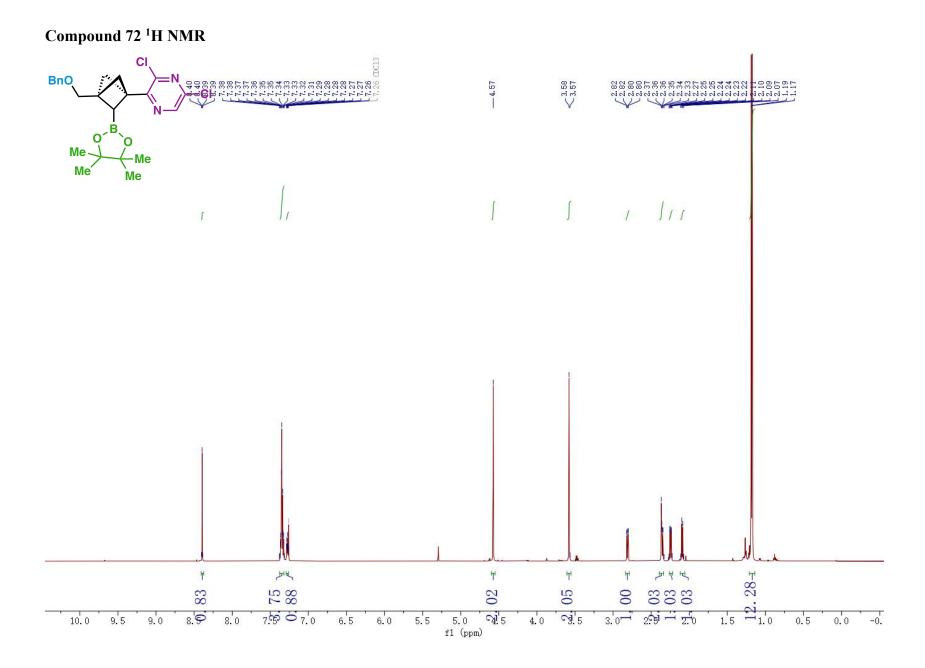


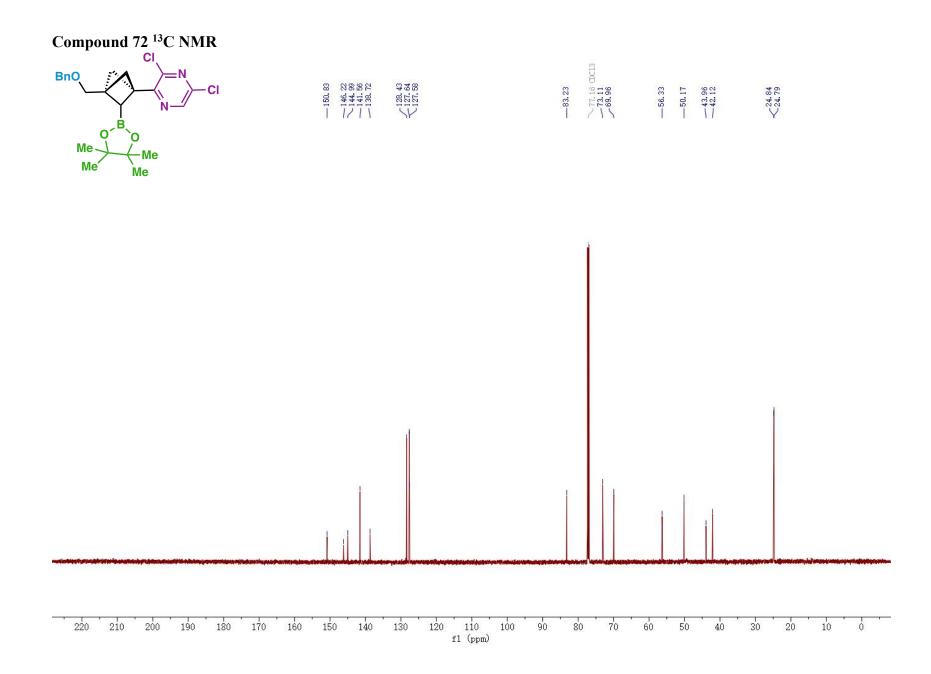

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

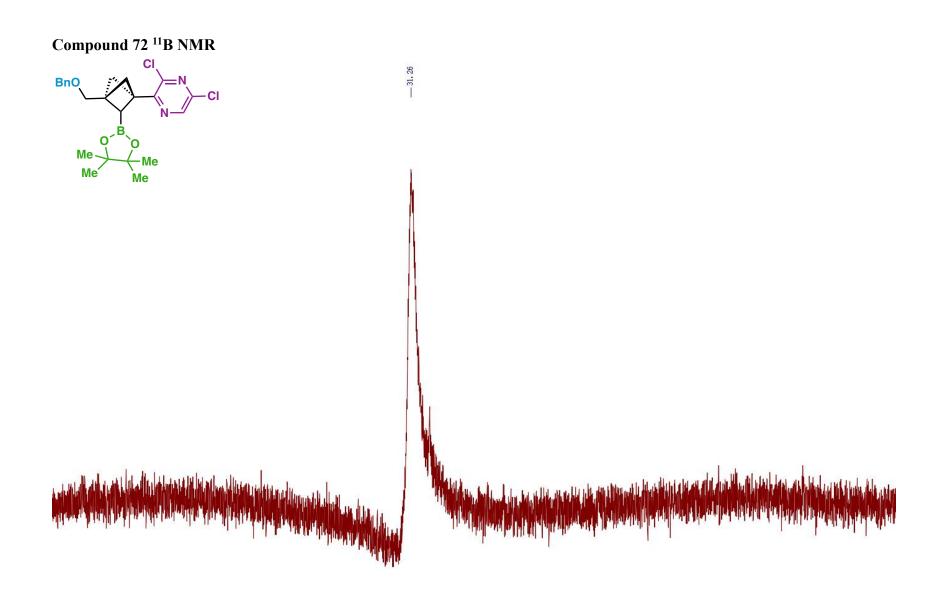


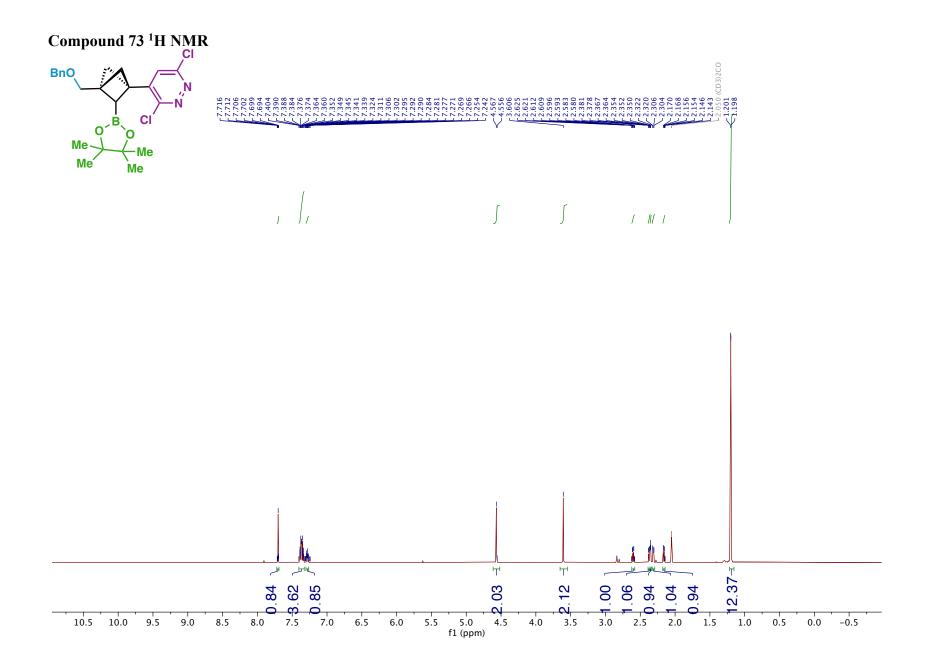

Compound 70¹¹B NMR

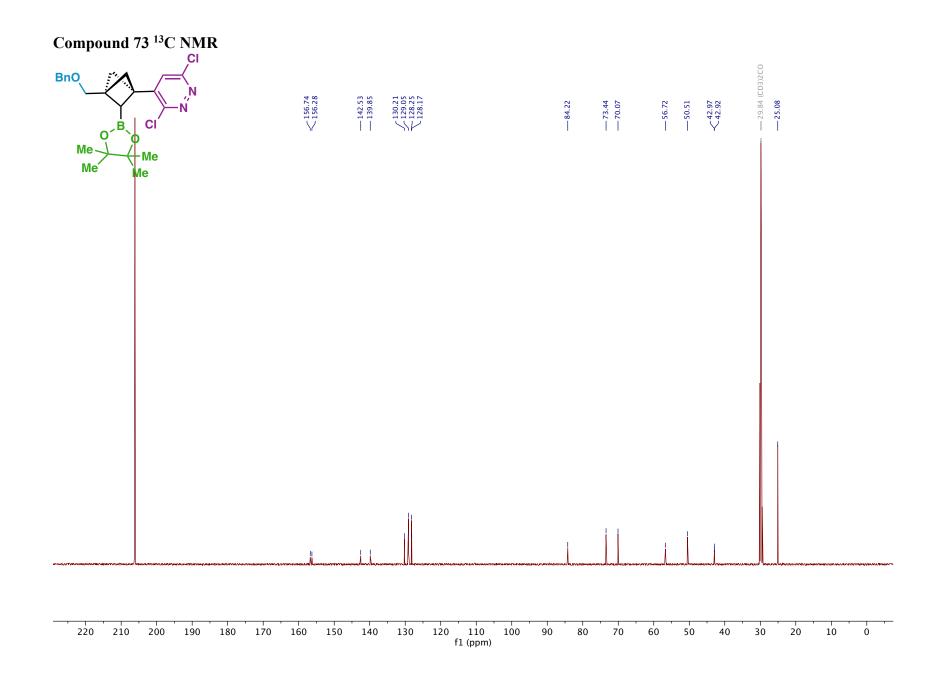


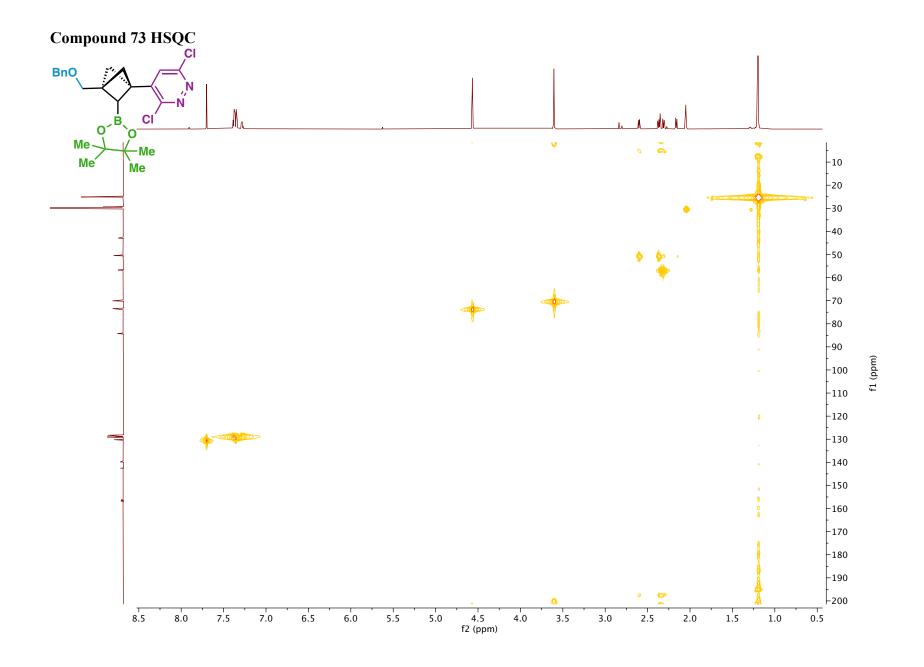


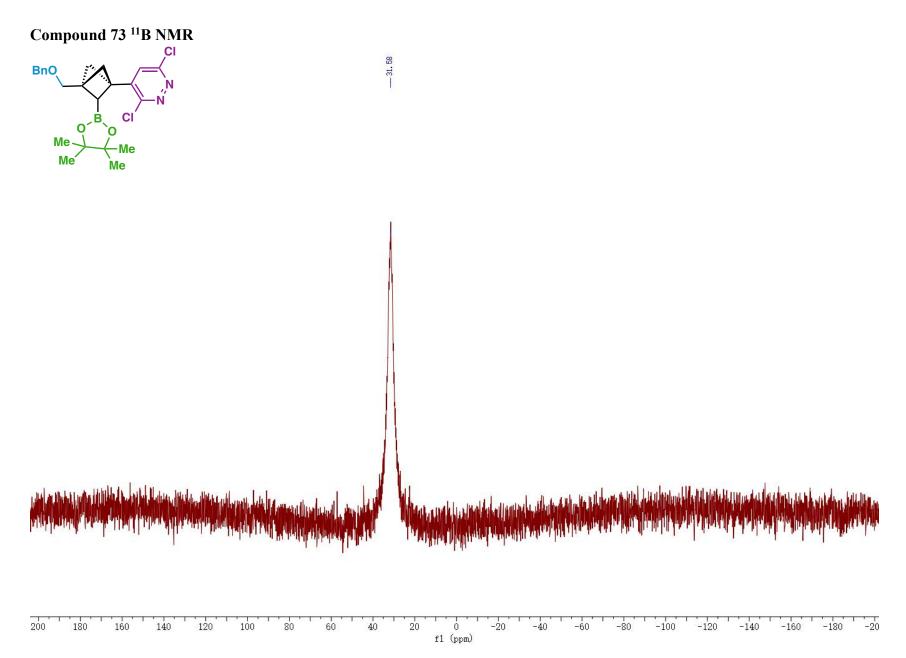

200 -160 -180 -20 180 160 120 60 -40 -80 -100 -140 140 100 80 40 20 0 f1 (ppm) -20 -60 -120

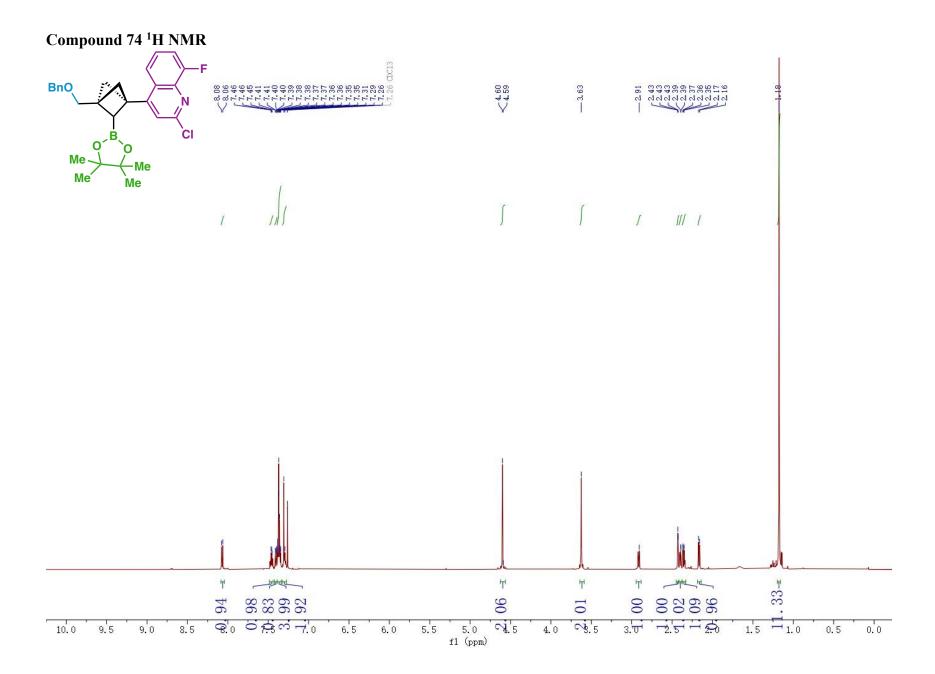


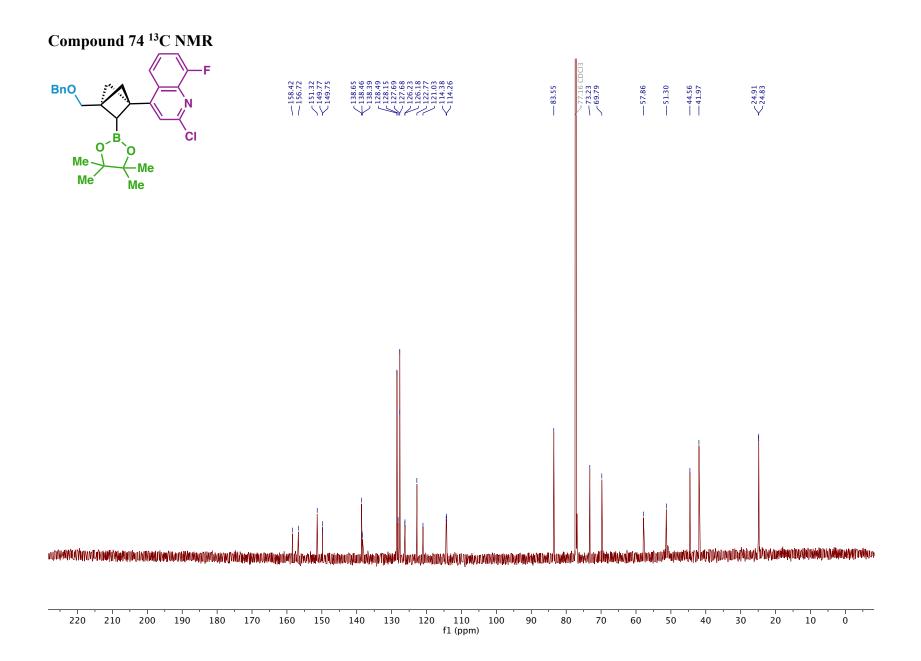




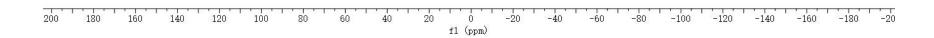


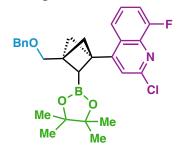


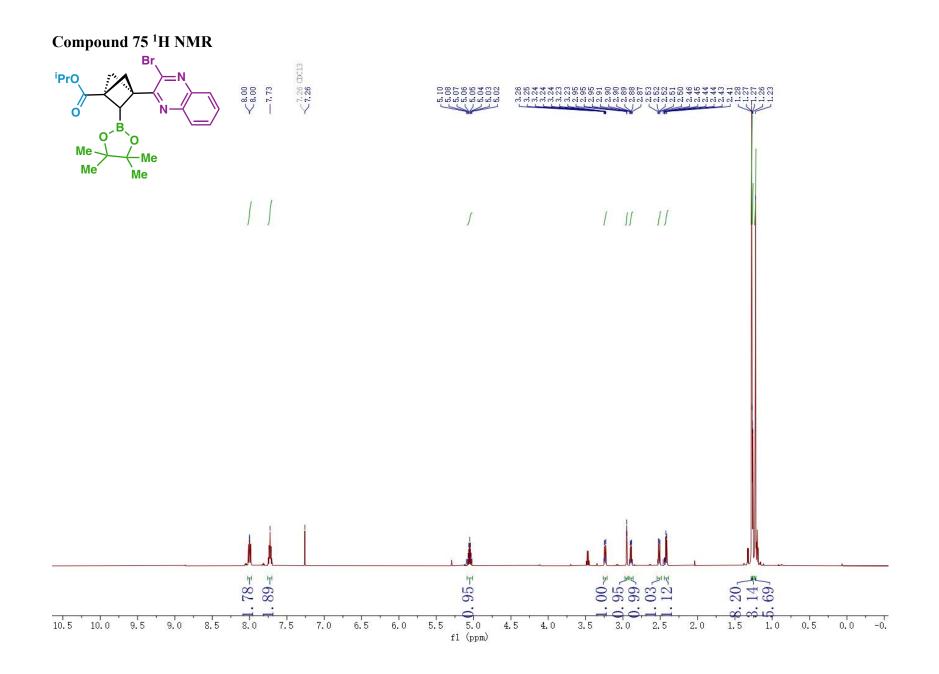

200 180 160 140 120 100 80 60 20 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20 40 0 f1 (ppm)

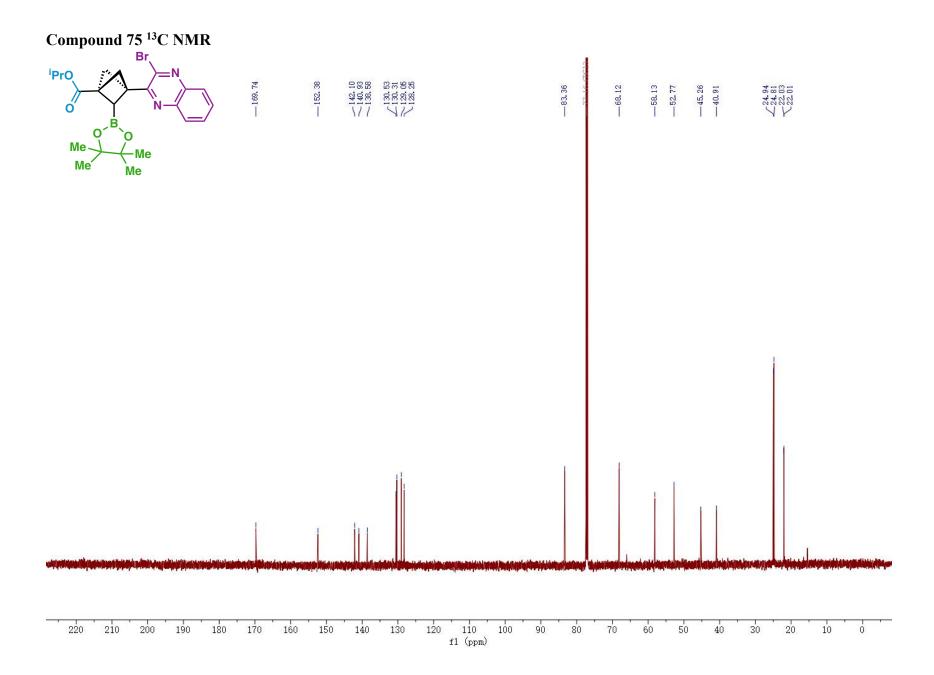


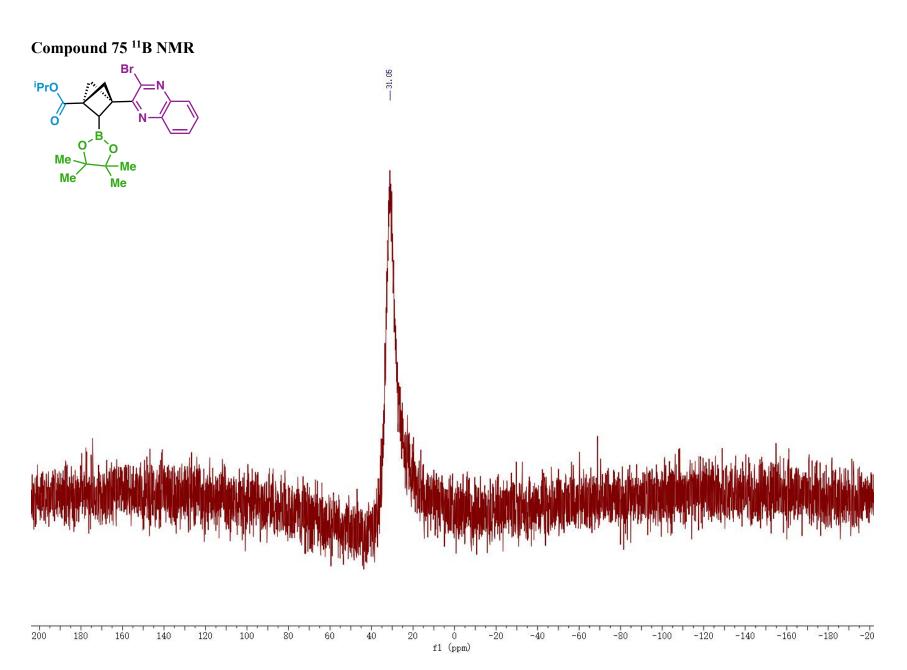


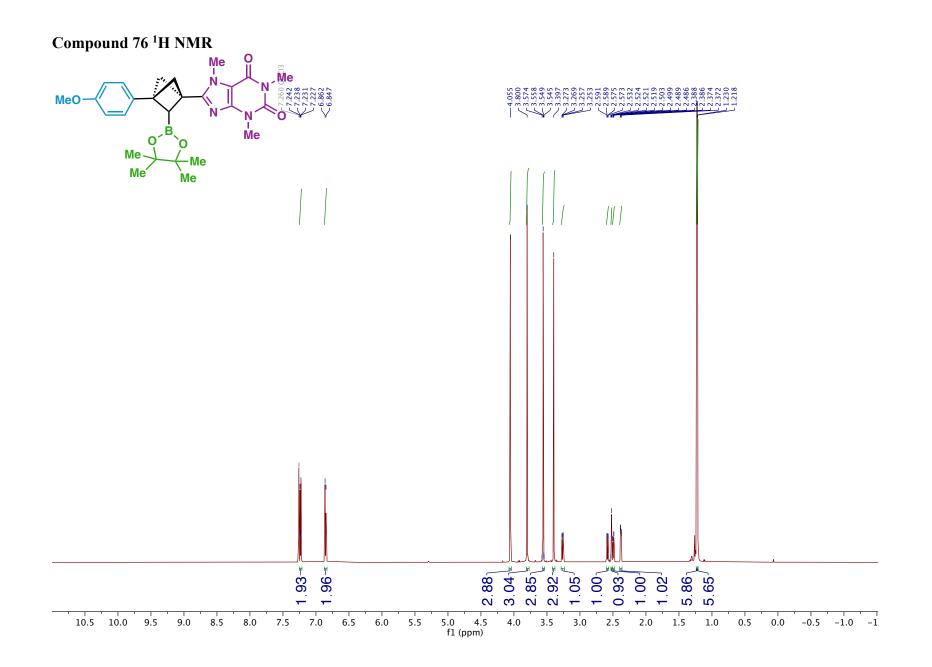


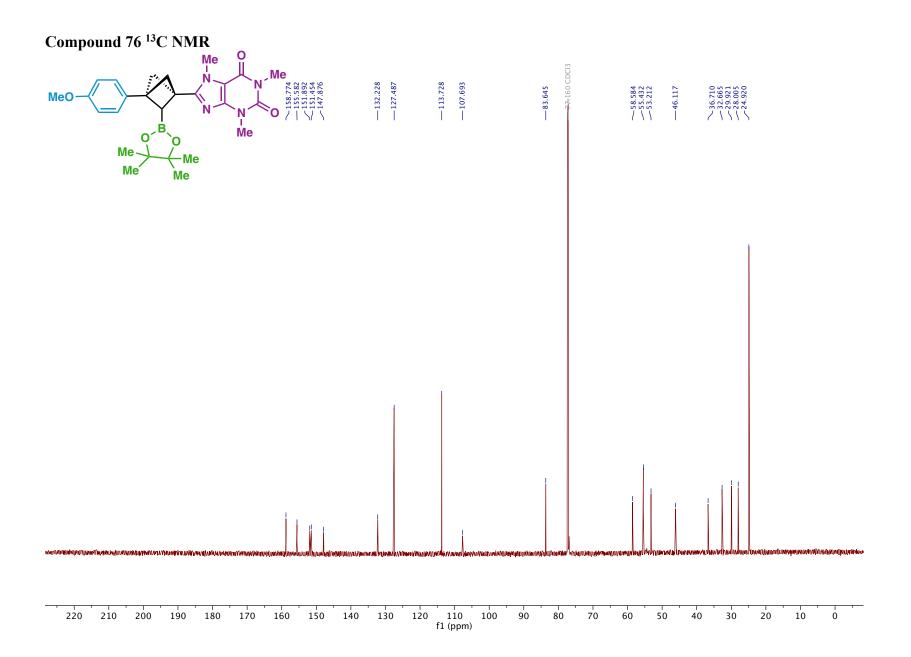


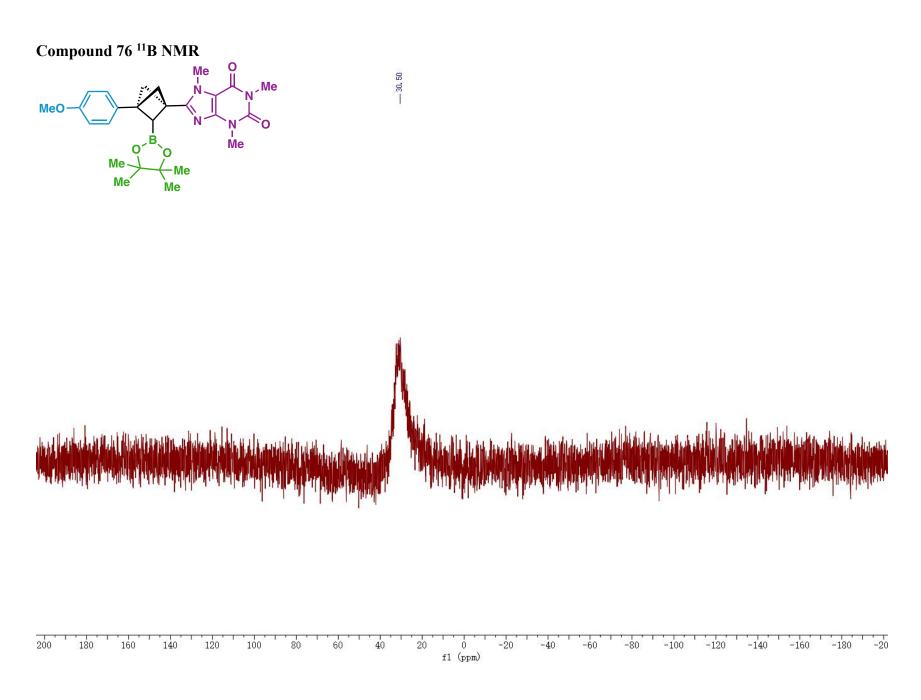


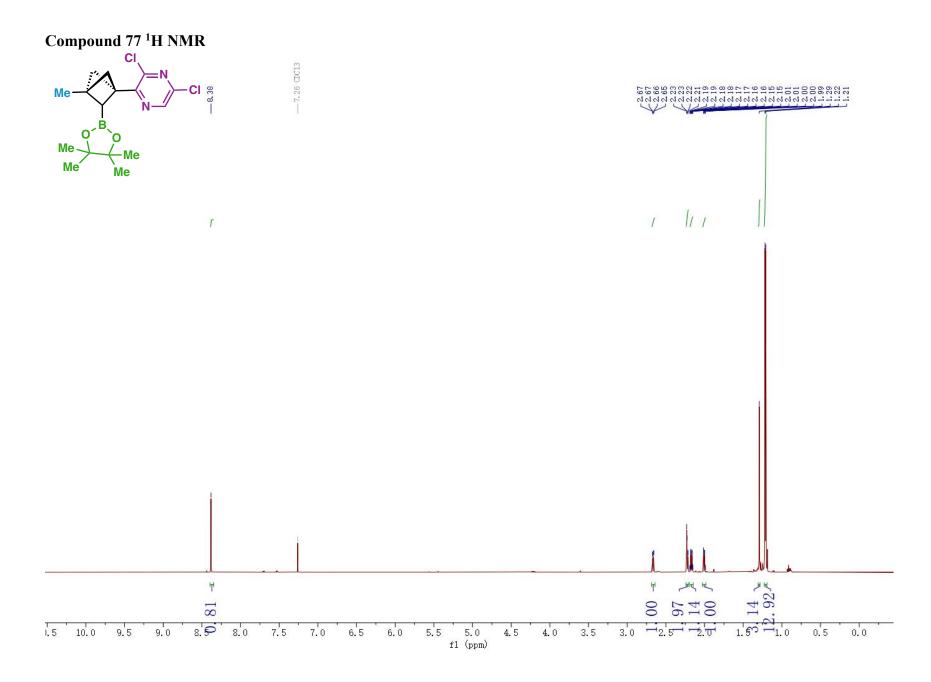


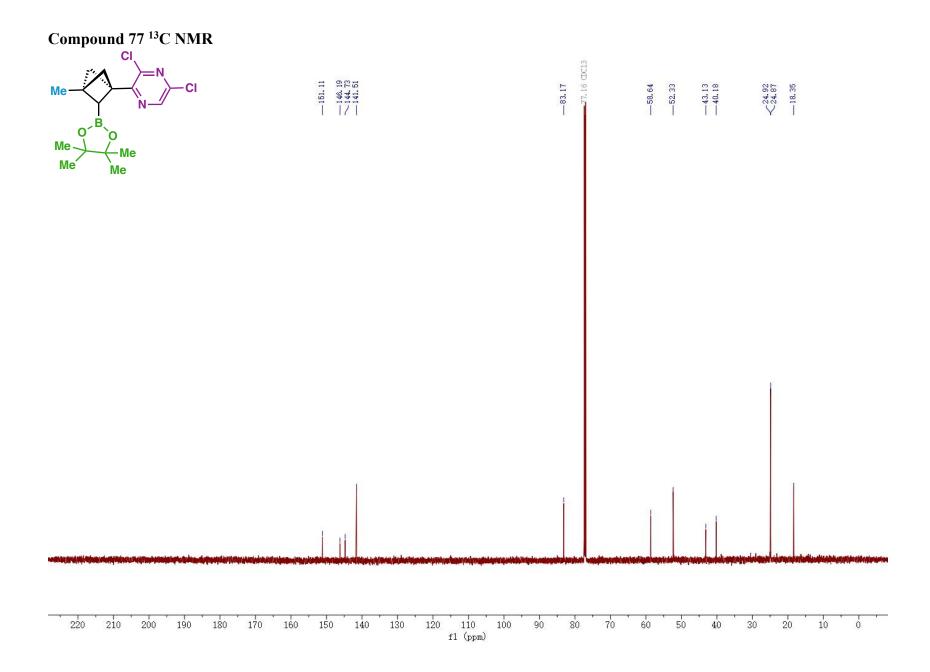

Compound 74 ¹⁹F NMR

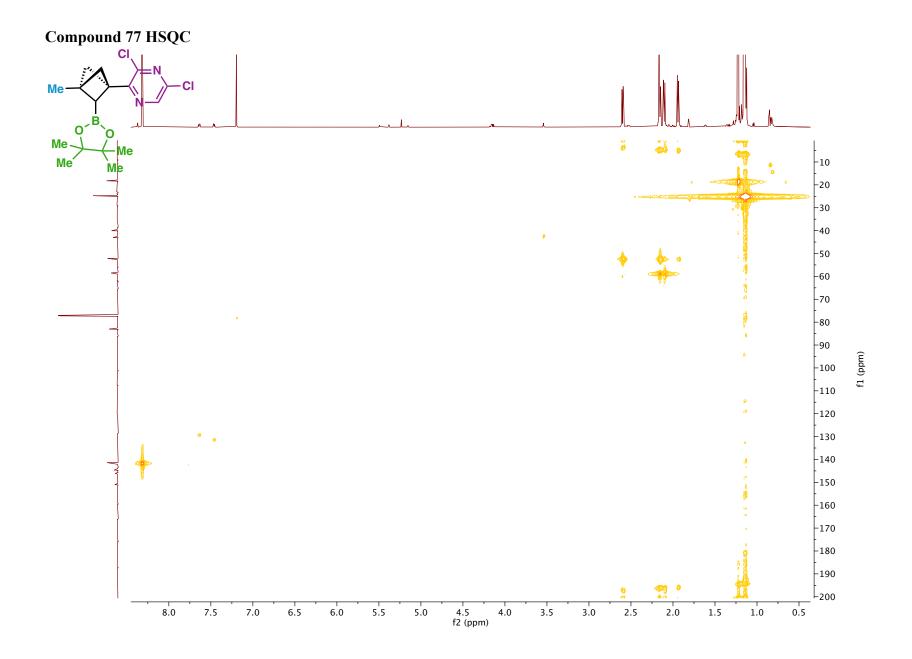

30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1	-100 (ppm)	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220

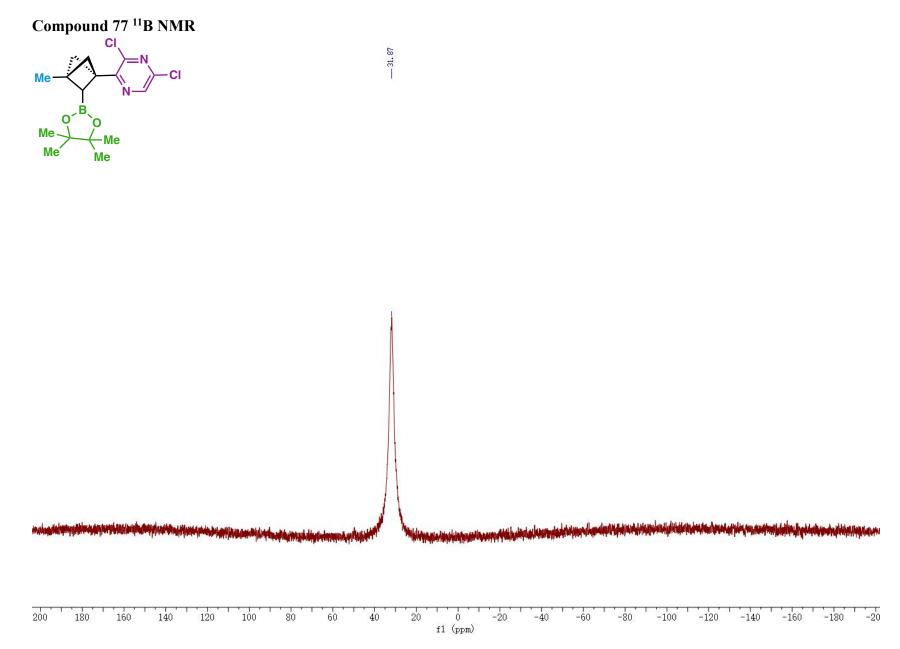


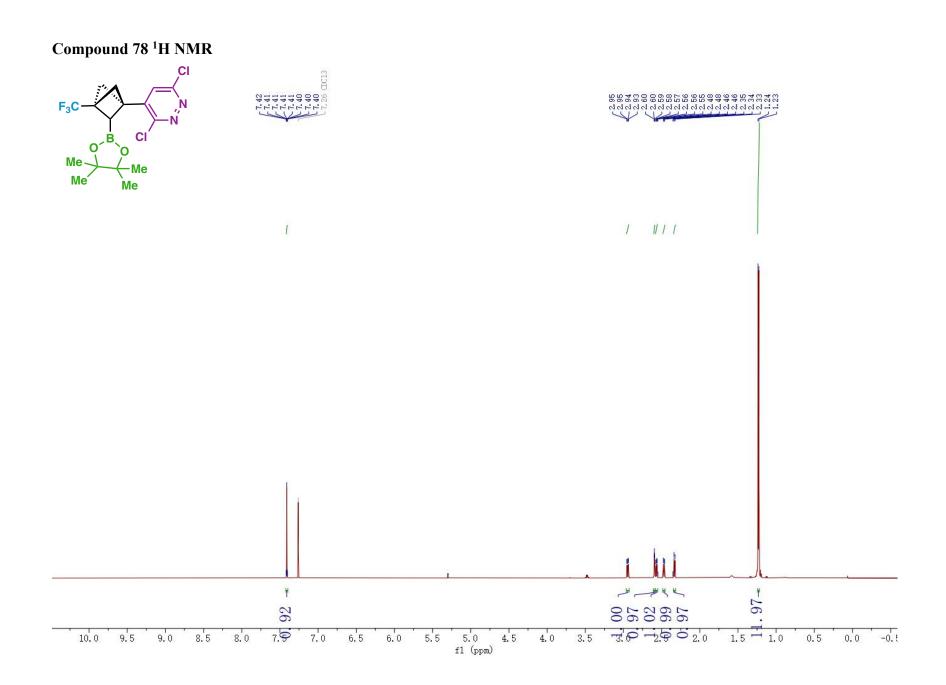


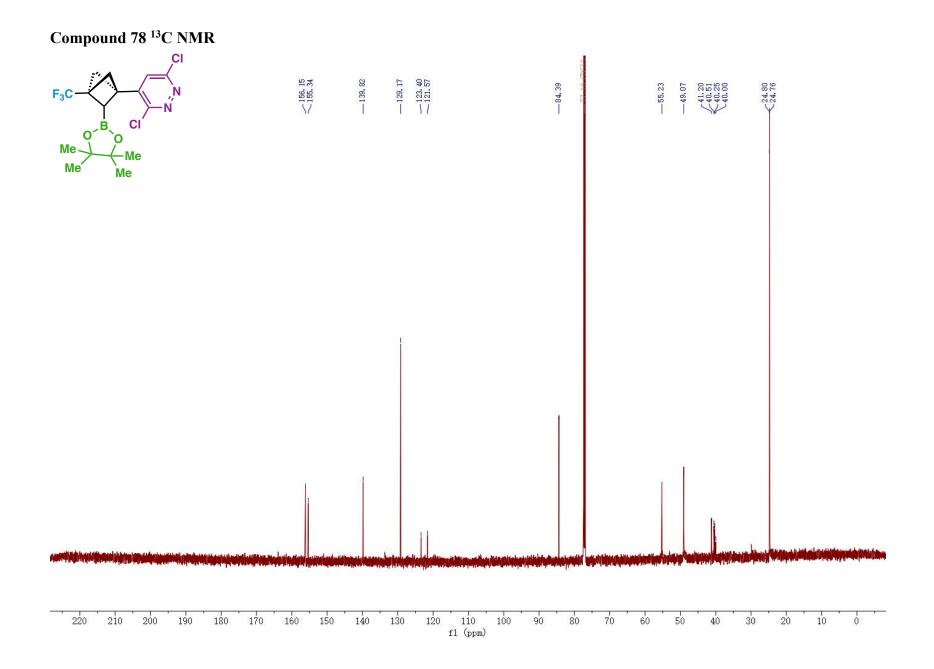


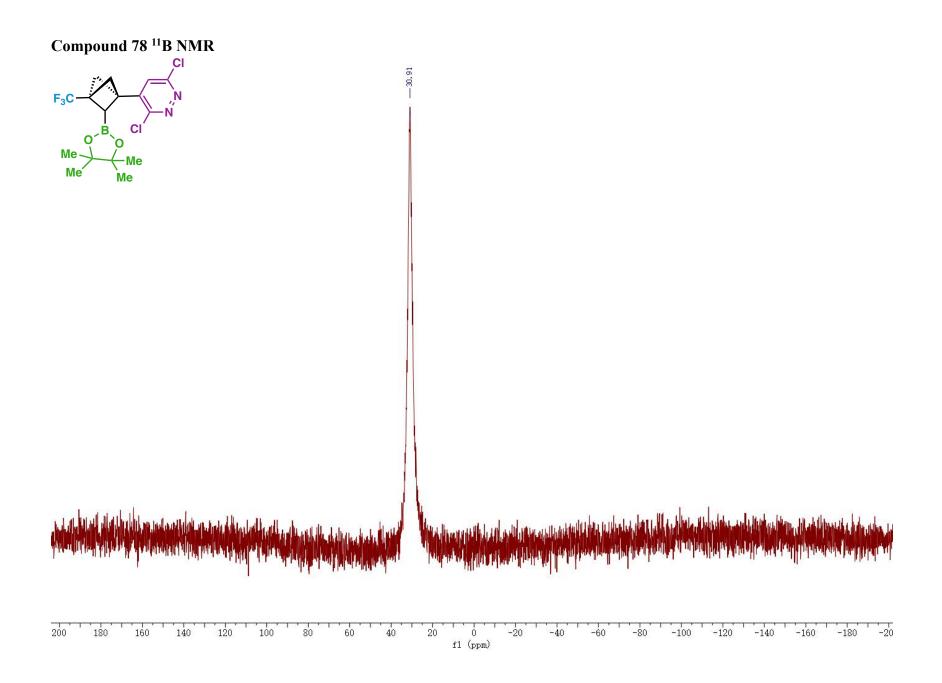


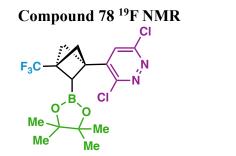






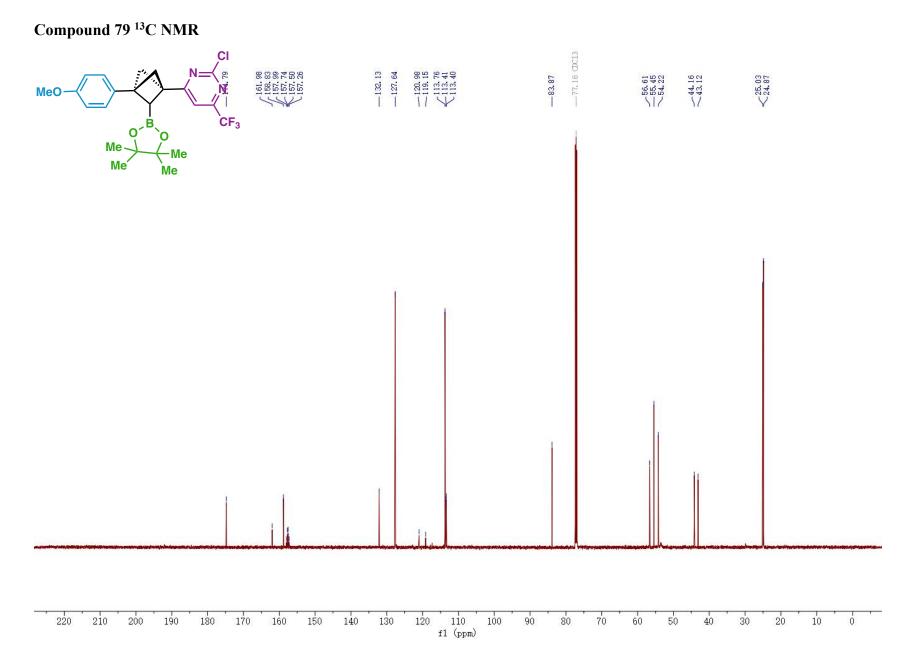


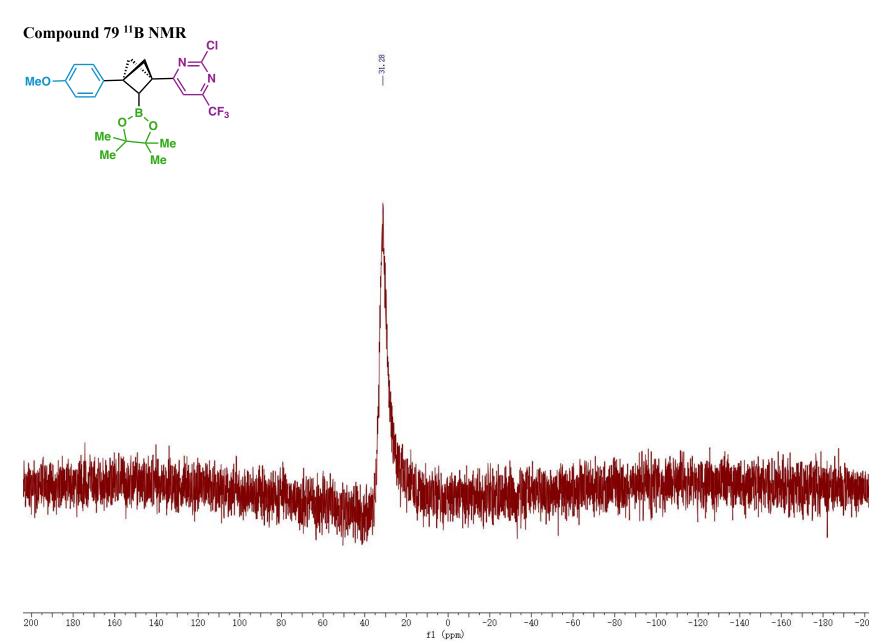

S446



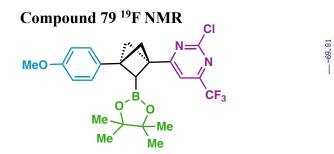
S447



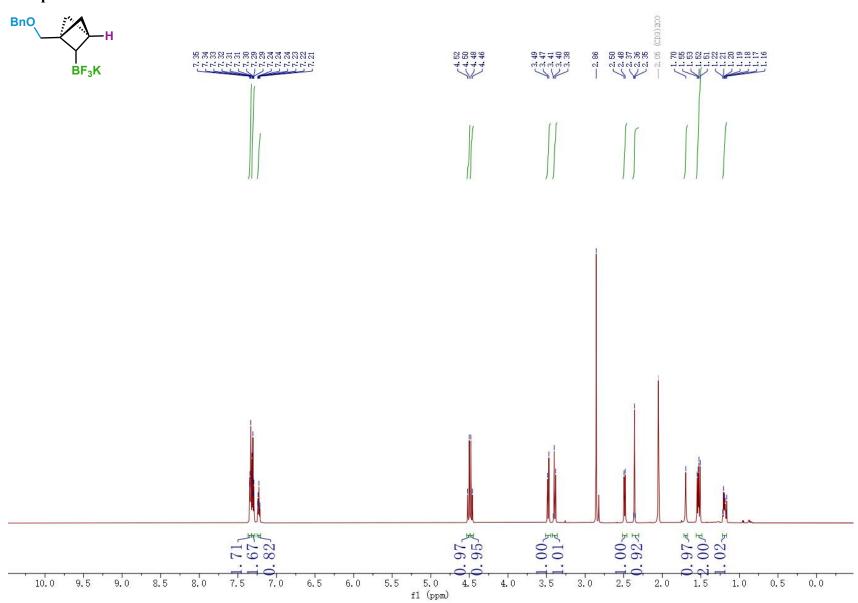


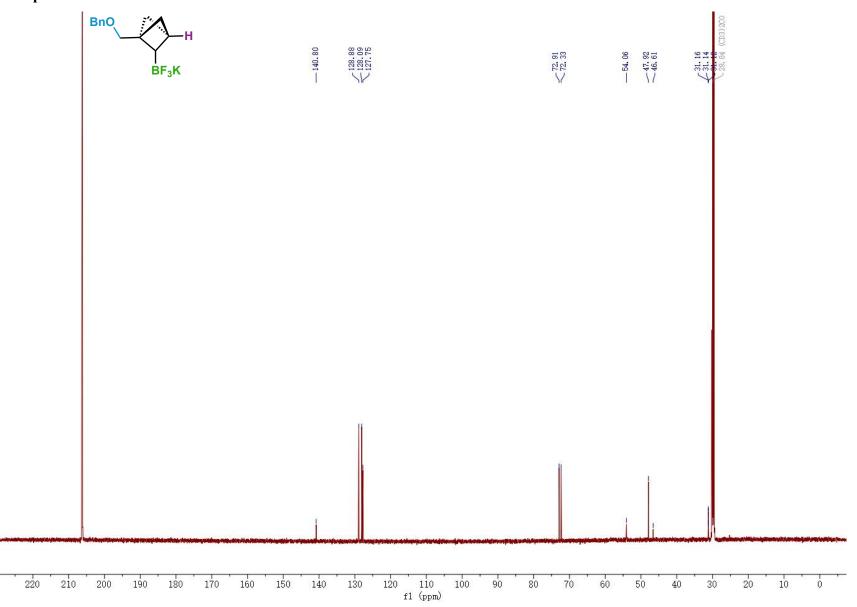


30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)



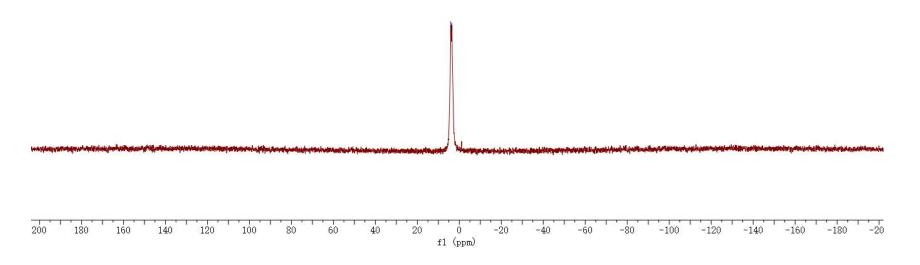
S453



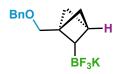


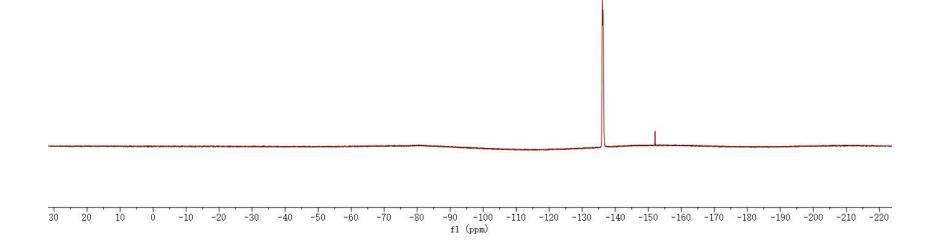
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

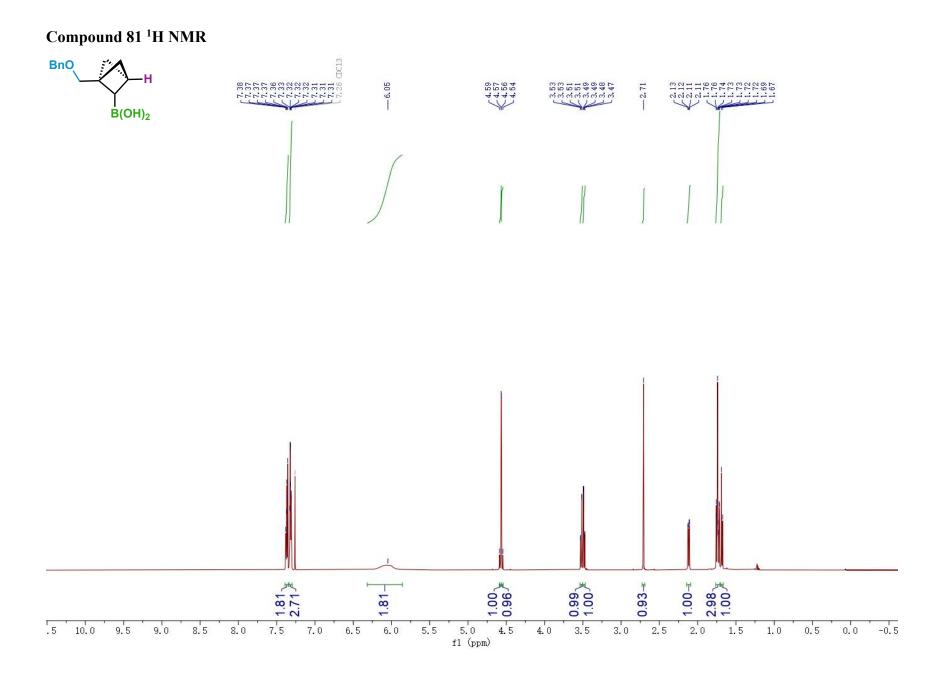
Compound 80¹H NMR

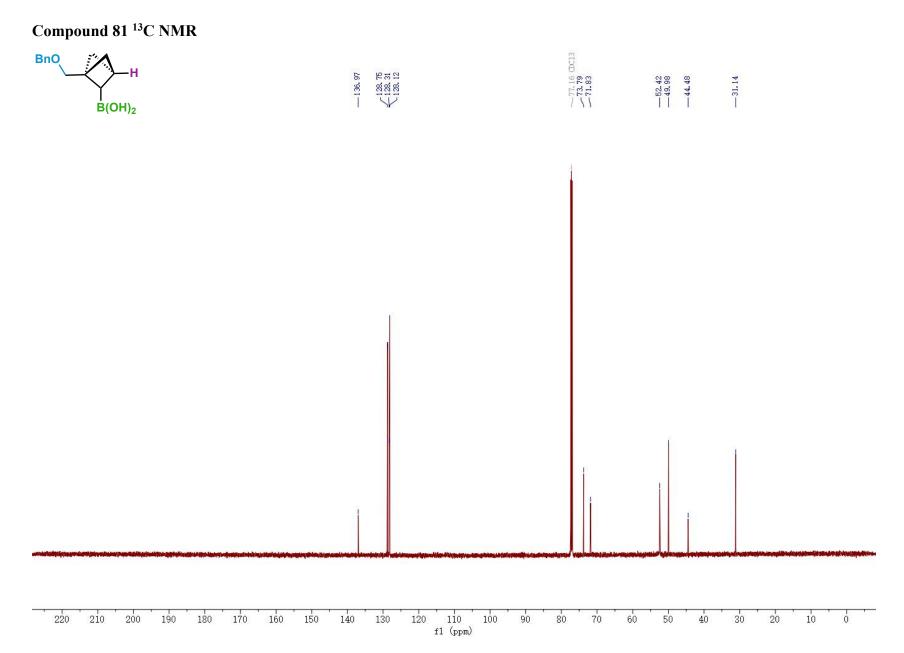


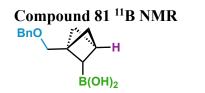
Compound 80¹³C NMR

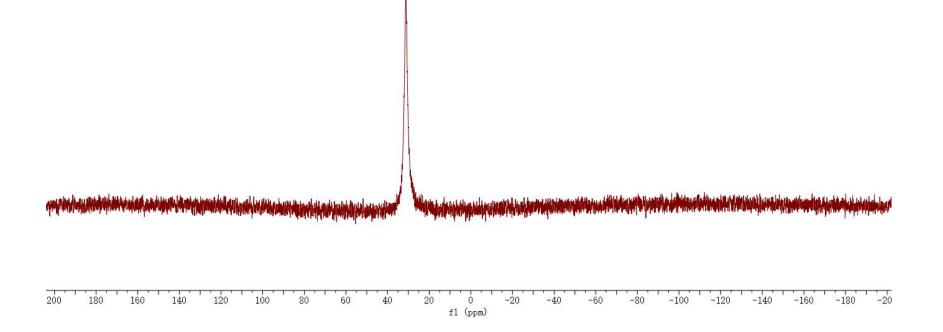




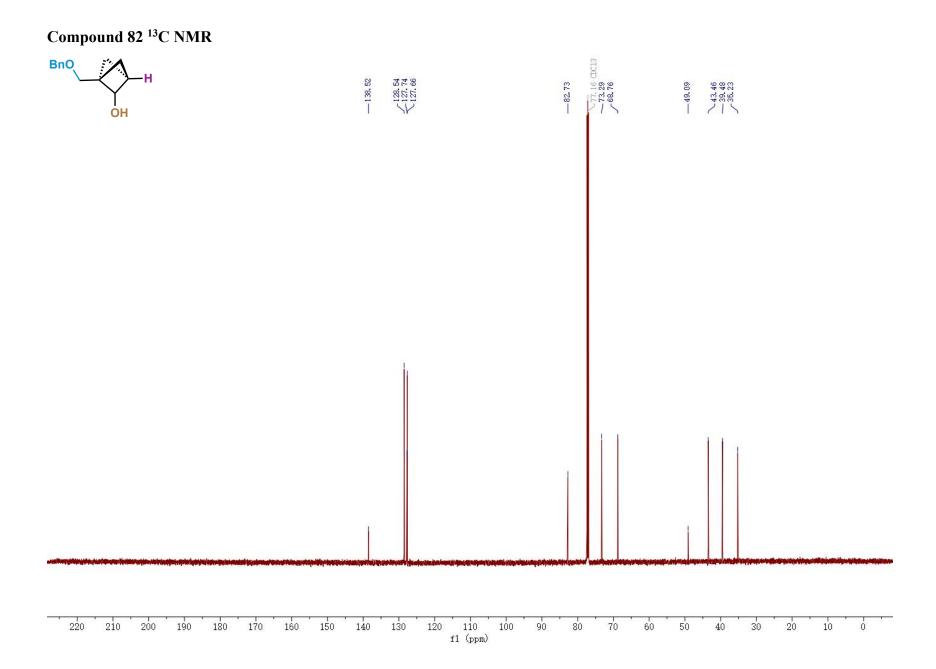

<4.06 <3.48

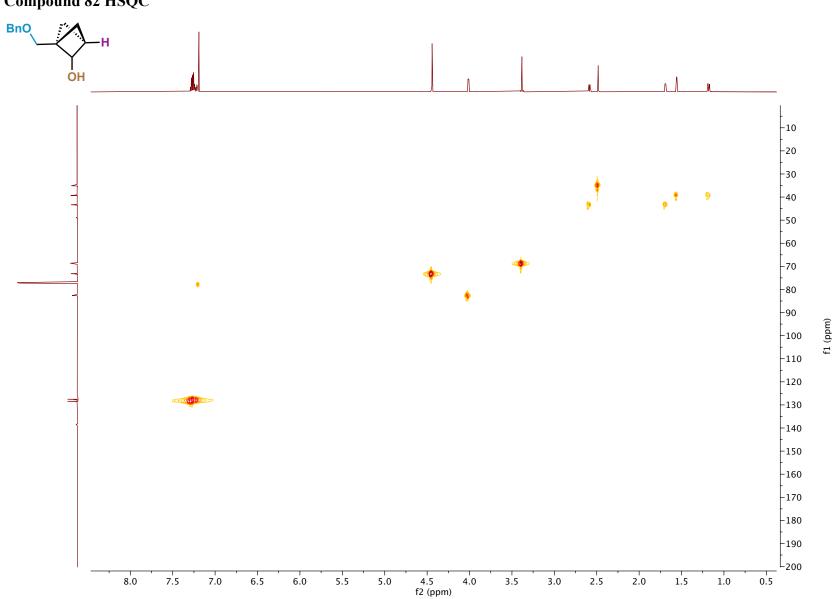


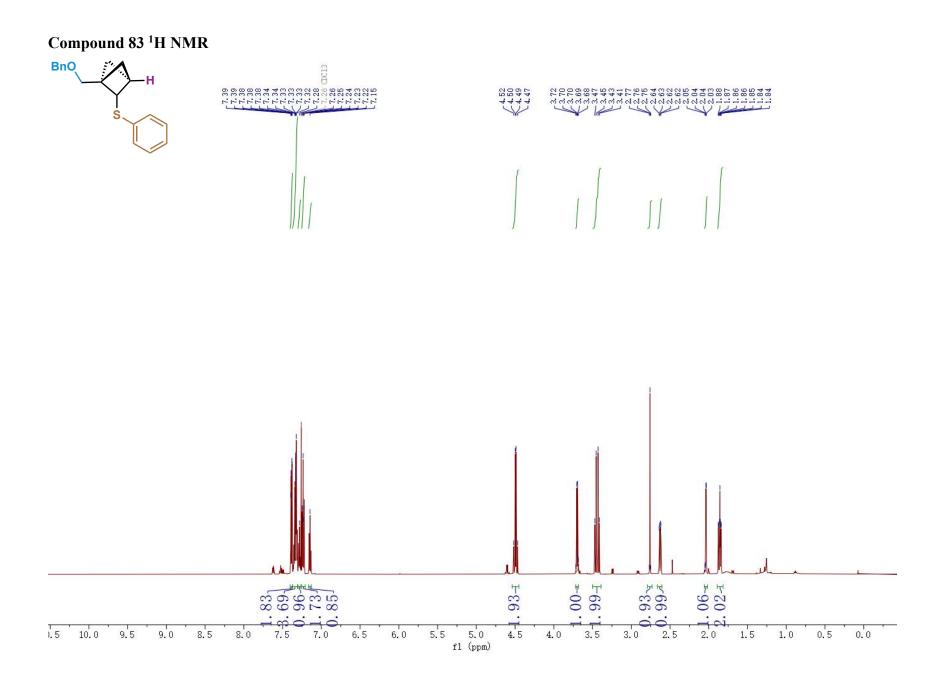

Compound 80¹⁹F NMR

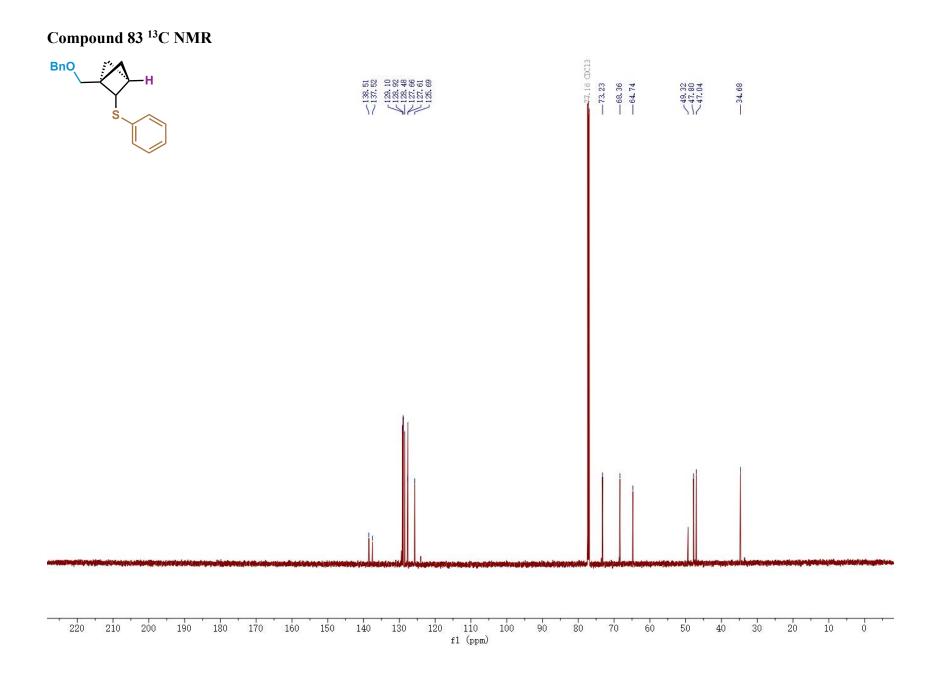


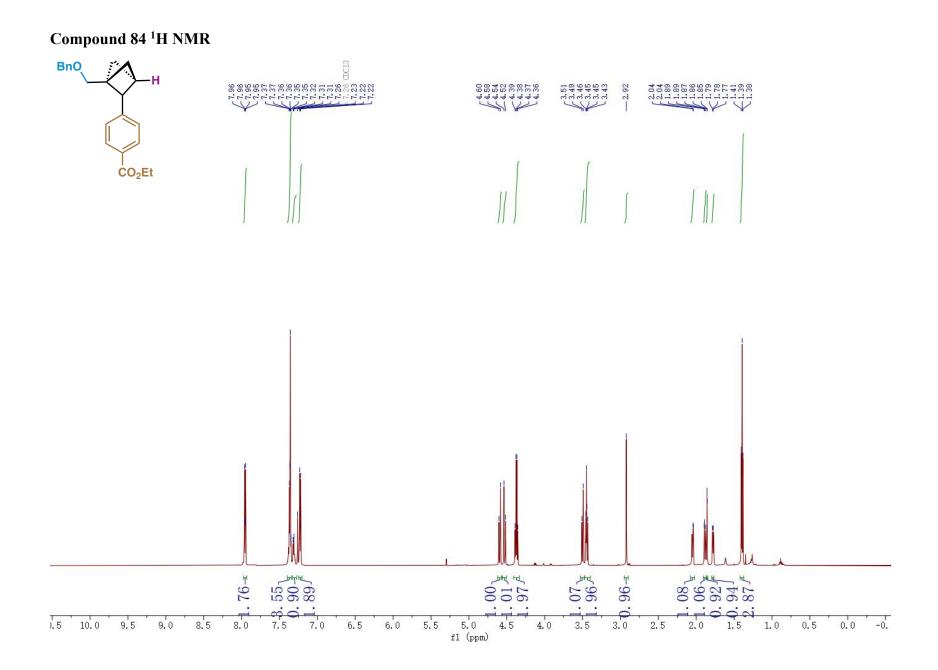


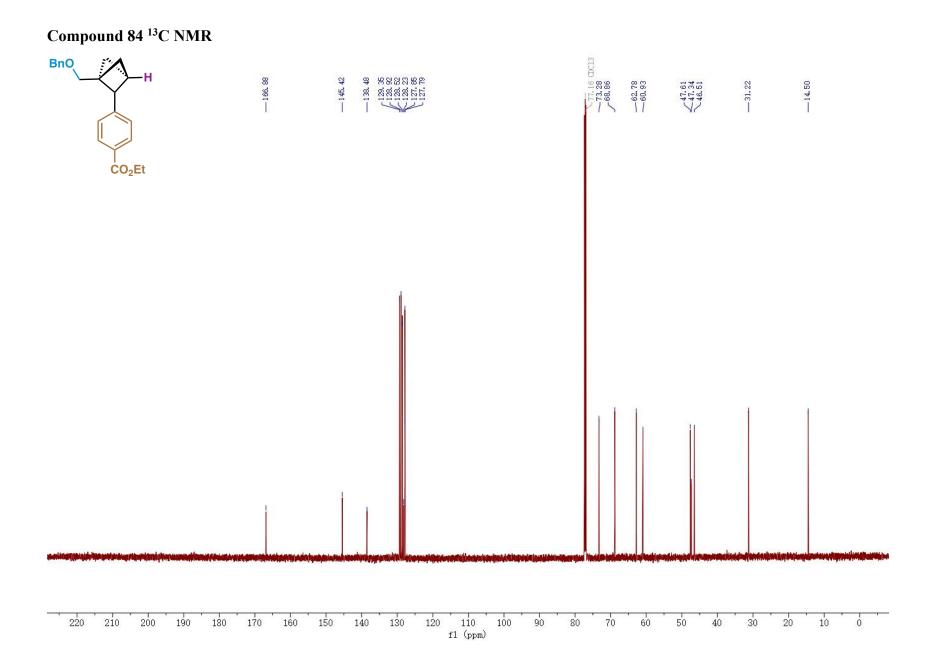


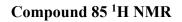

— 31. 19

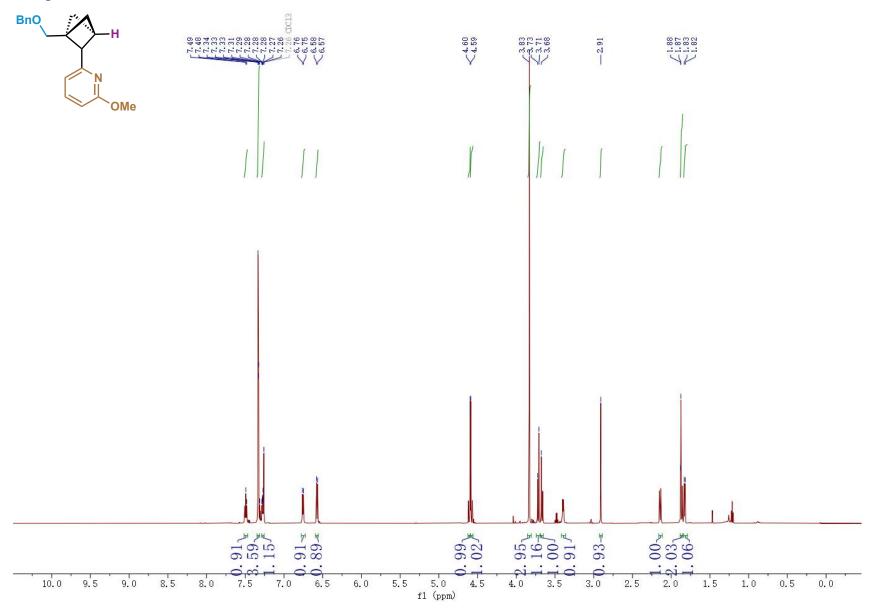

Compound 82 ¹H NMR

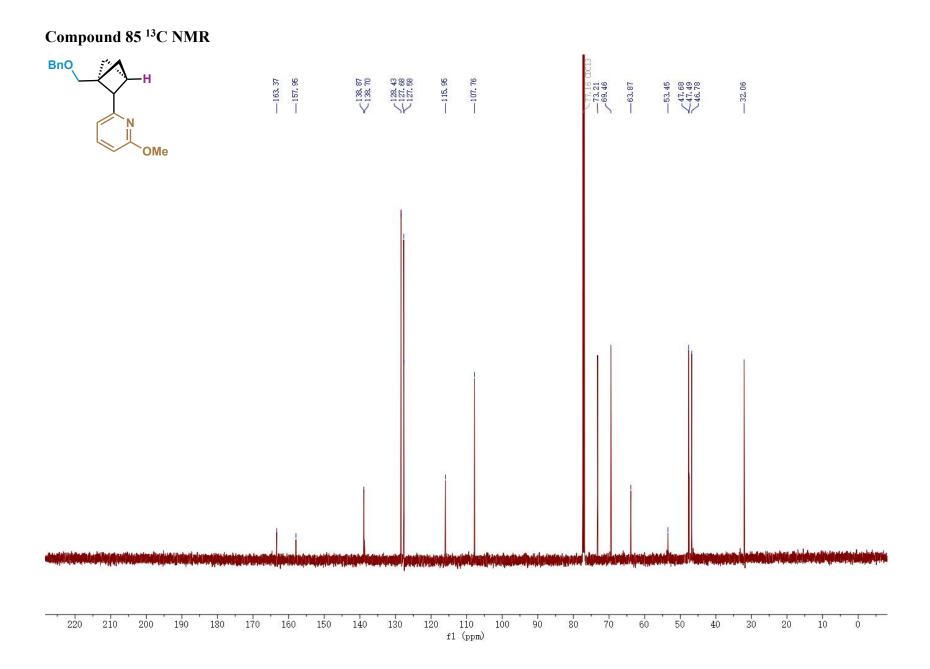


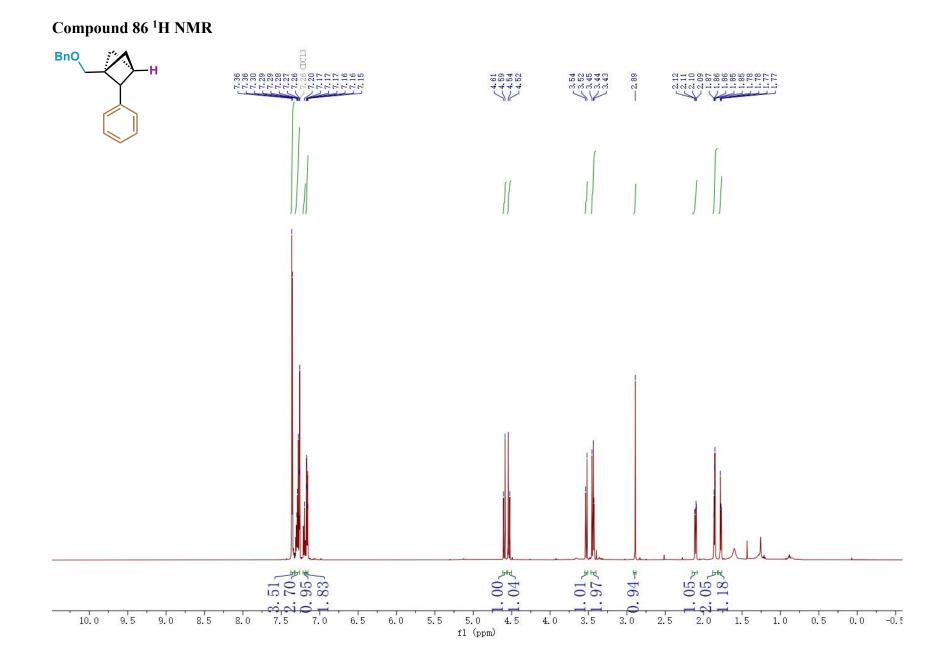


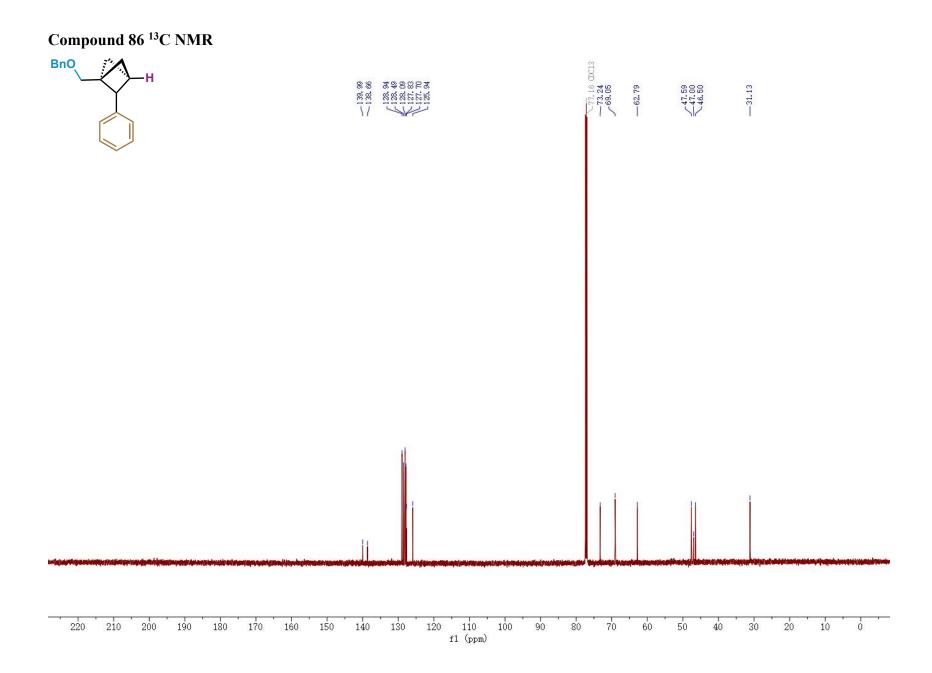

Compound 82 HSQC

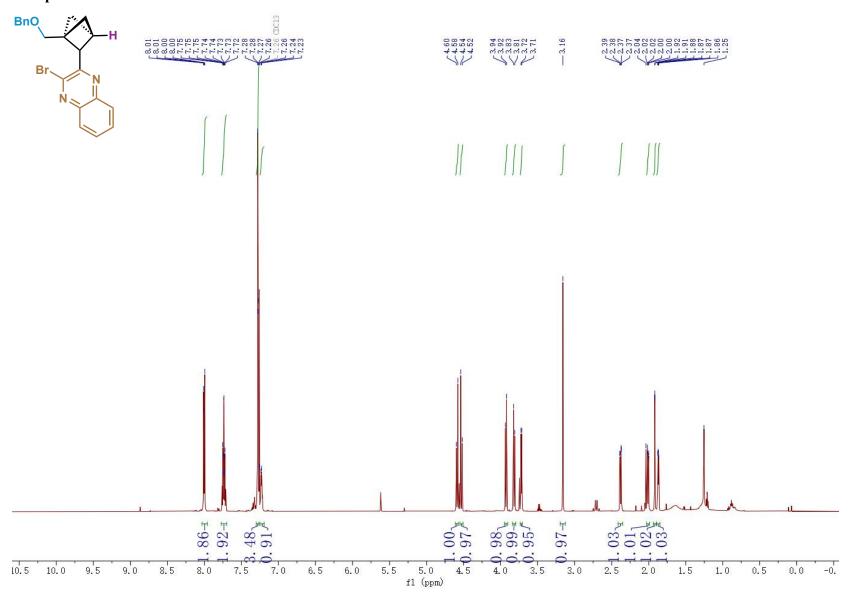


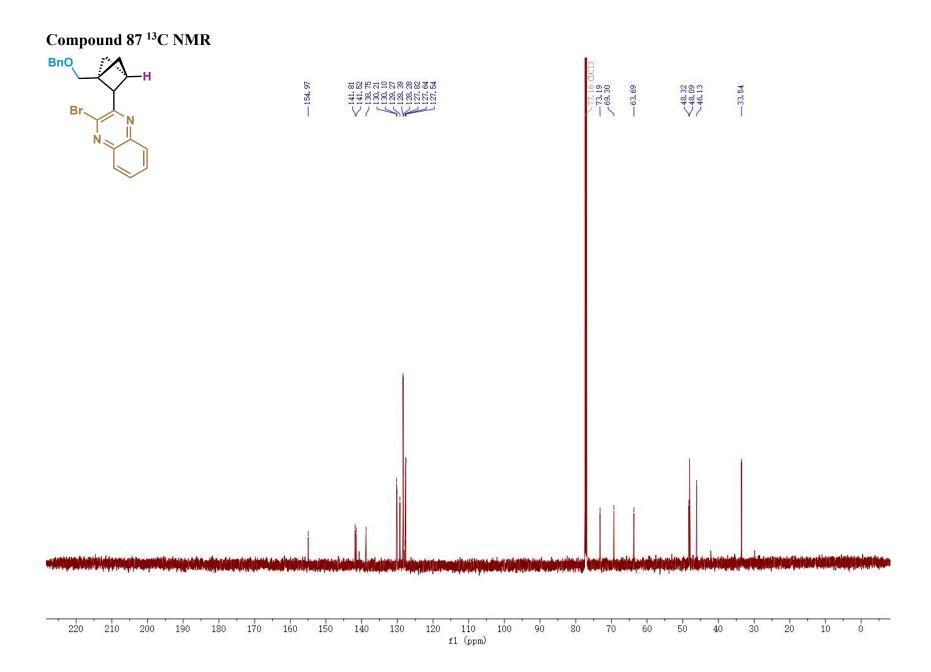


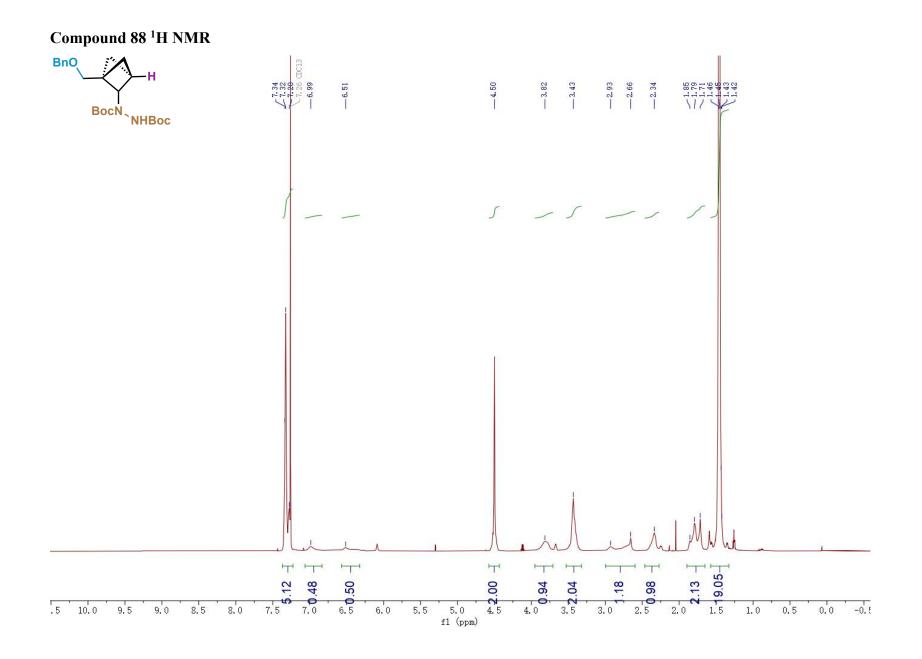


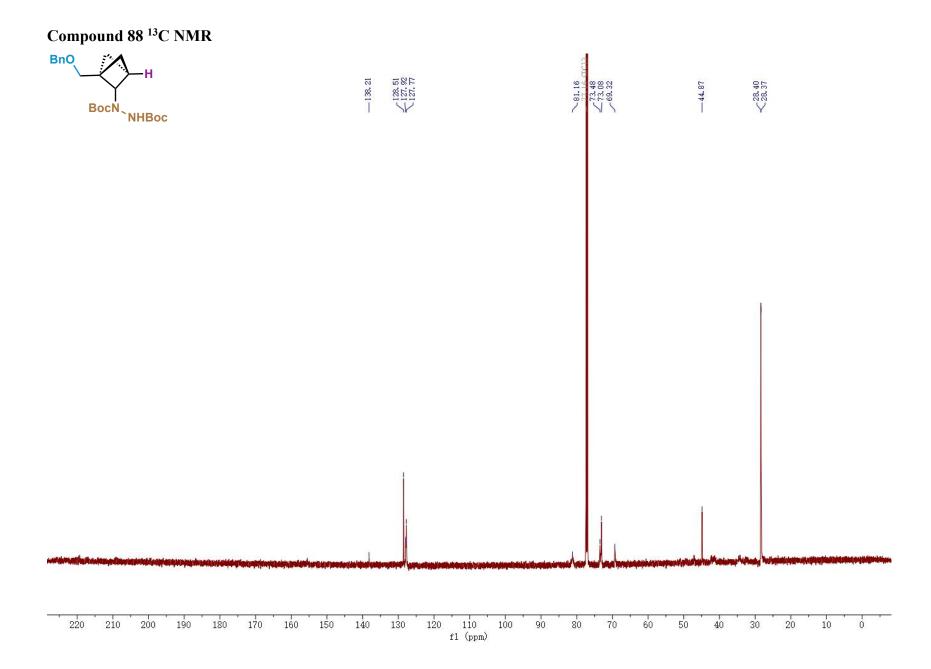

S468

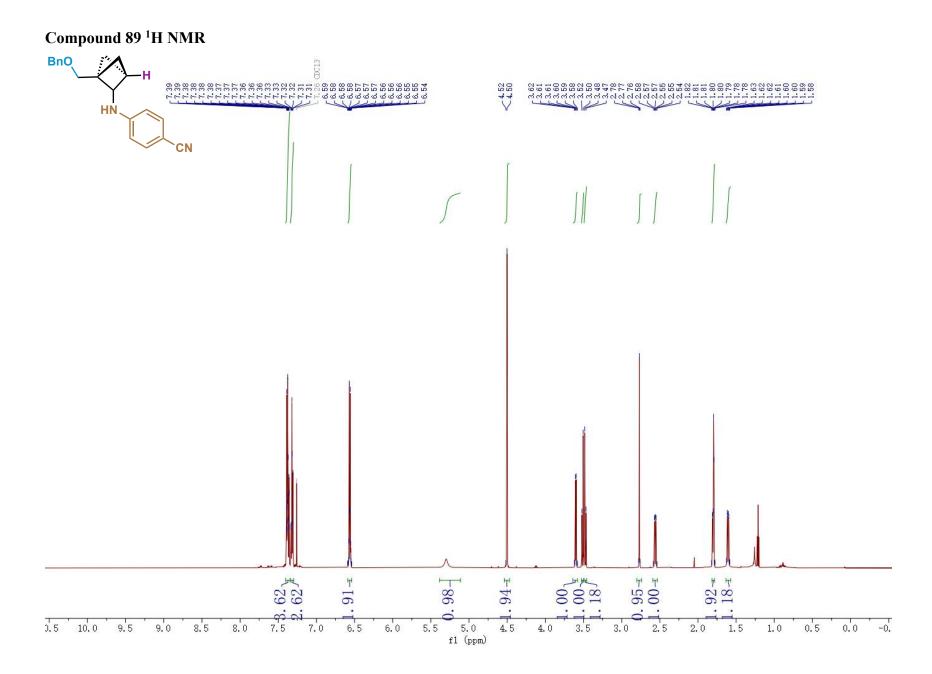


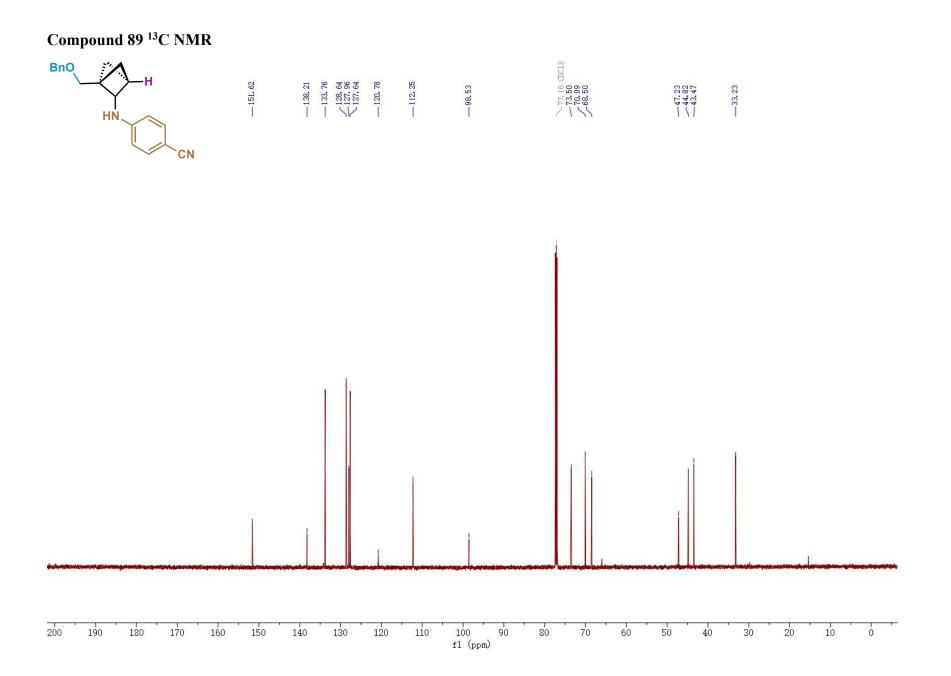


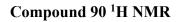


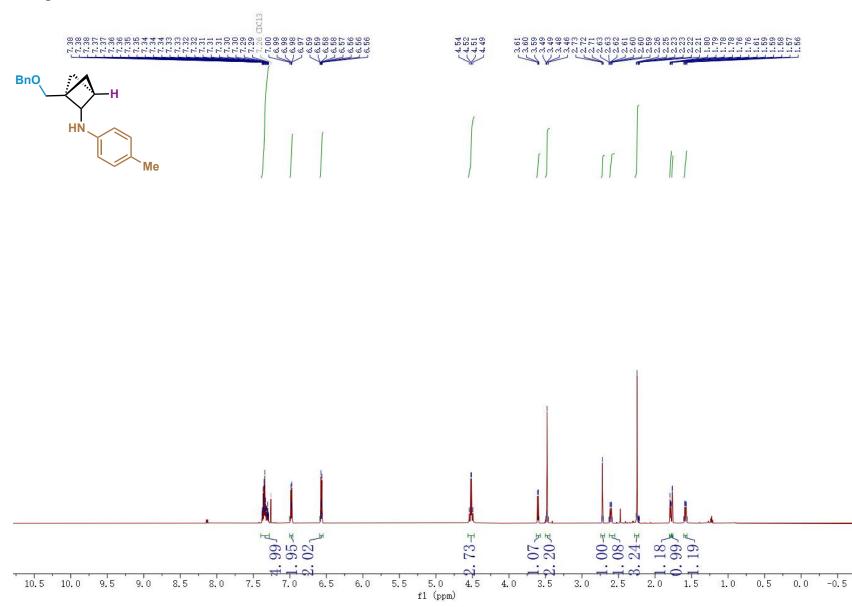


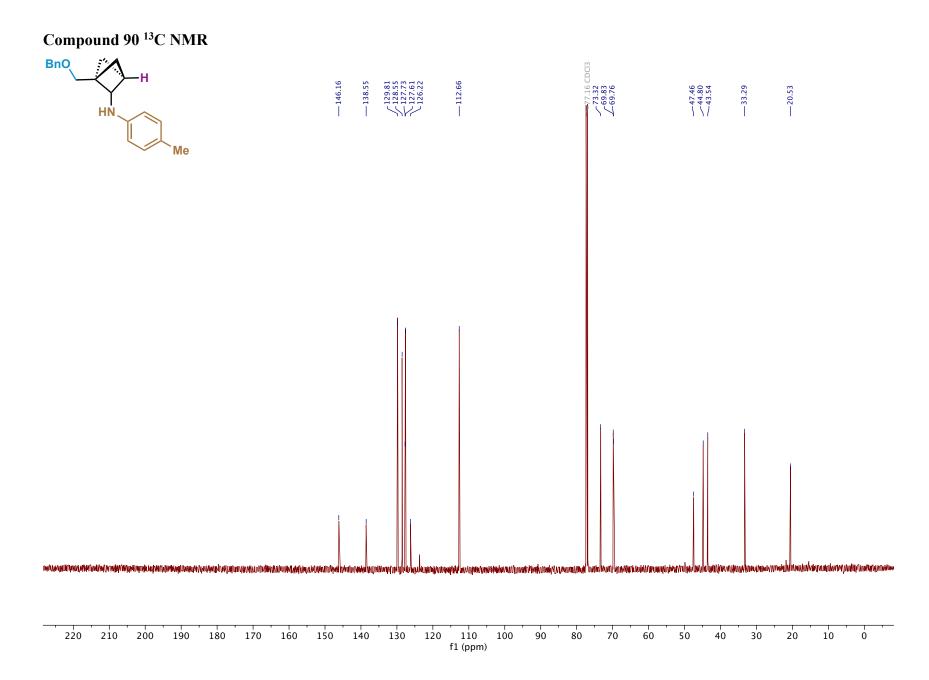


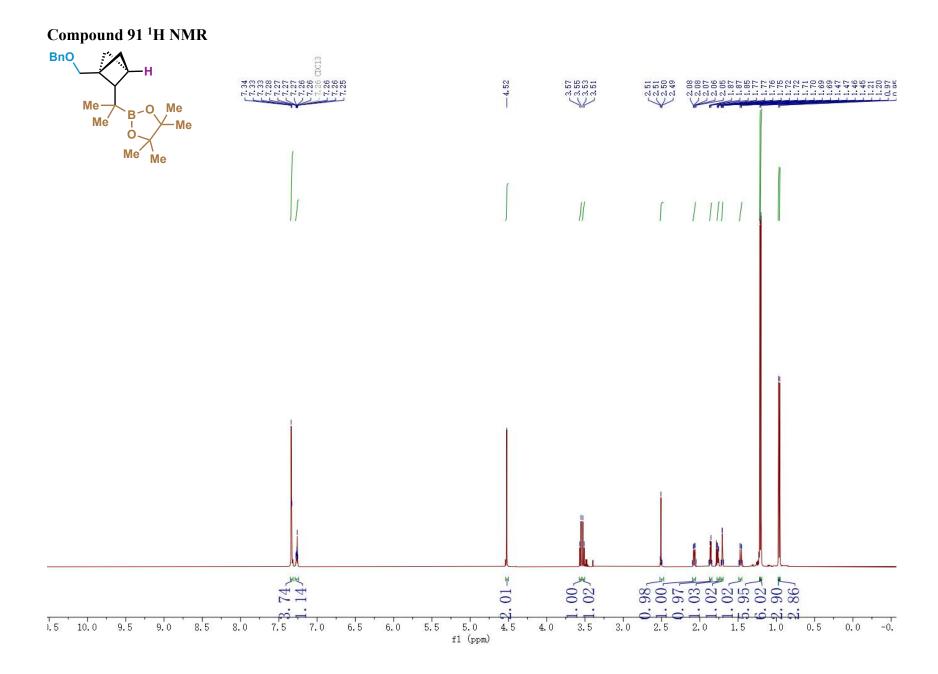

Compound 87¹H NMR

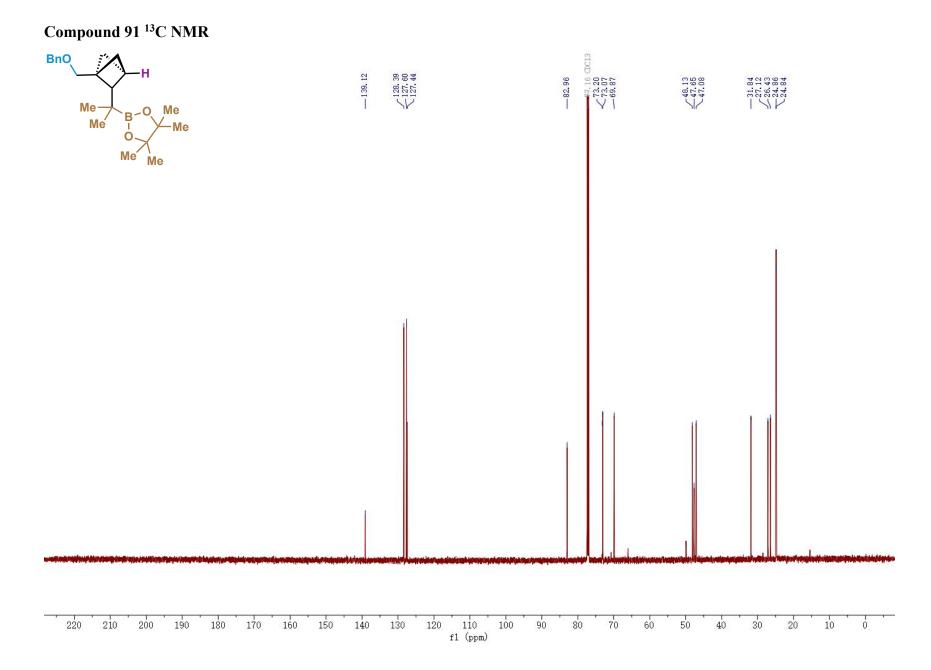


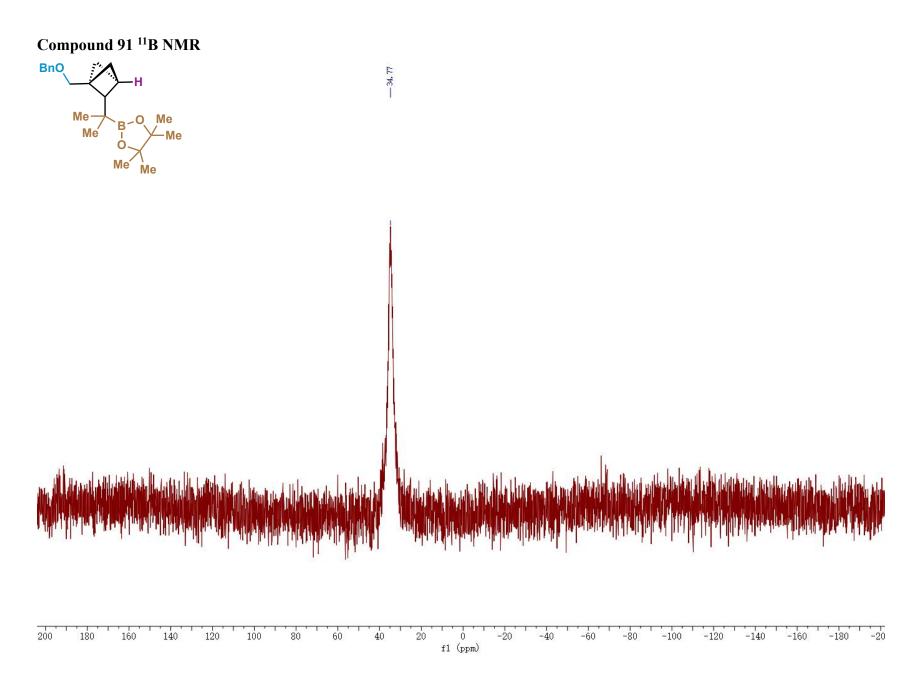


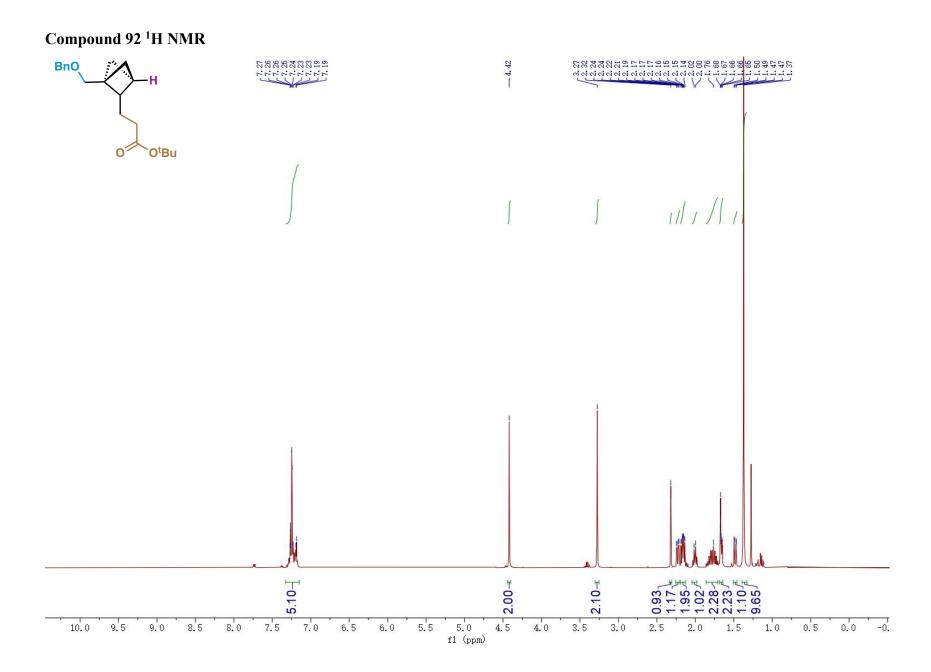


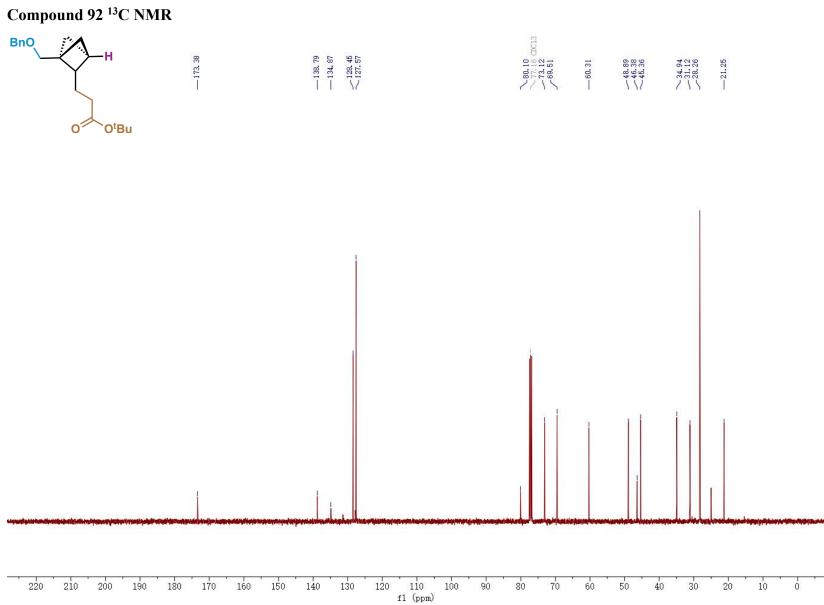


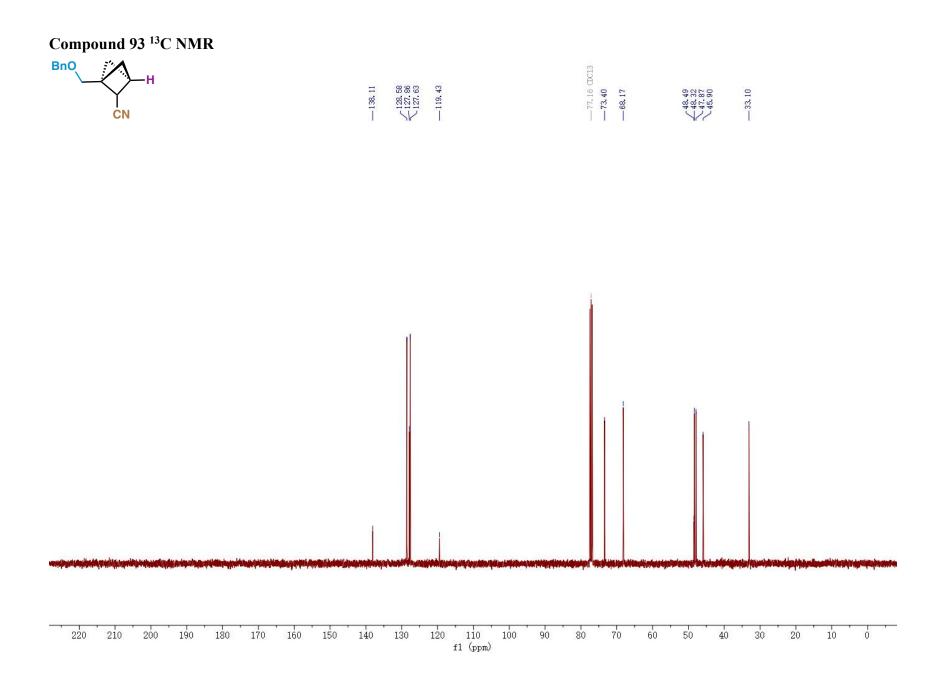


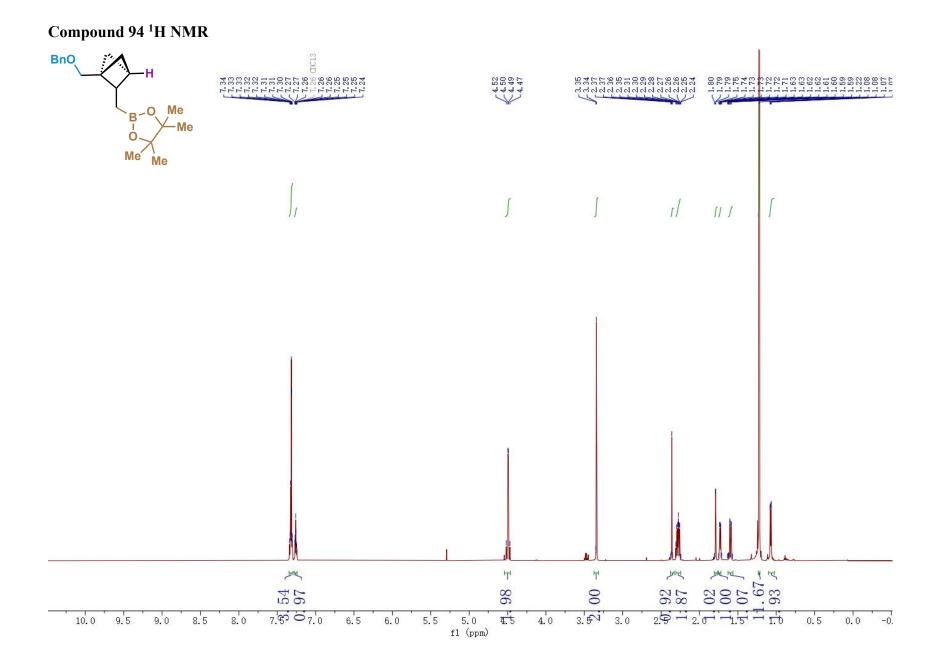


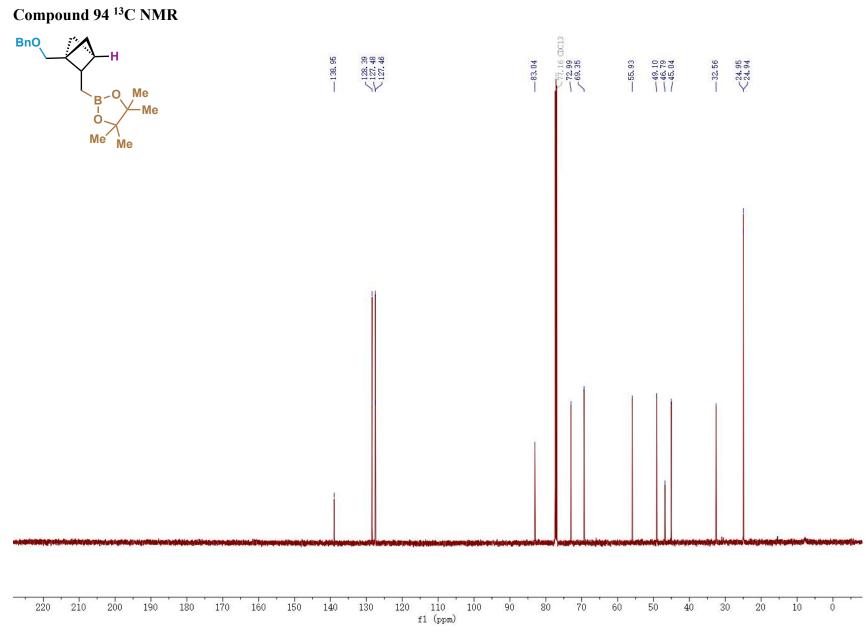


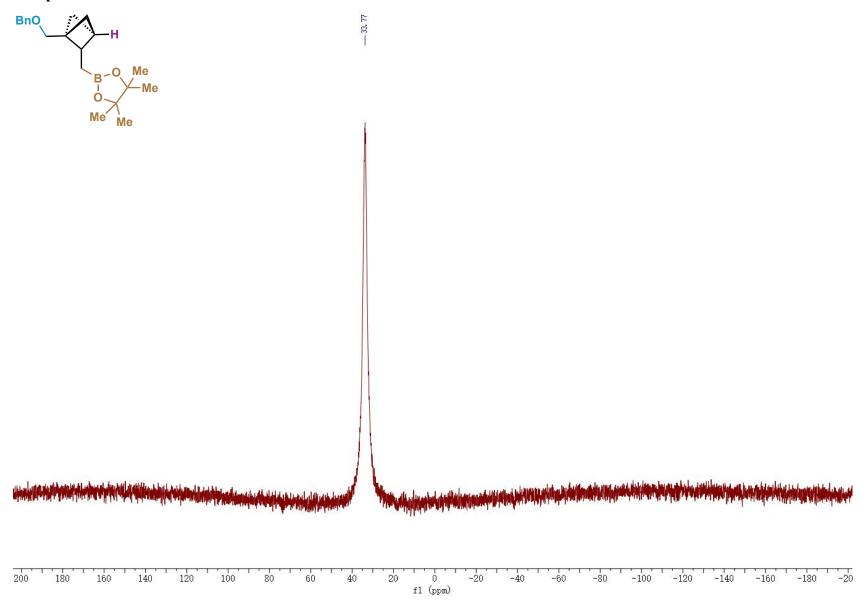


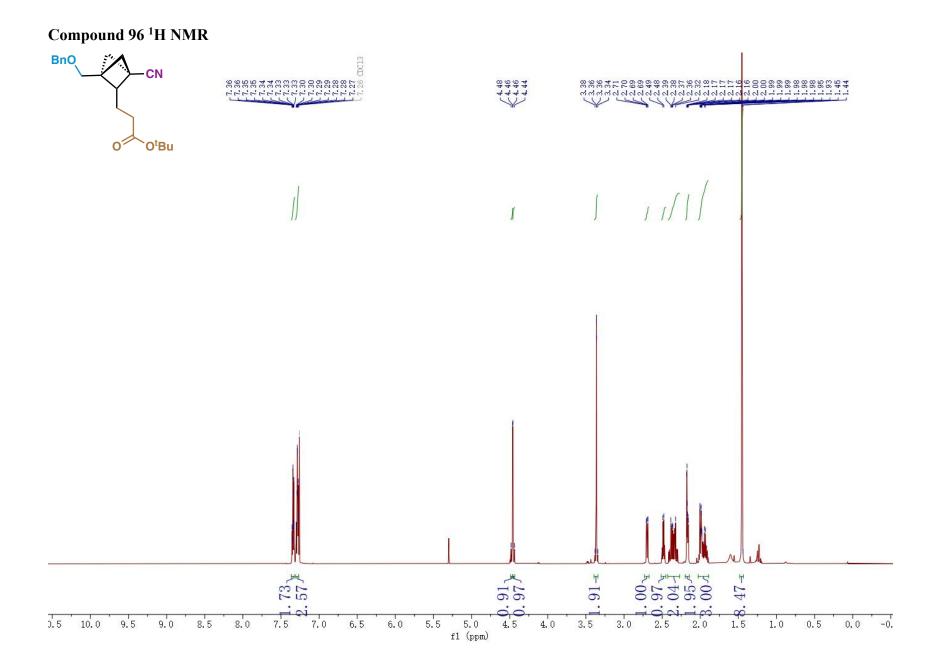


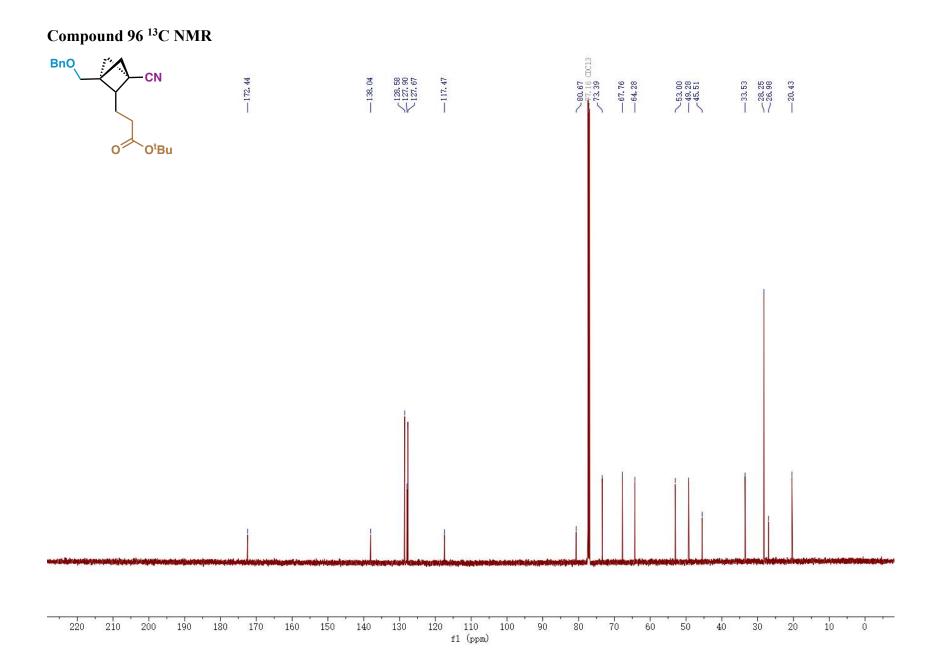


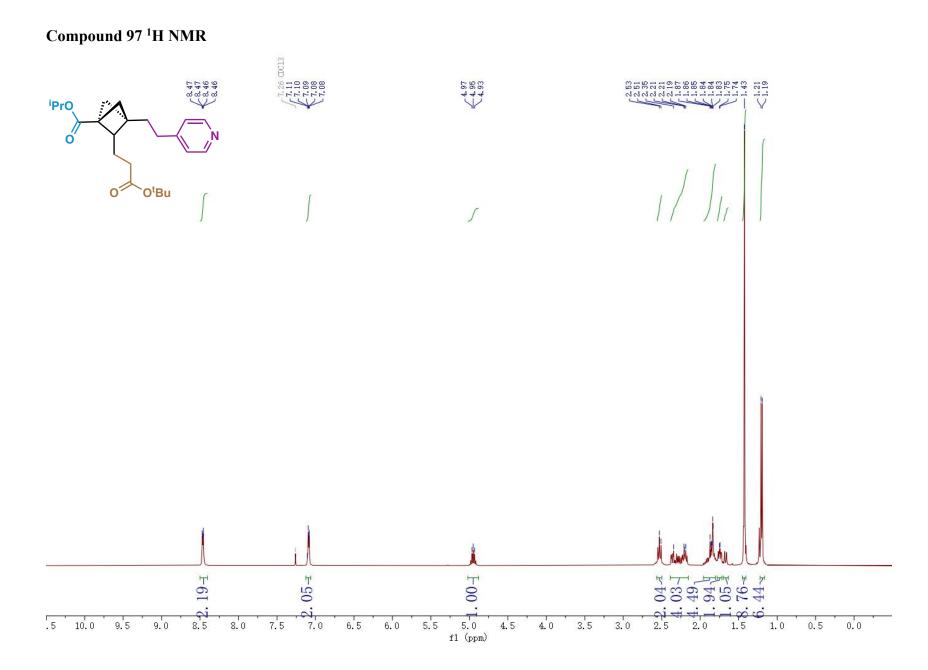


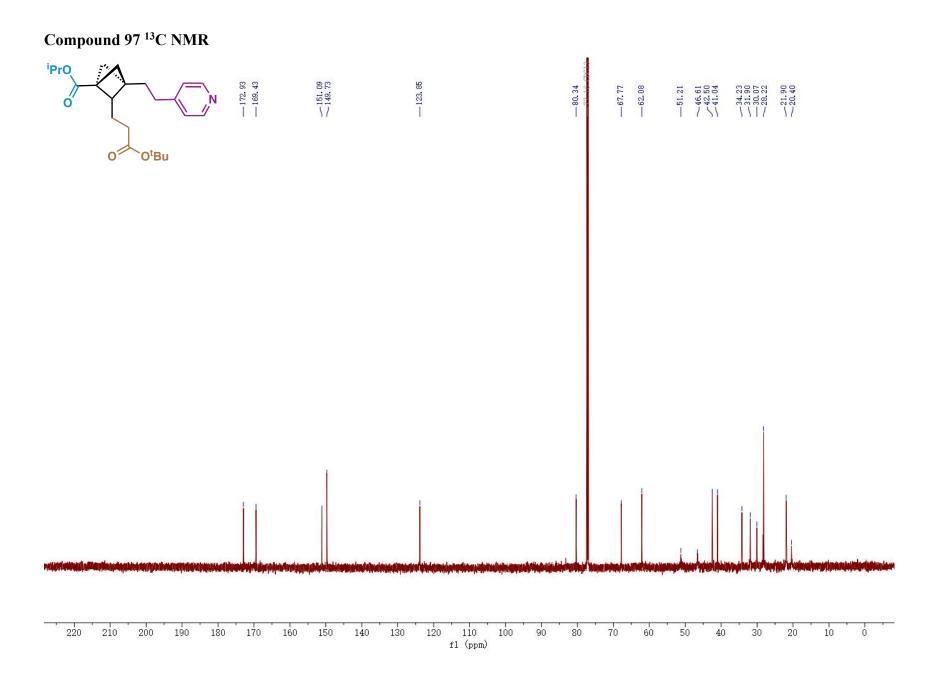


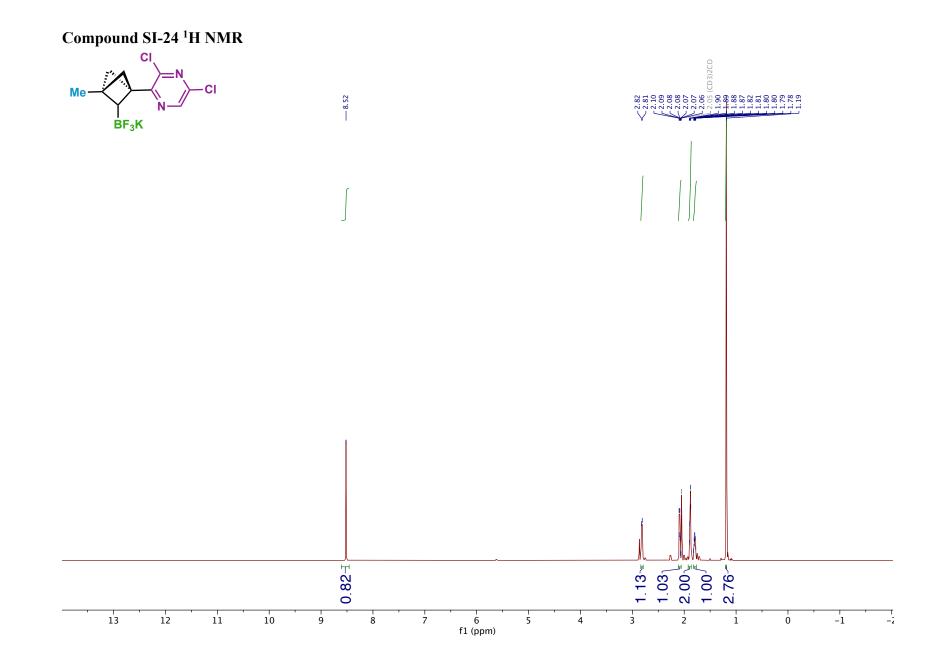


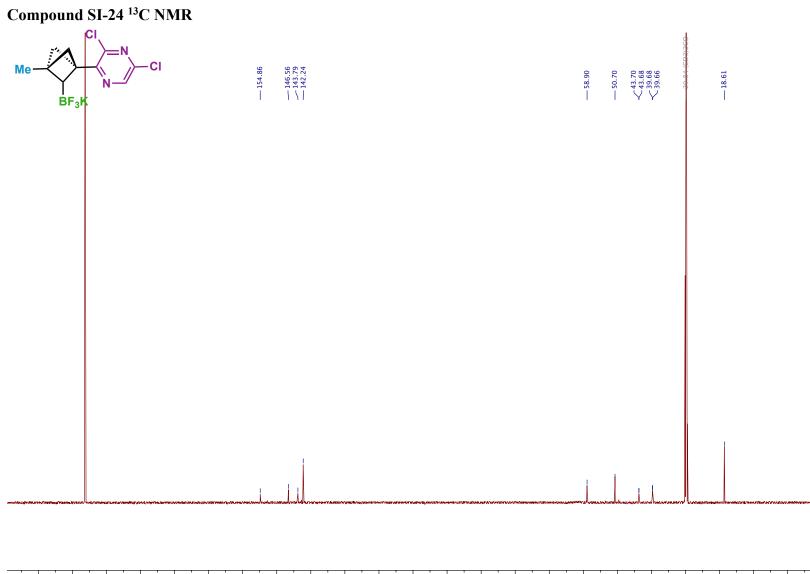


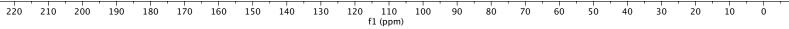





Compound 94 ¹¹B NMR

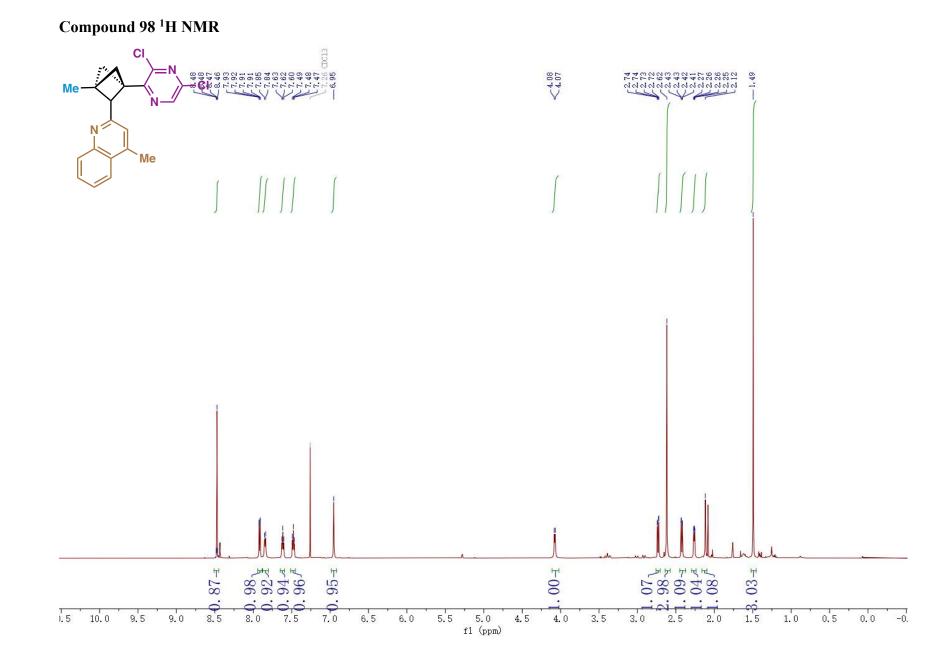


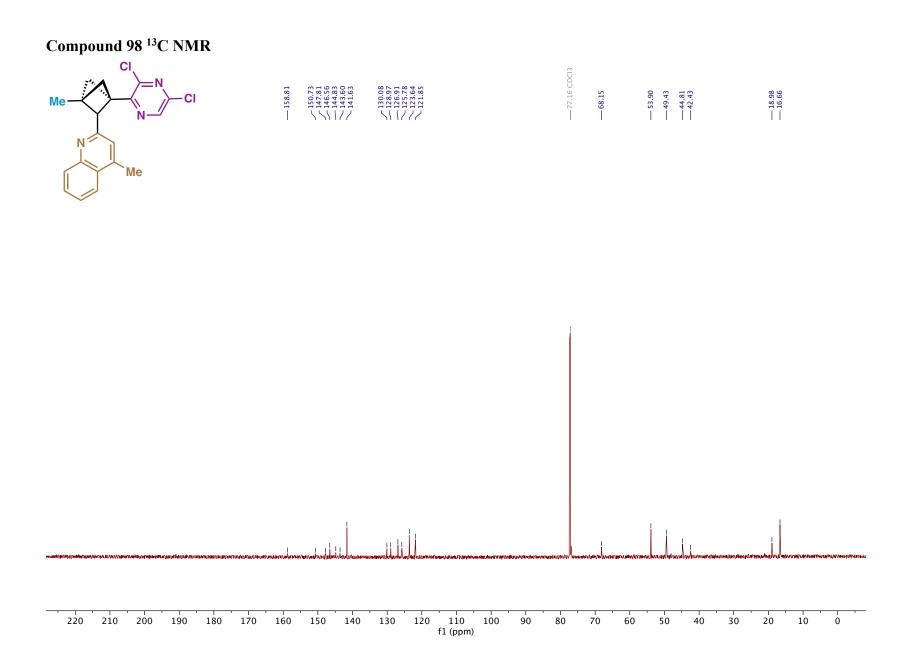




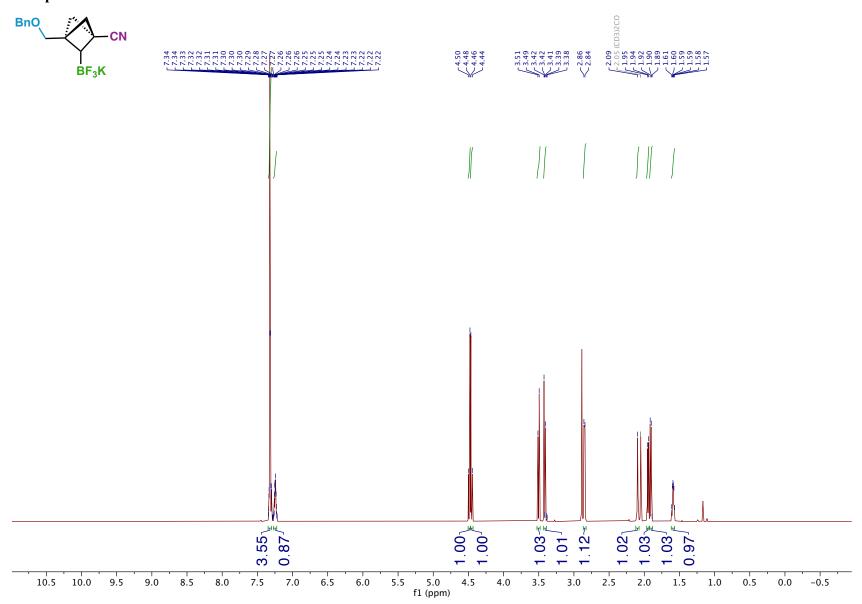


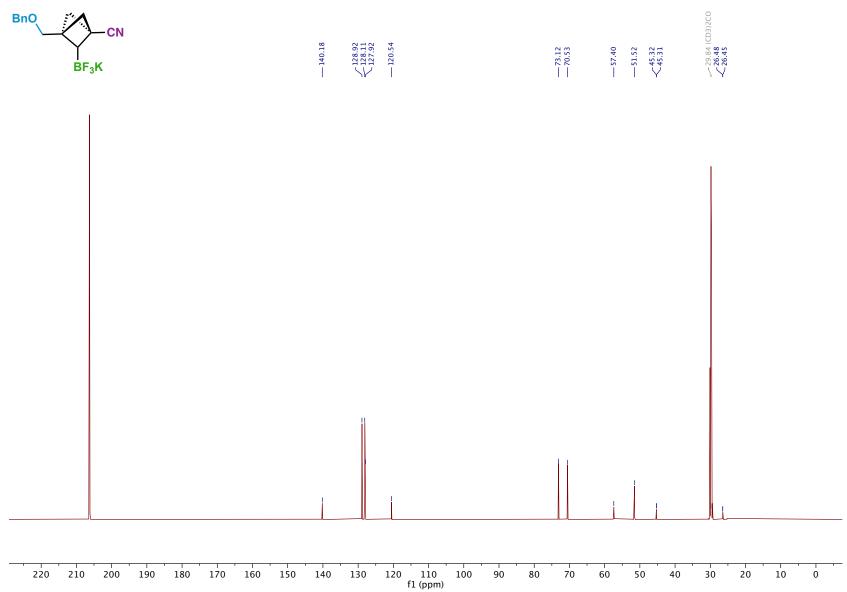
Compound SI-24 ¹⁹F NMR


30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220
	f1 (ppm)																								

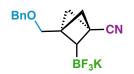

Compound SI-24 ¹¹B NMR

wine and a property in the particular international and the second and the

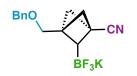

200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-20
	f1 (ppm)																			



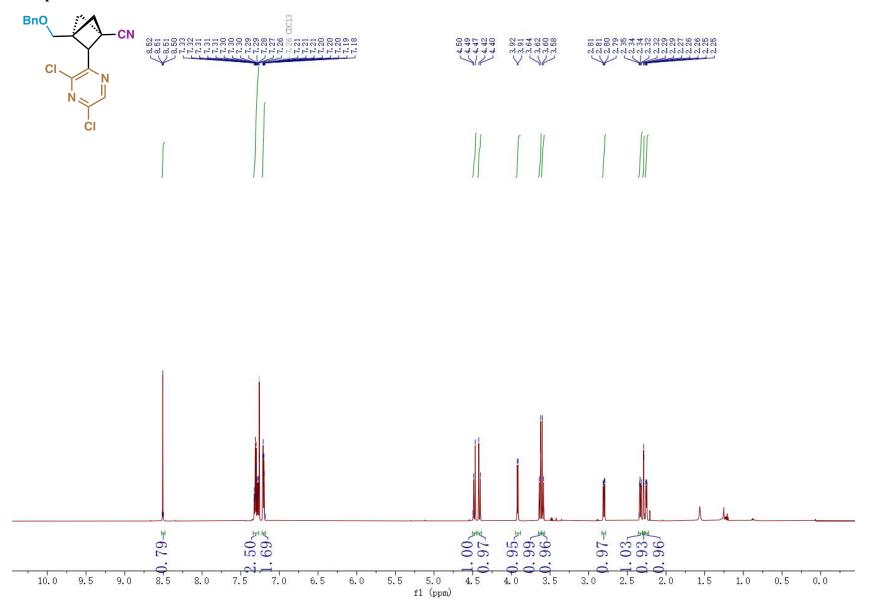
Compound SI-25 ¹H NMR

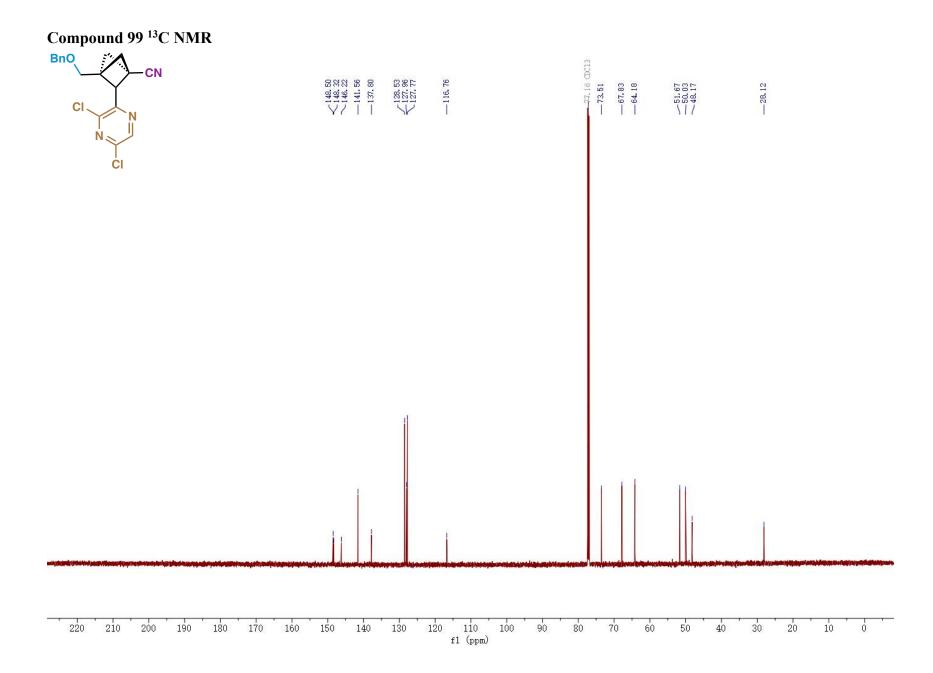


Compound SI-25¹³C NMR

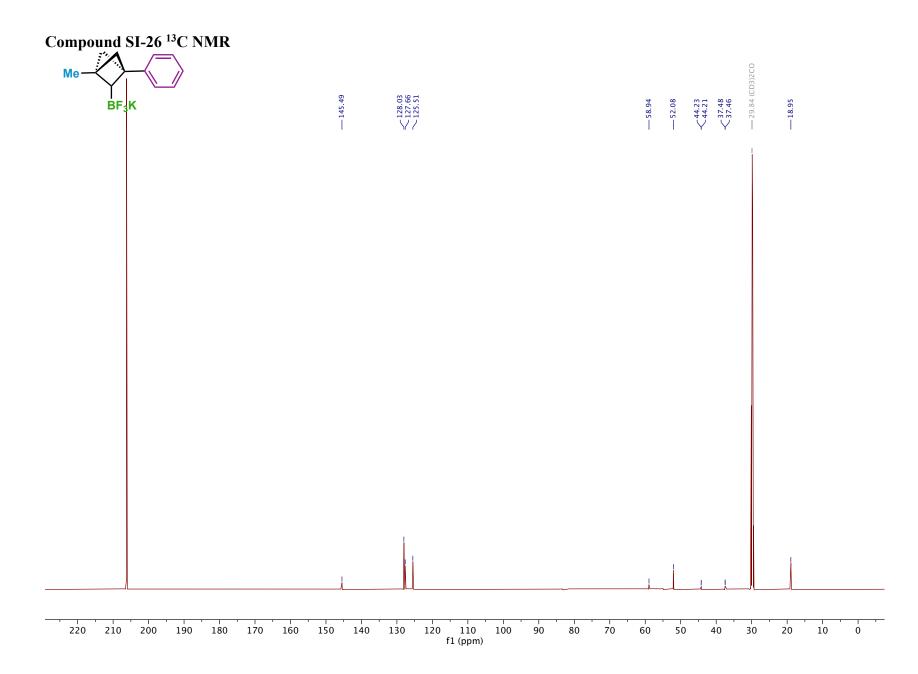


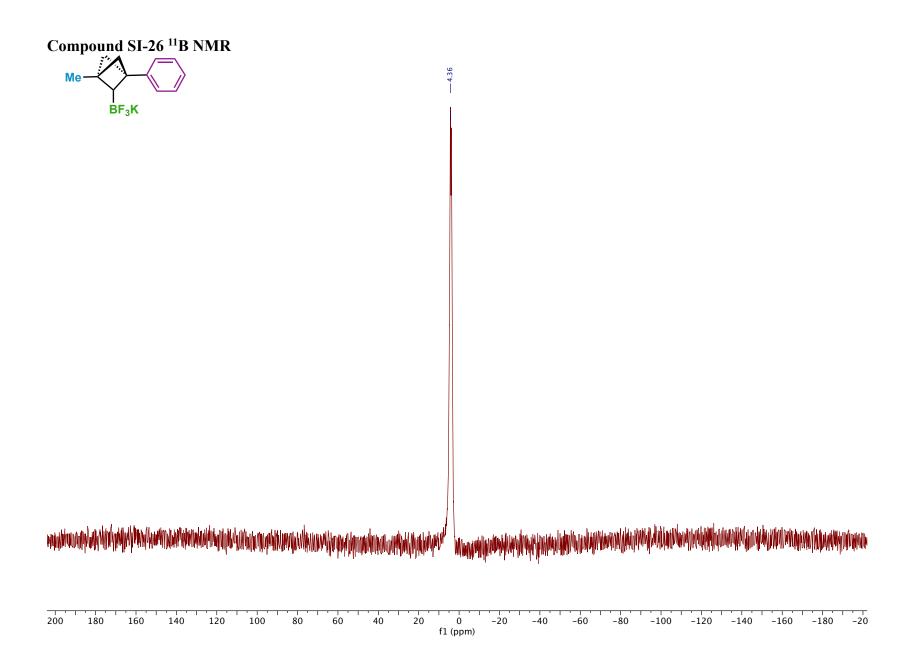
Compound SI-25¹⁹F NMR

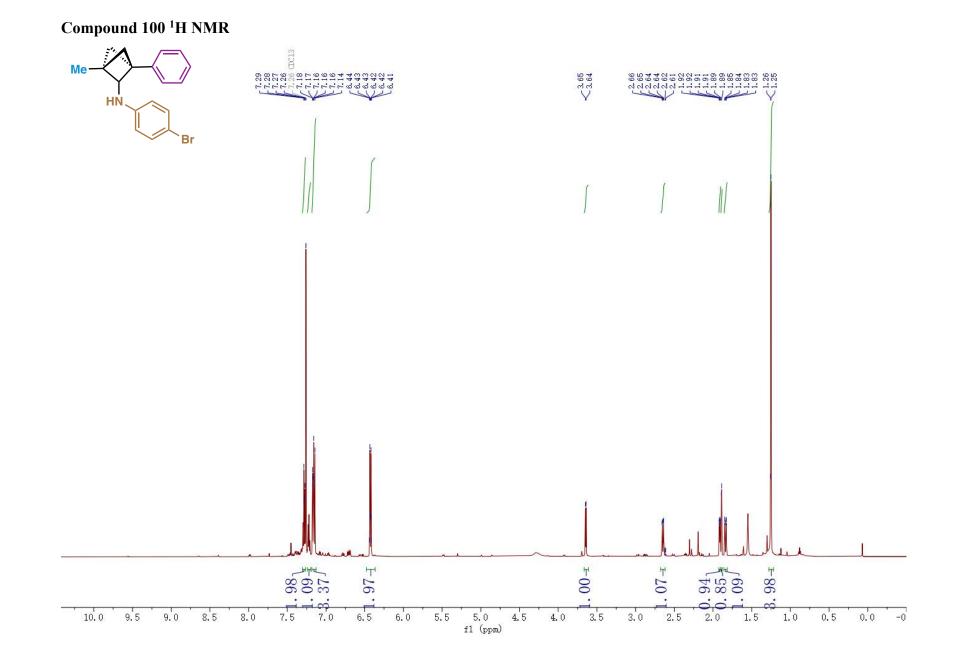

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

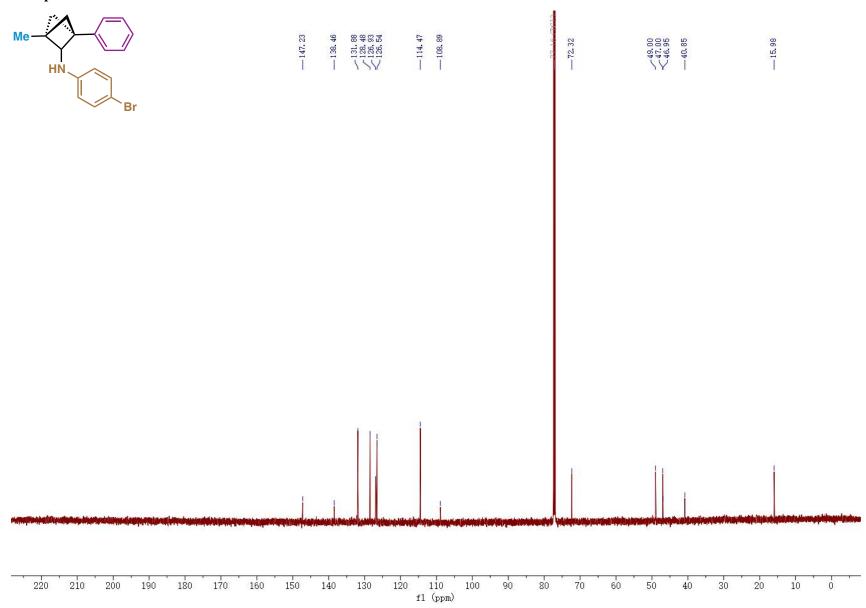

Compound SI-25¹¹B NMR

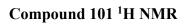
															<u> </u>					
200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-20
f1 (ppm)																				

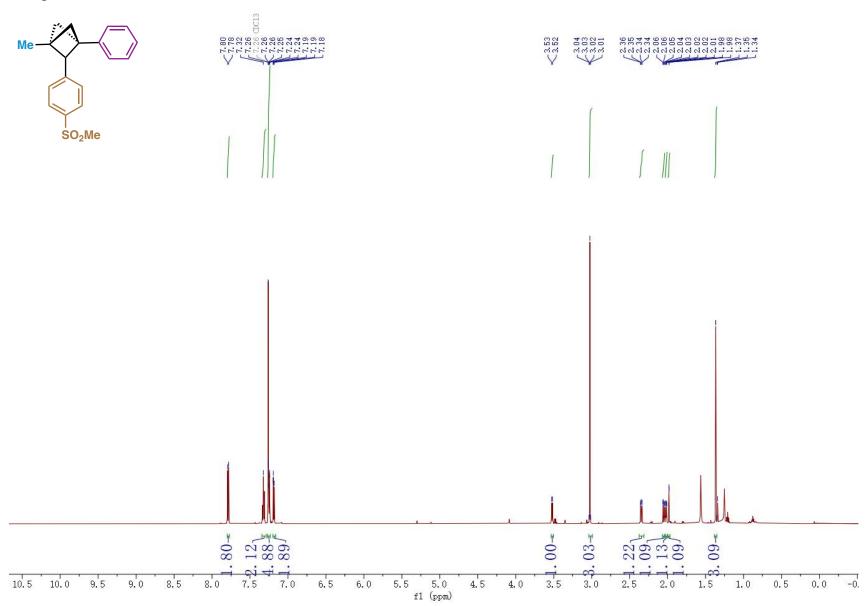

Compound 99 ¹H NMR

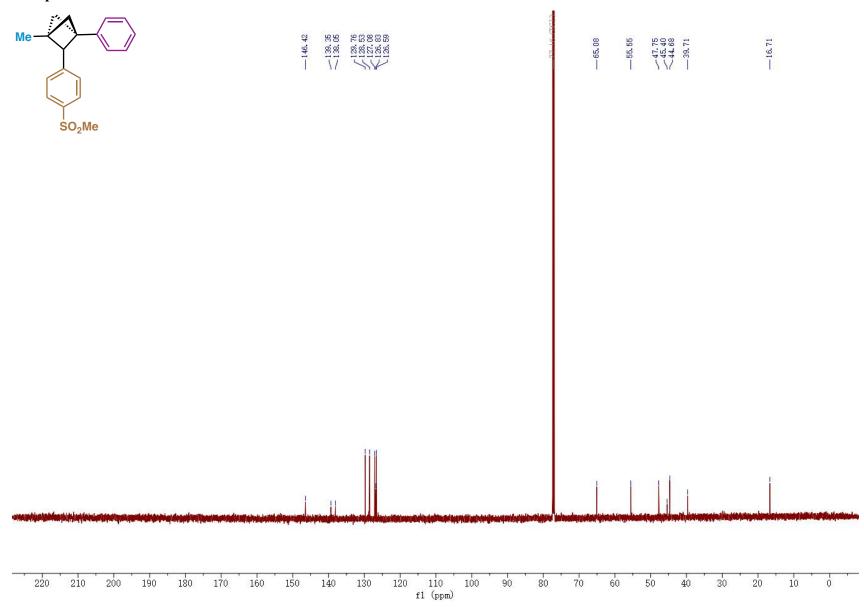

Compound SI-26 ¹H NMR

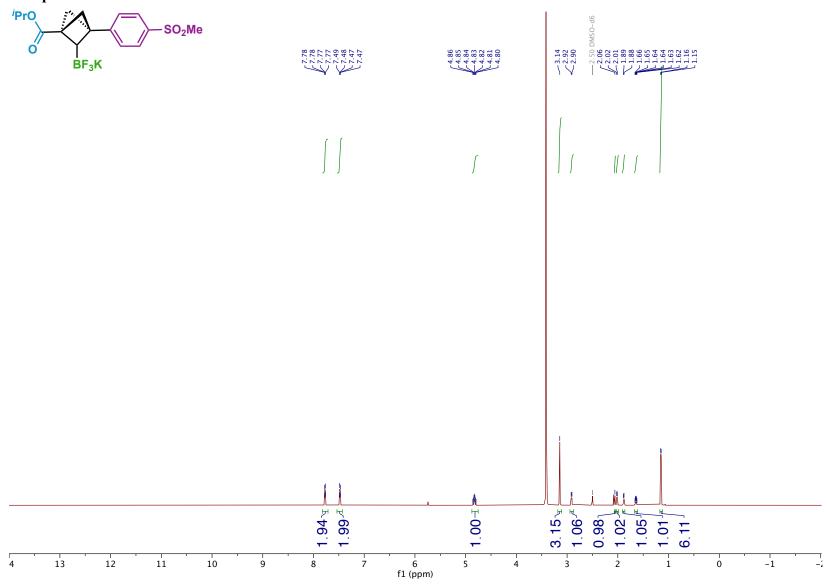


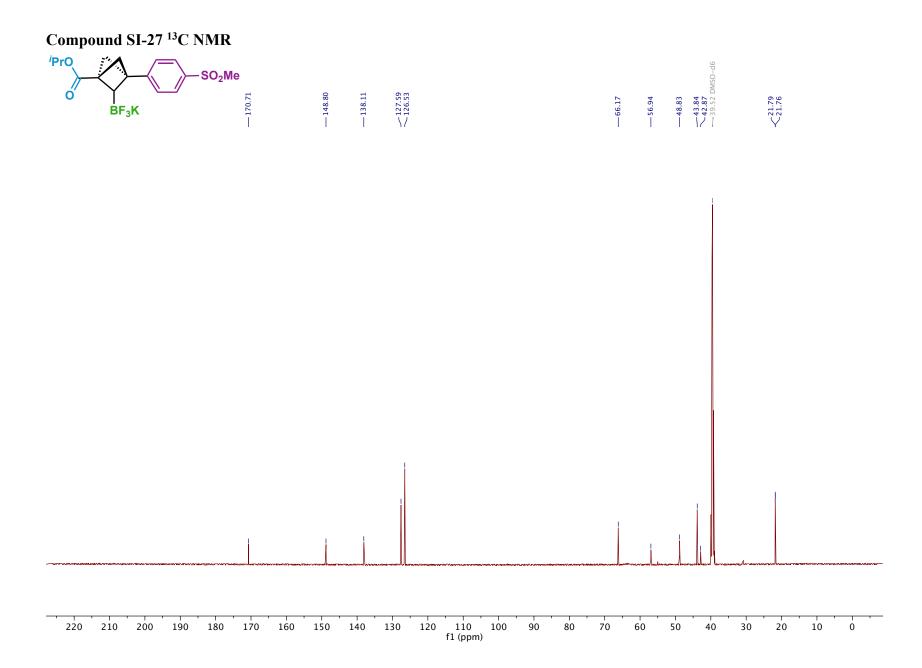



30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)




Compound 100¹³C NMR

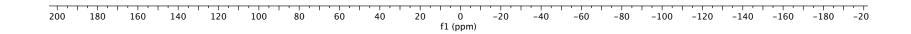


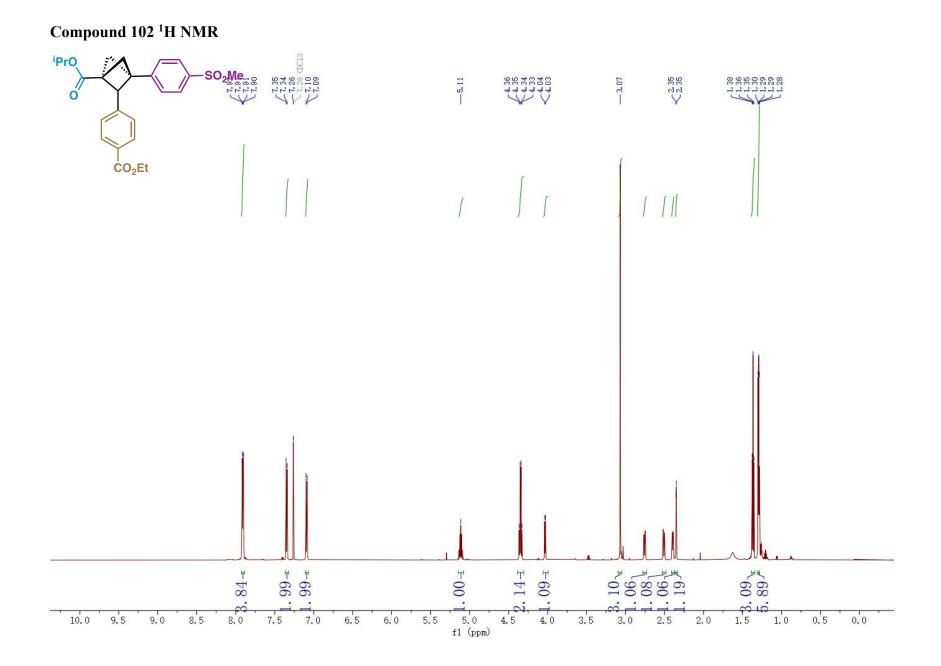


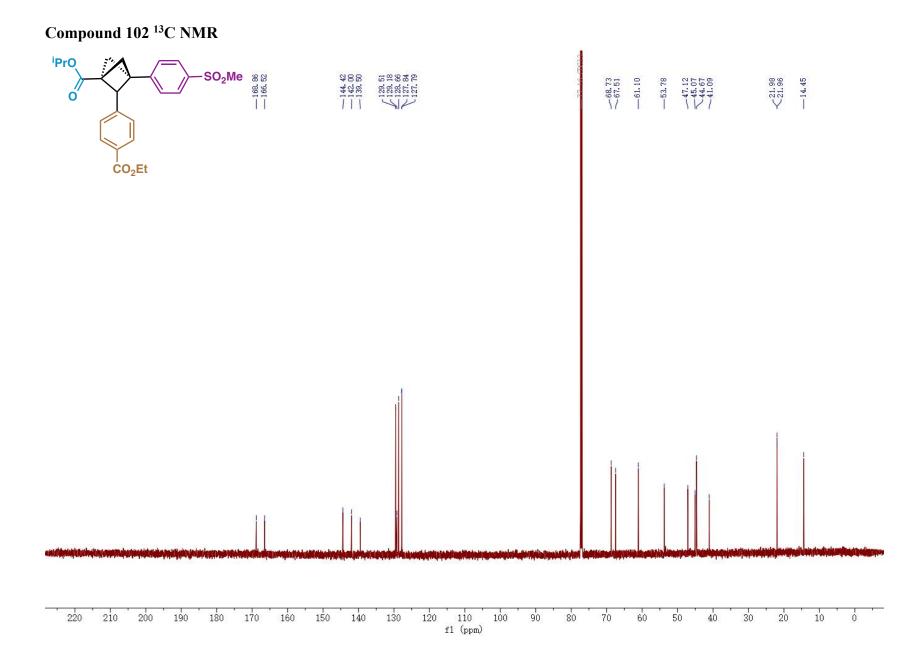
Compound 101 ¹³C NMR

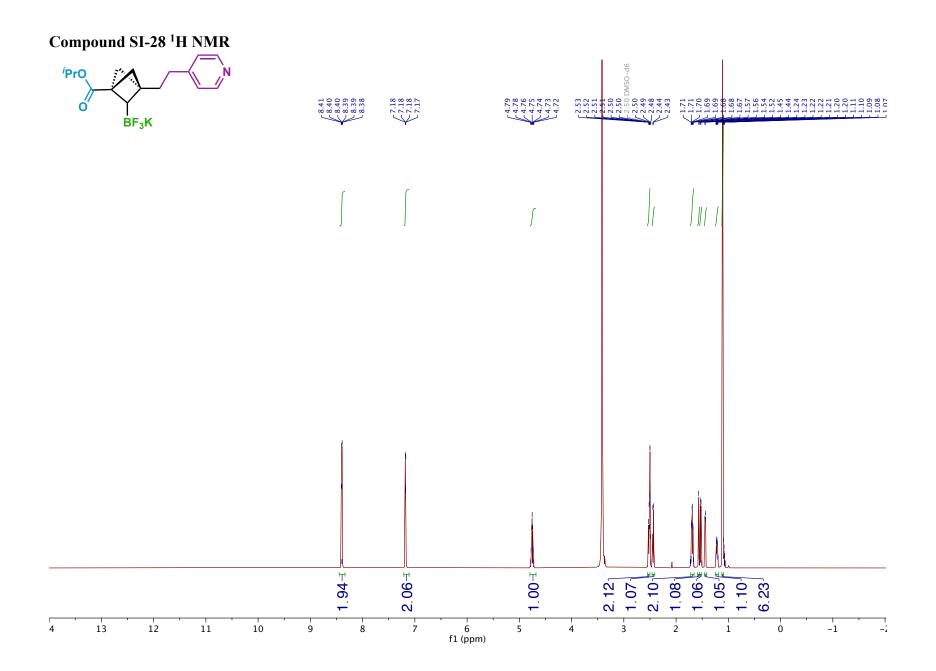
Compound SI-27 ¹H NMR

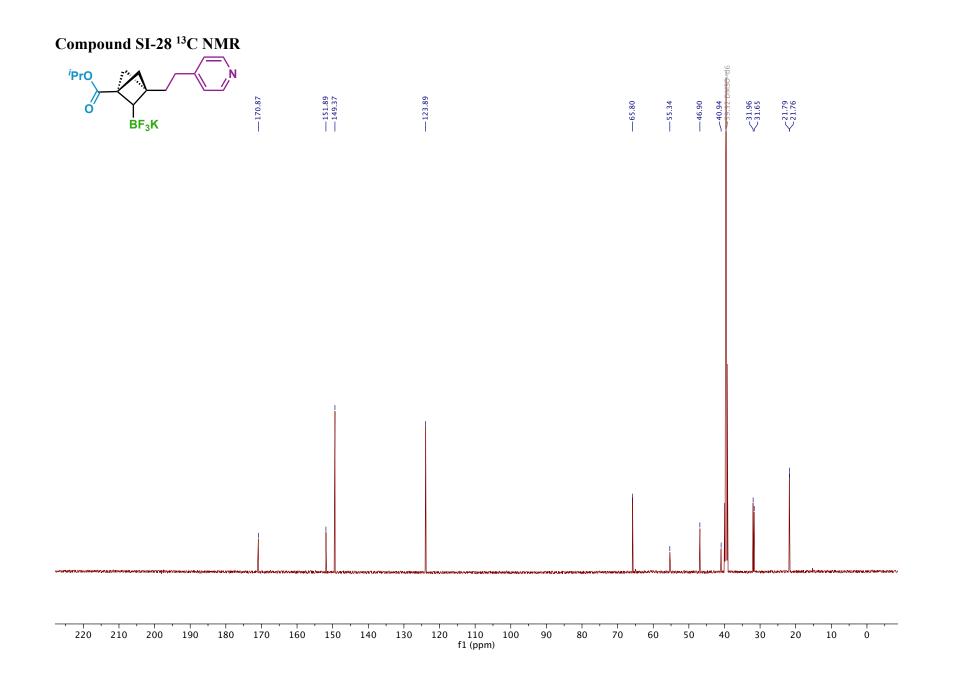
Compound SI-27 ¹⁹F NMR

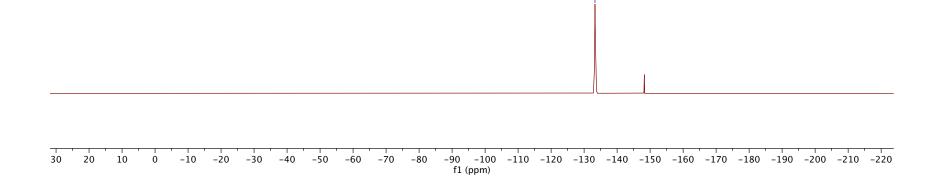

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

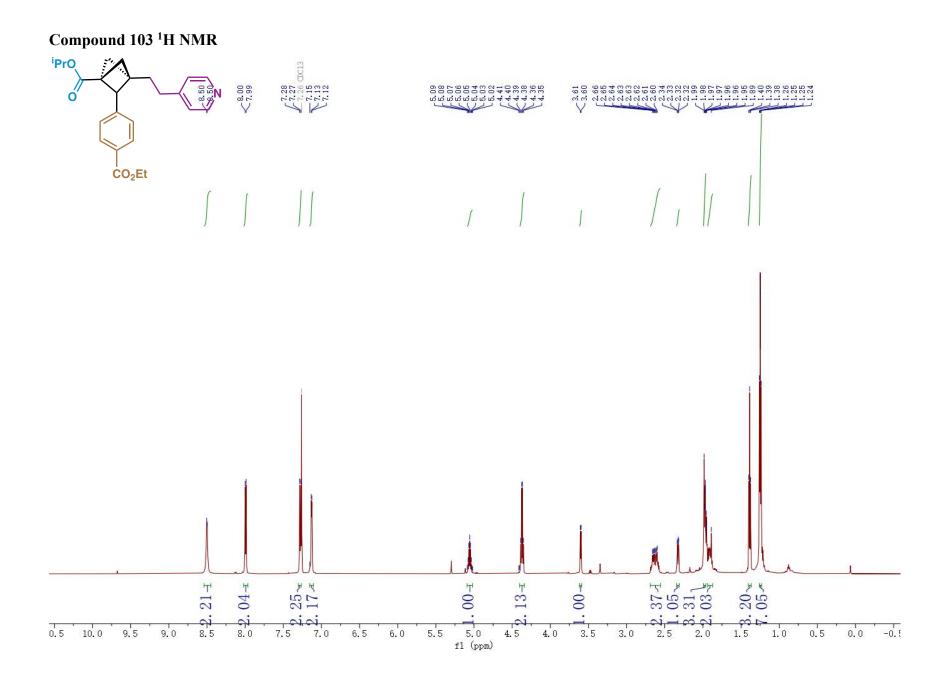

Compound SI-27 ¹¹B NMR

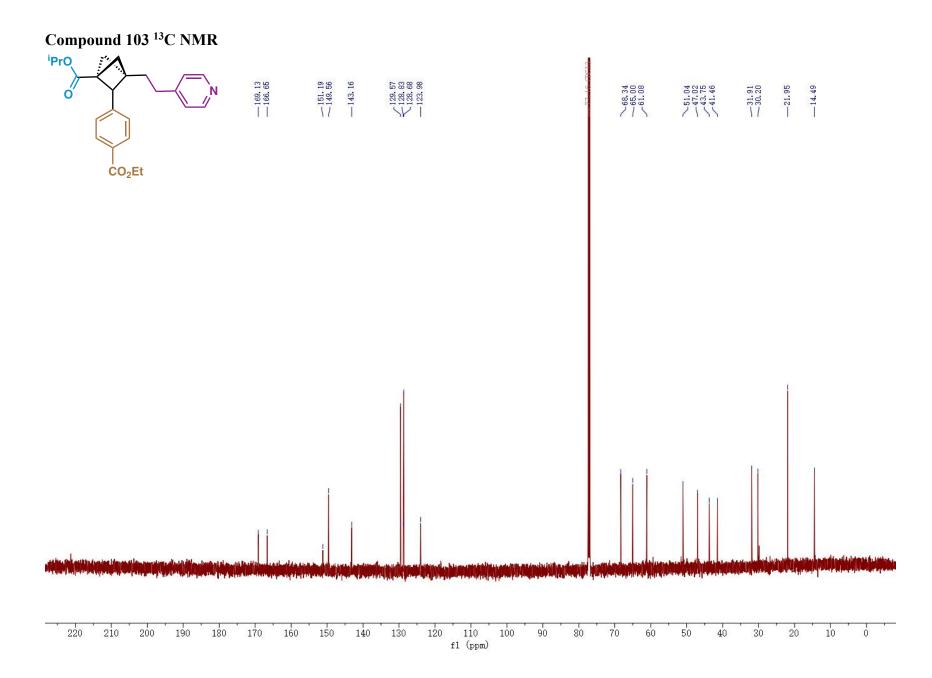


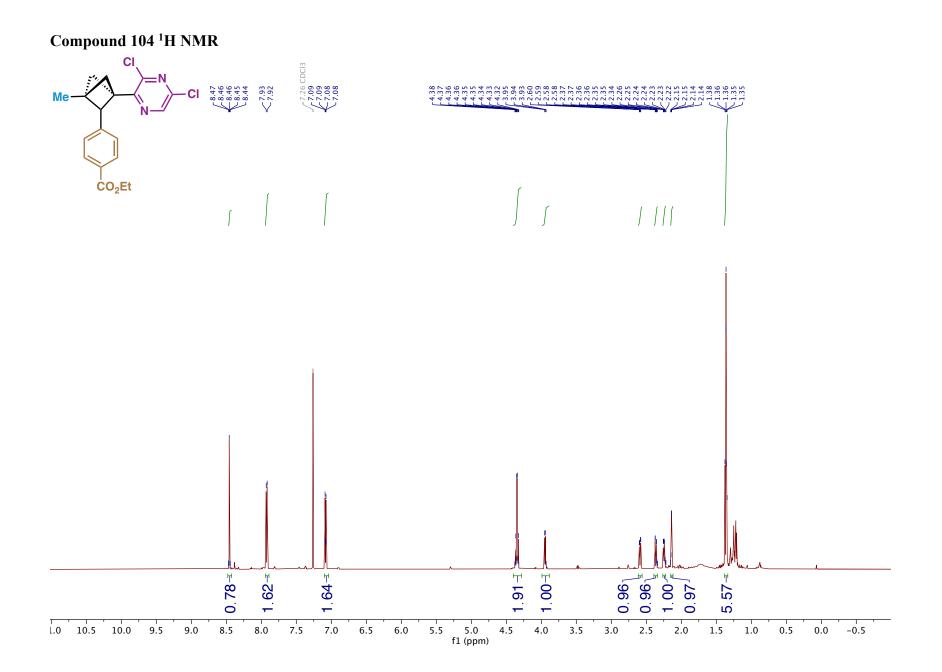


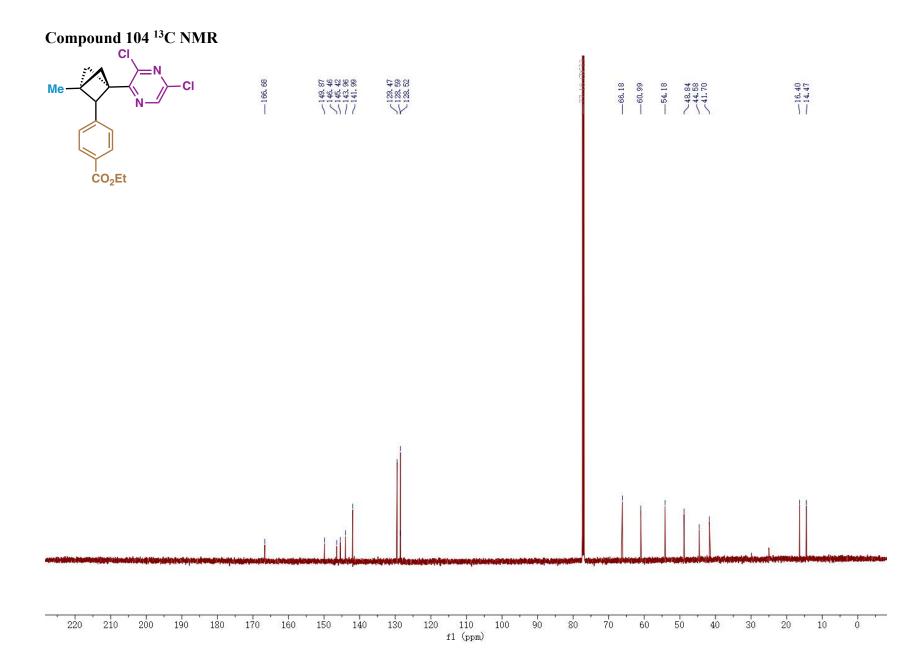

un de la serie d

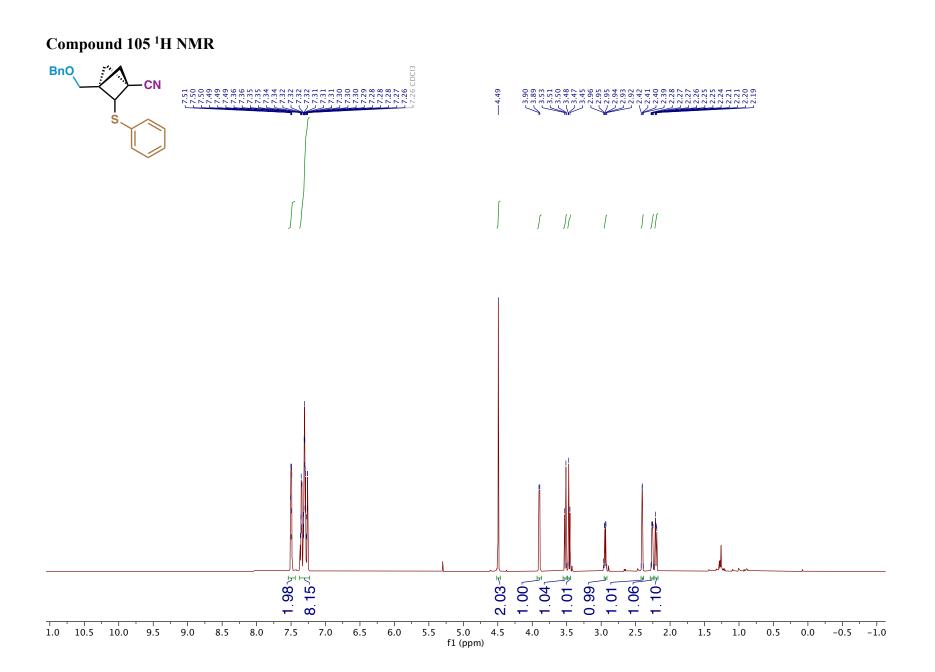


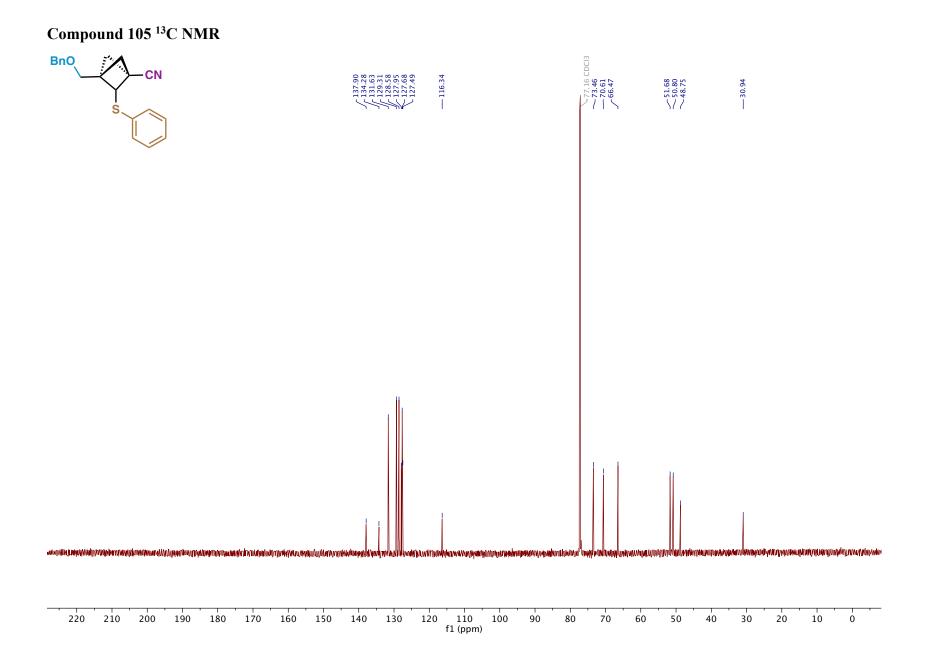


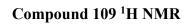


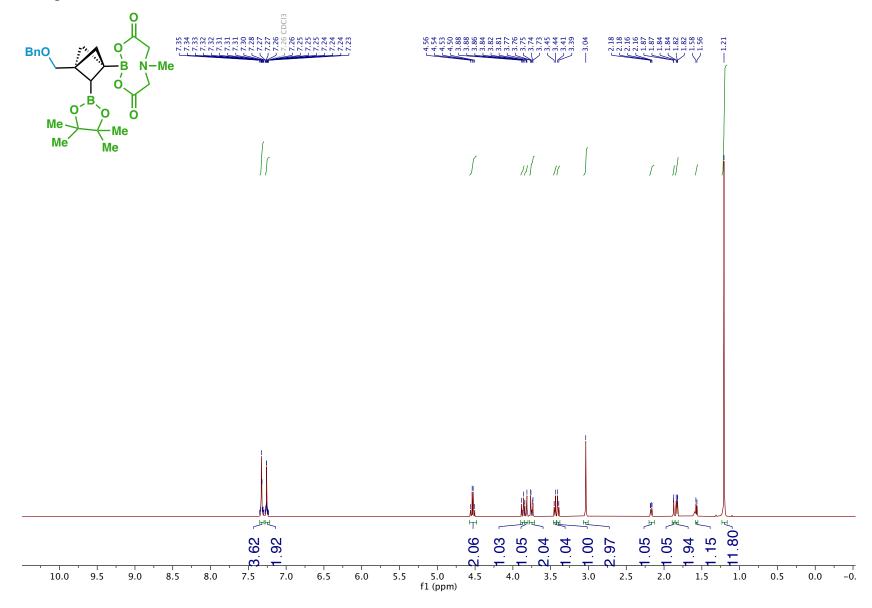


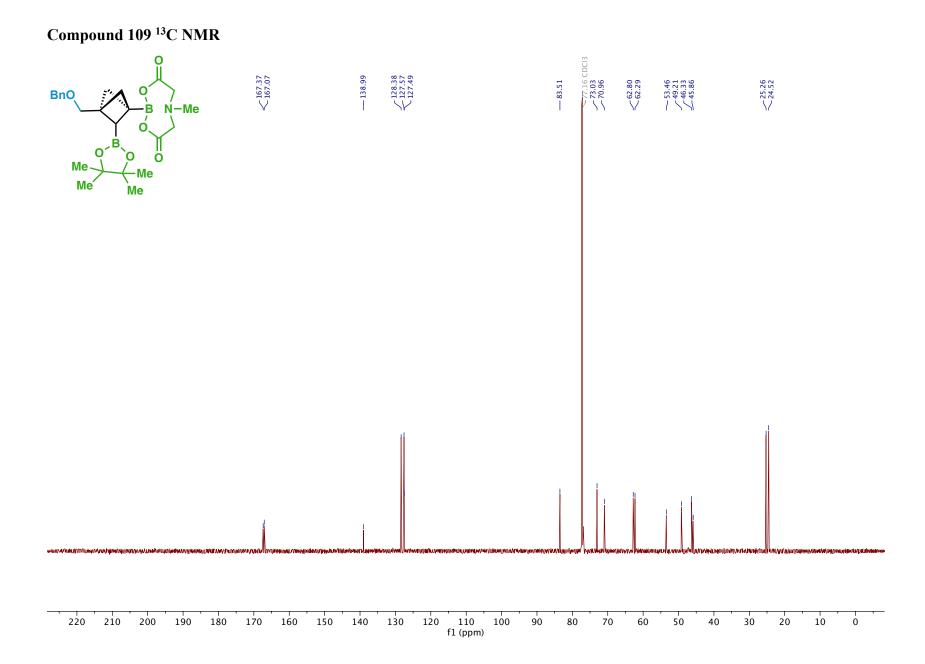


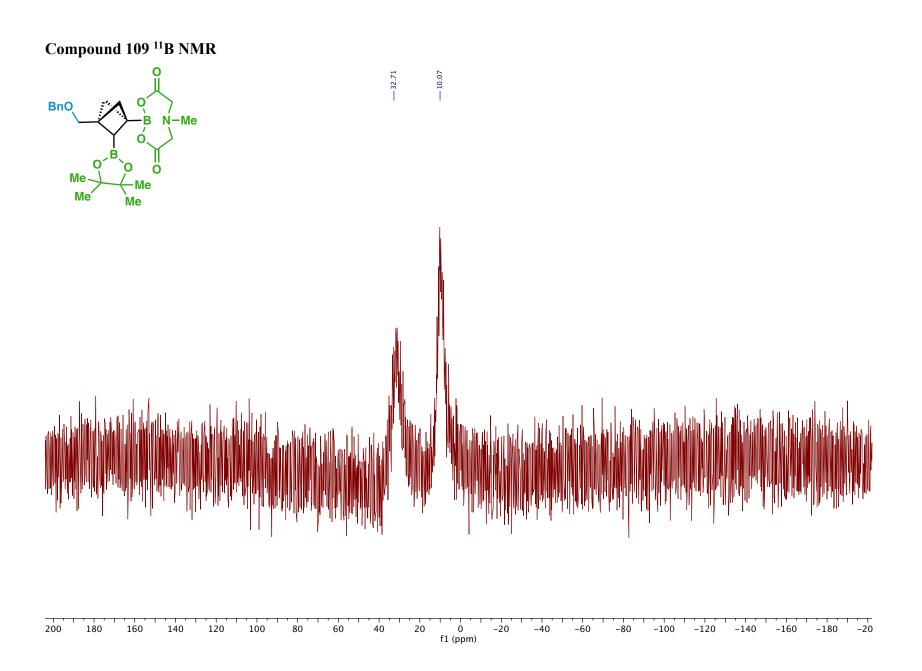

____2.99



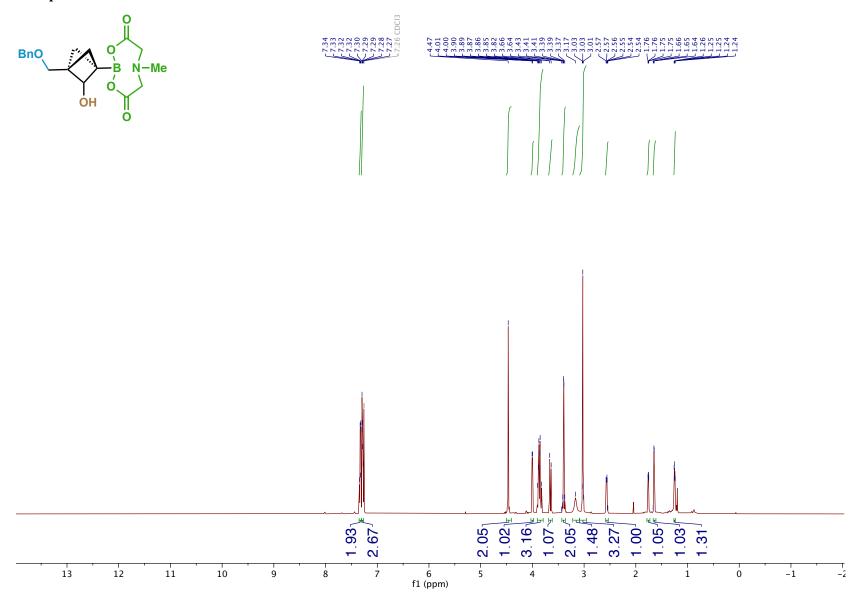


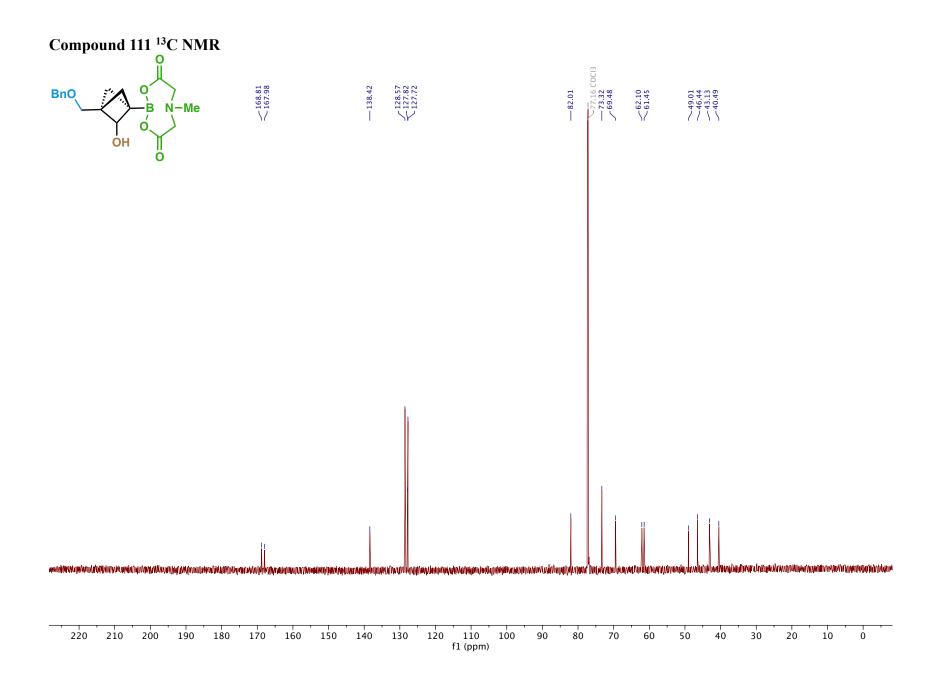


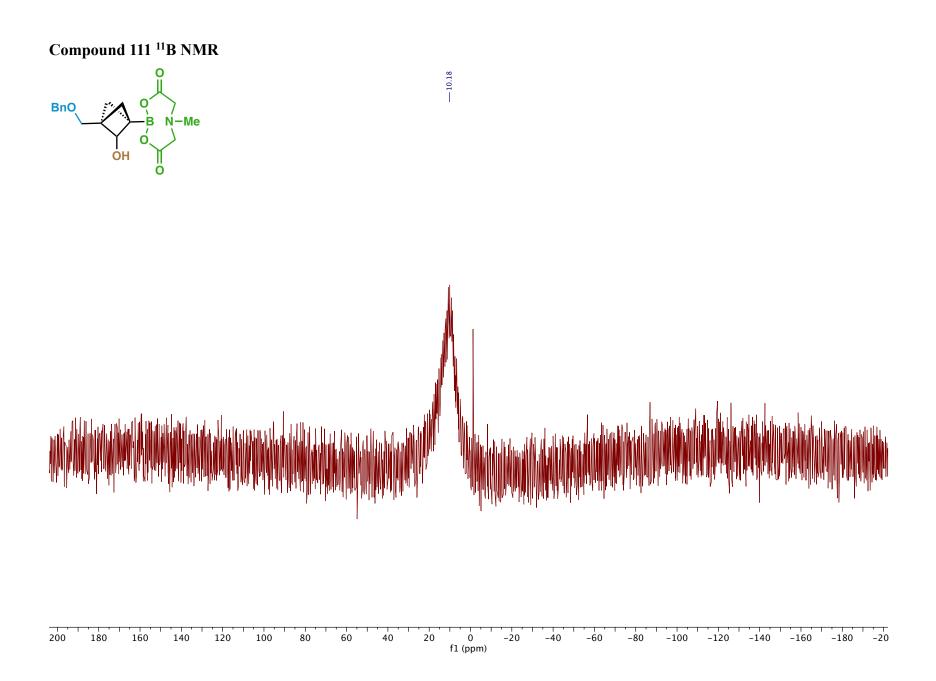


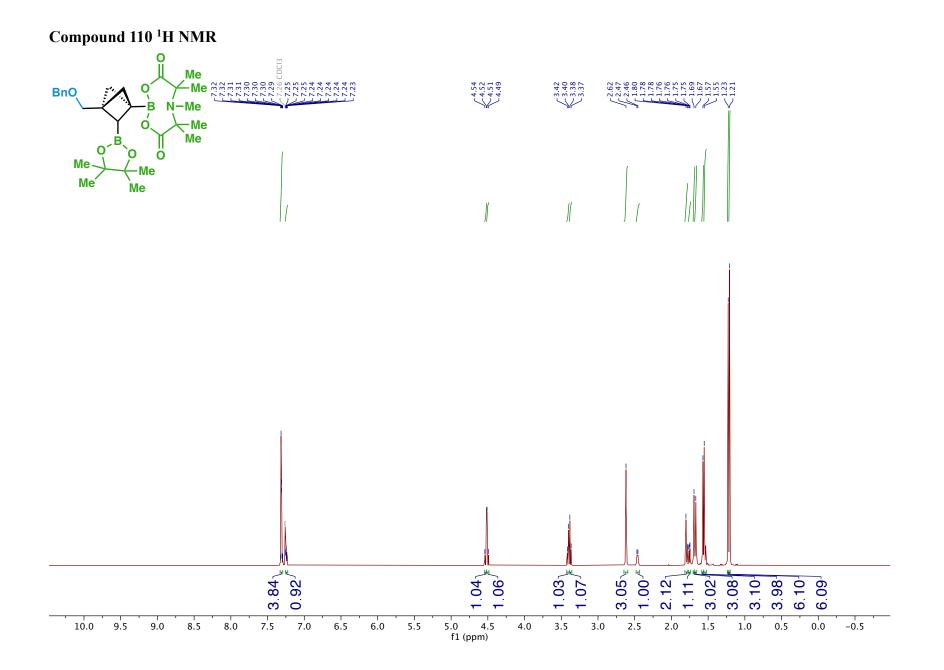

f1 (ppm)

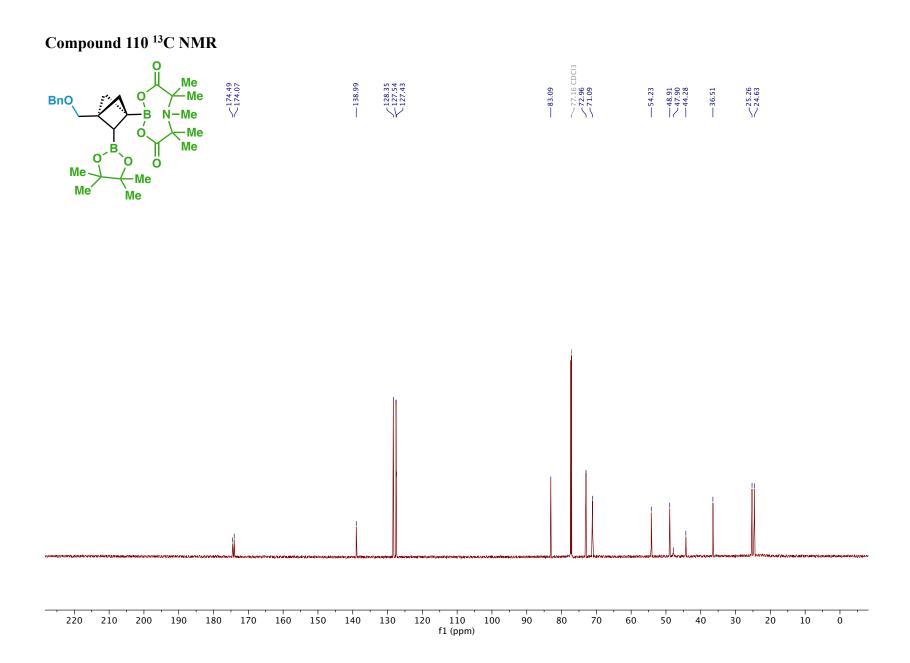
Compound 105 HSQC

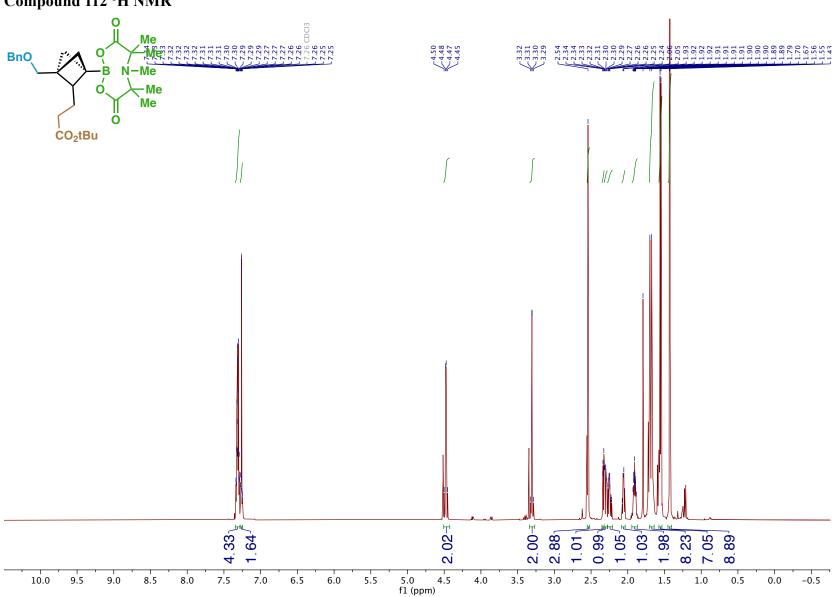


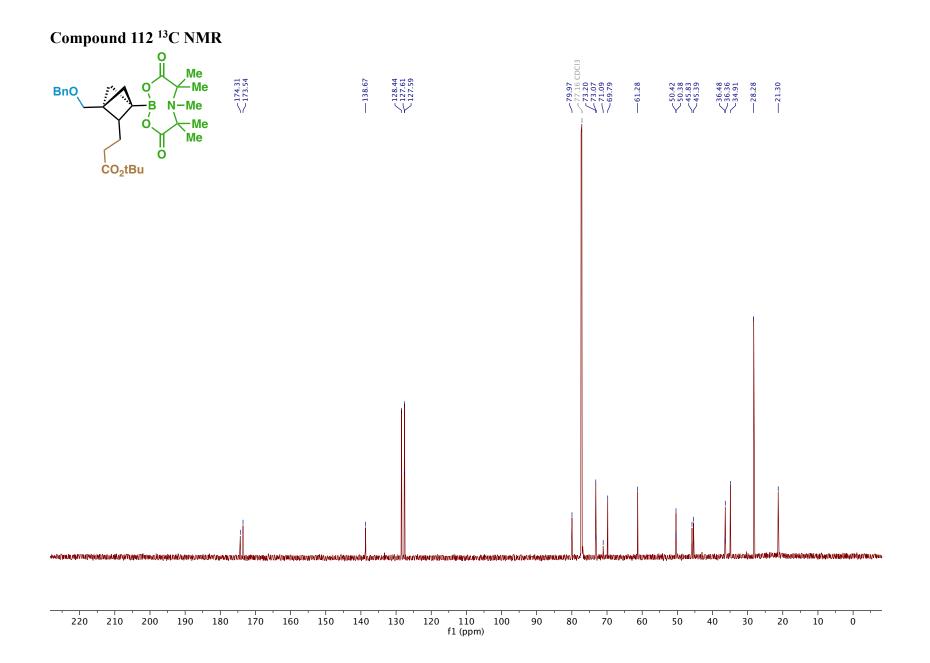


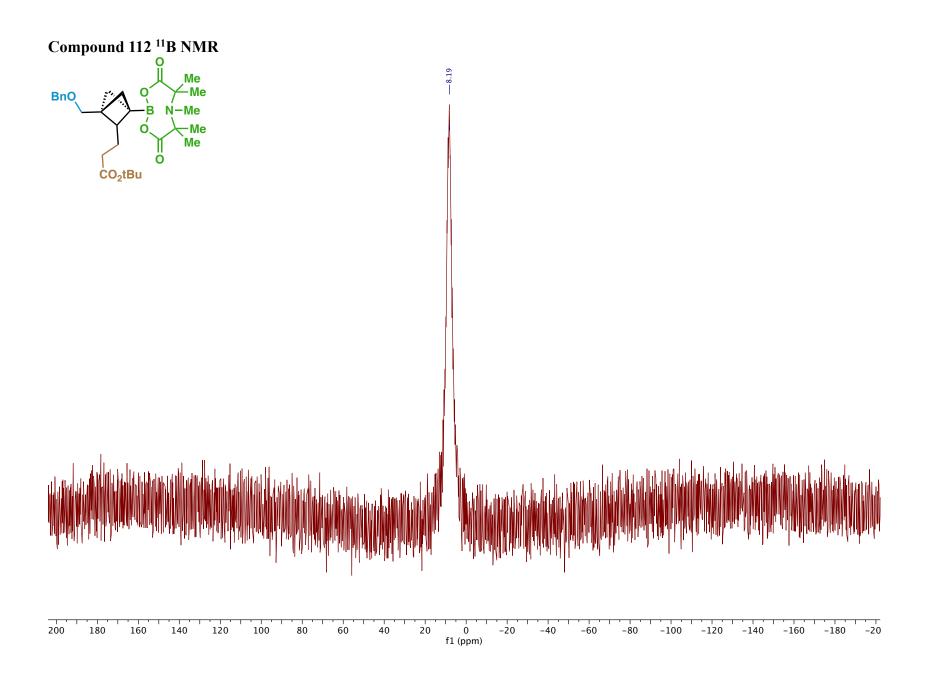


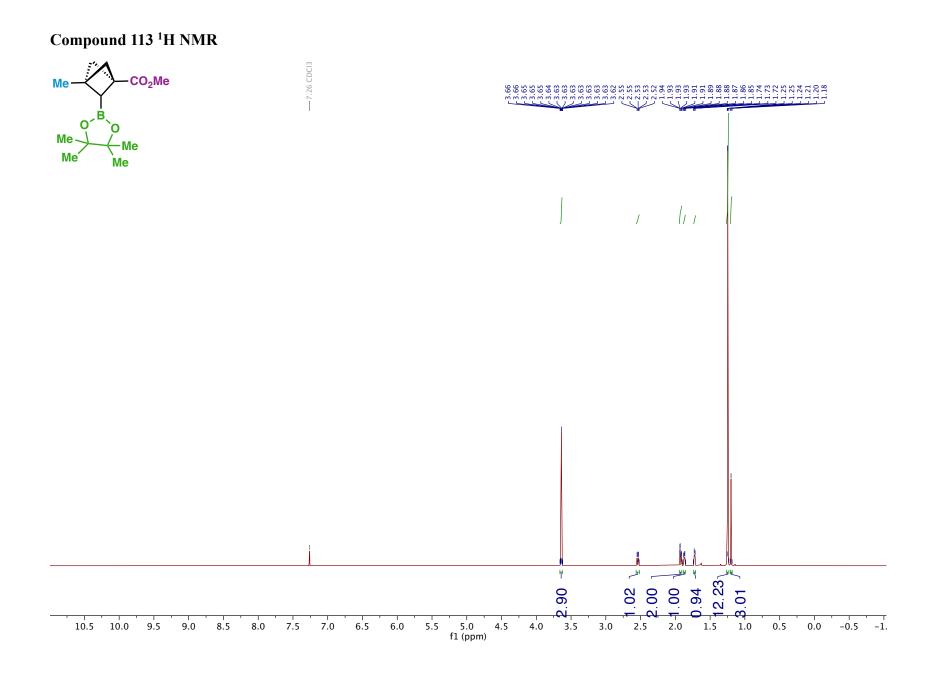


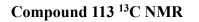

Compound 111 ¹H NMR

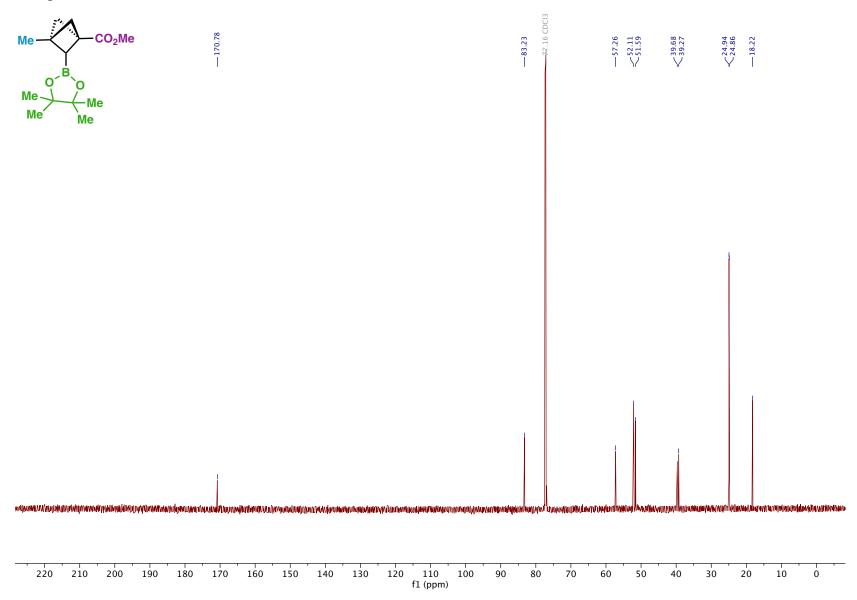


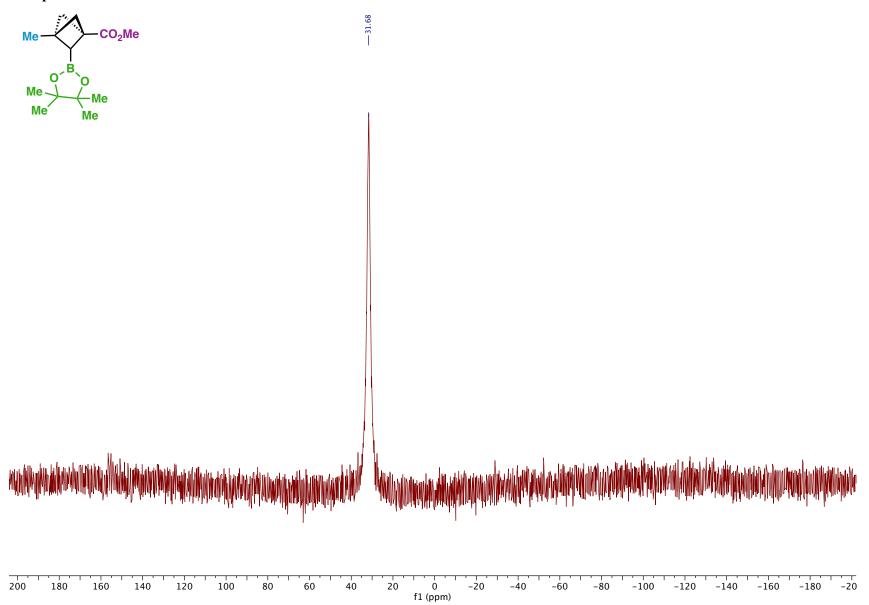


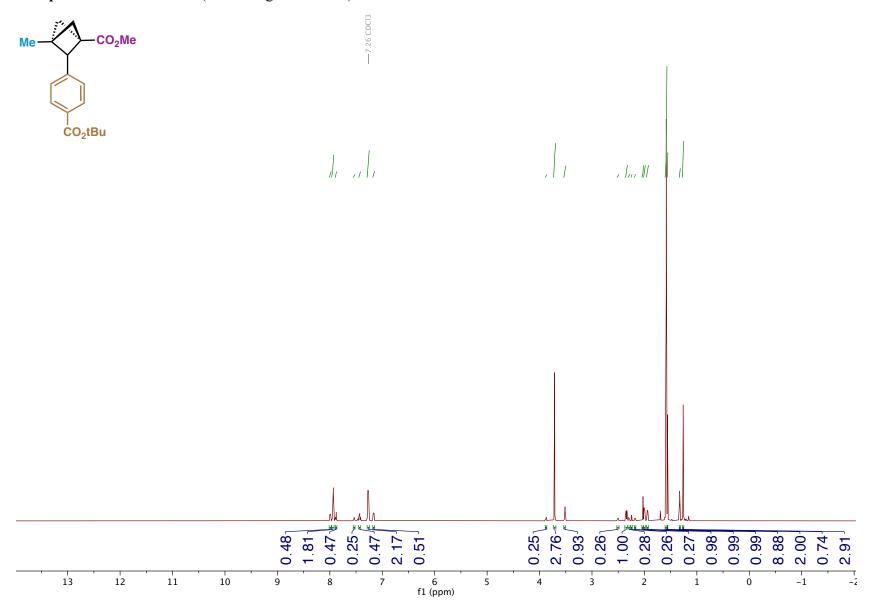

Compound 110¹¹B NMR

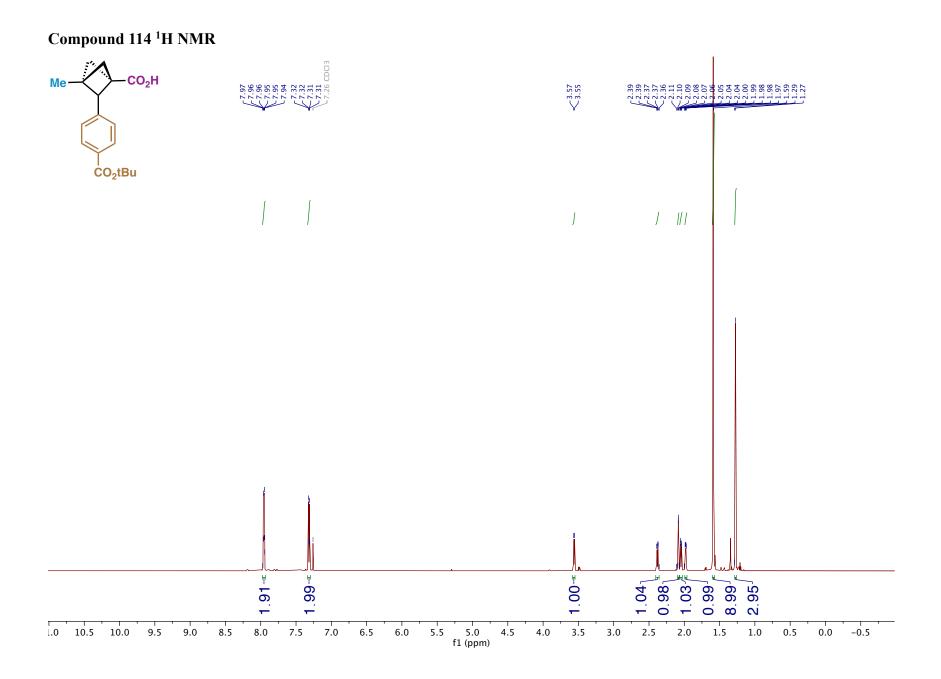


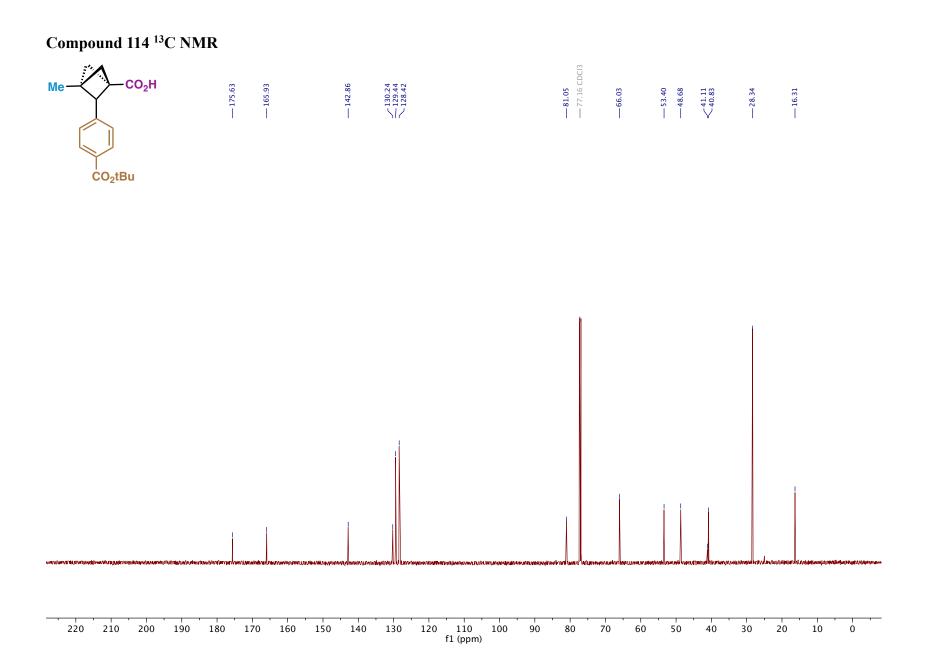


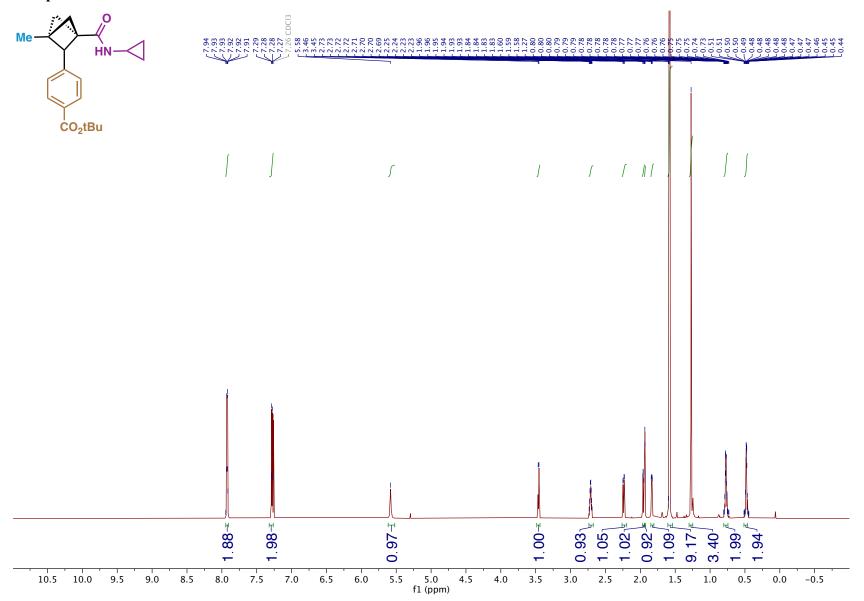

Compound 112 ¹H NMR

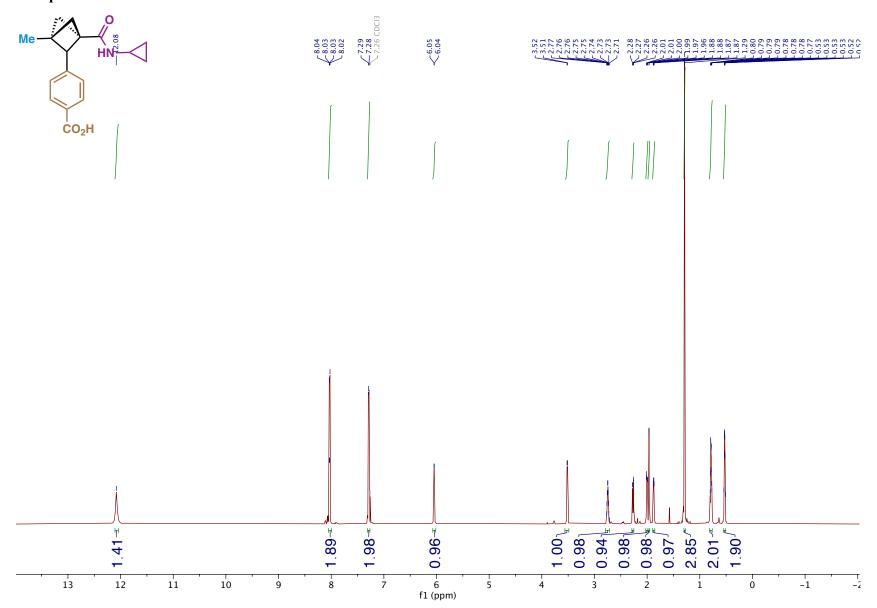


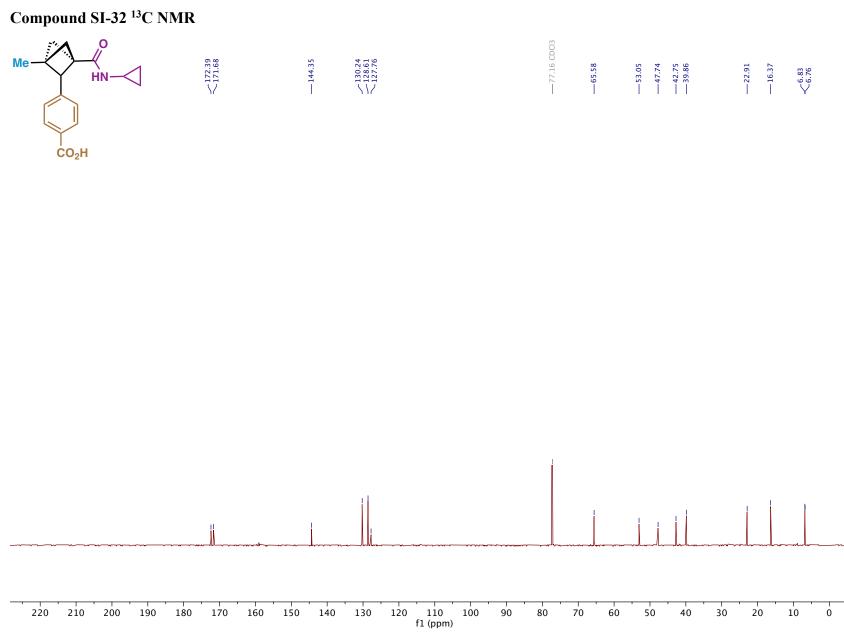




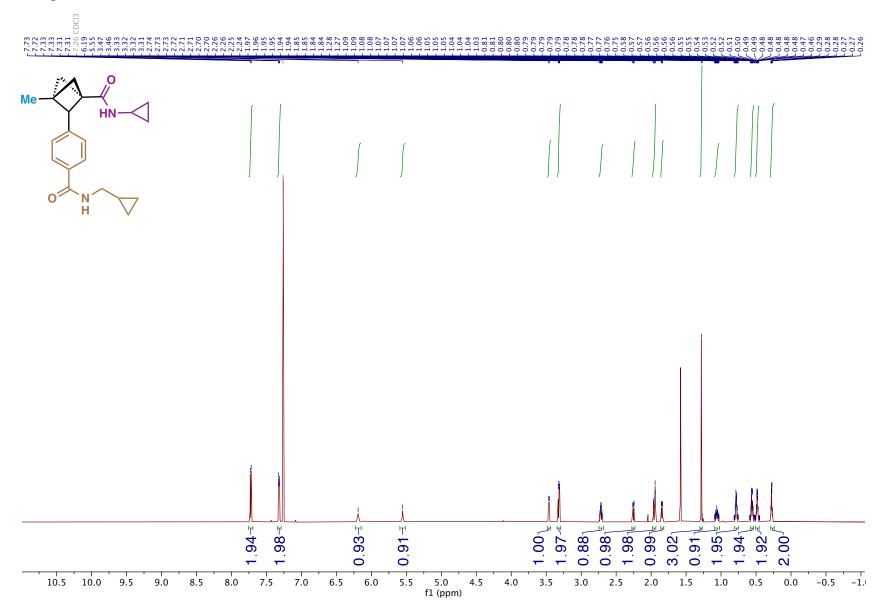

Compound 113 ¹¹B NMR

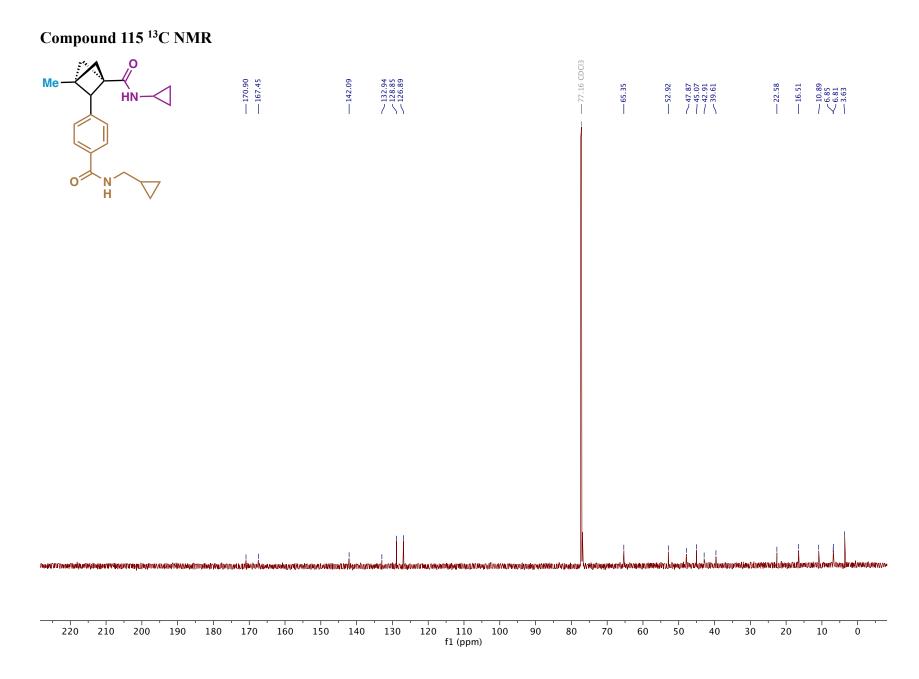

Compound SI-30 ¹H NMR (containing 20% SI-29)

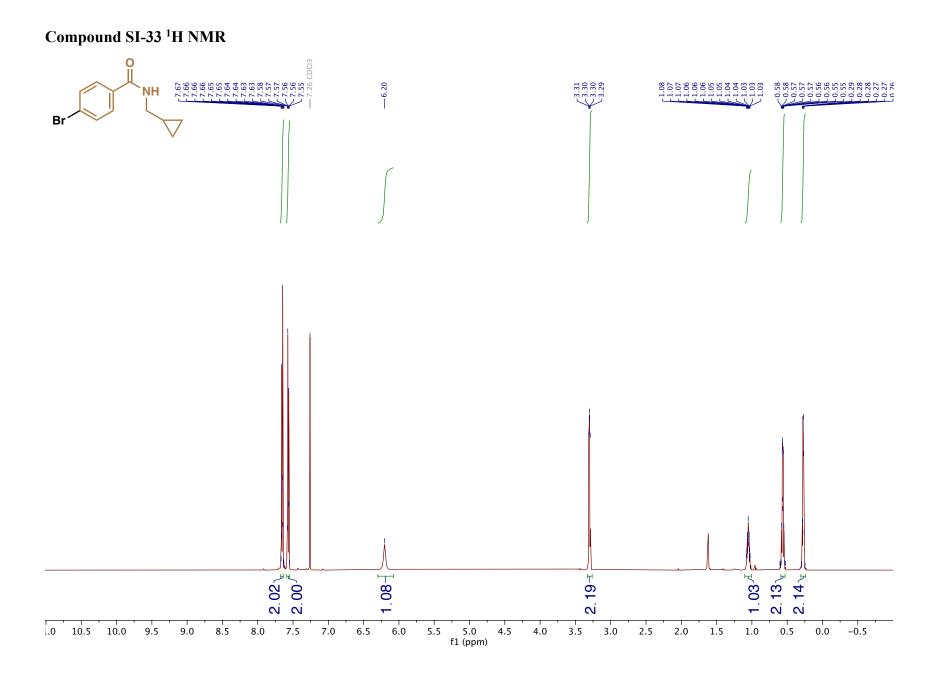


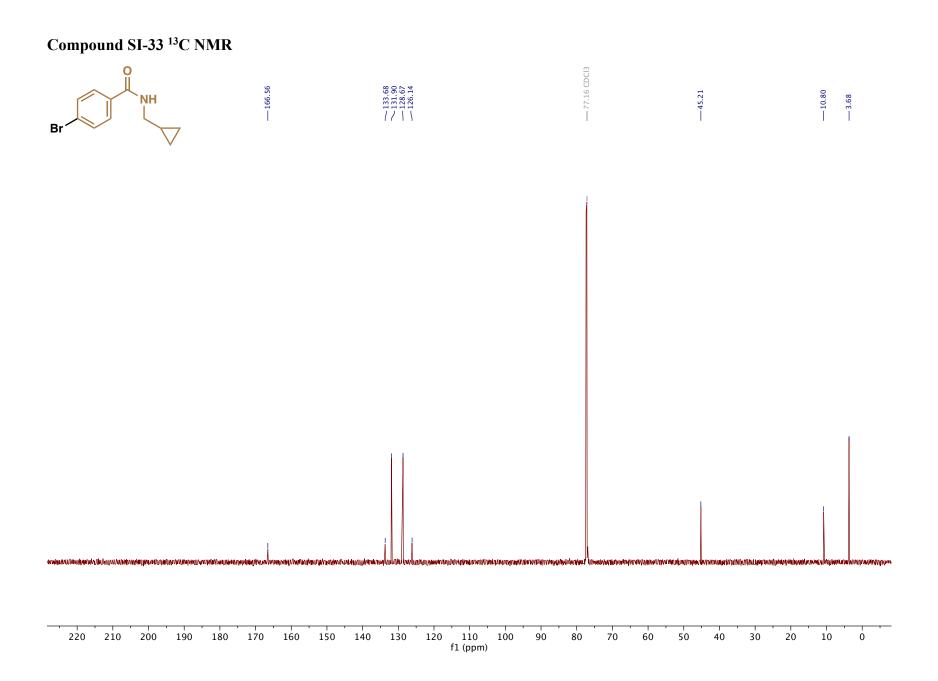


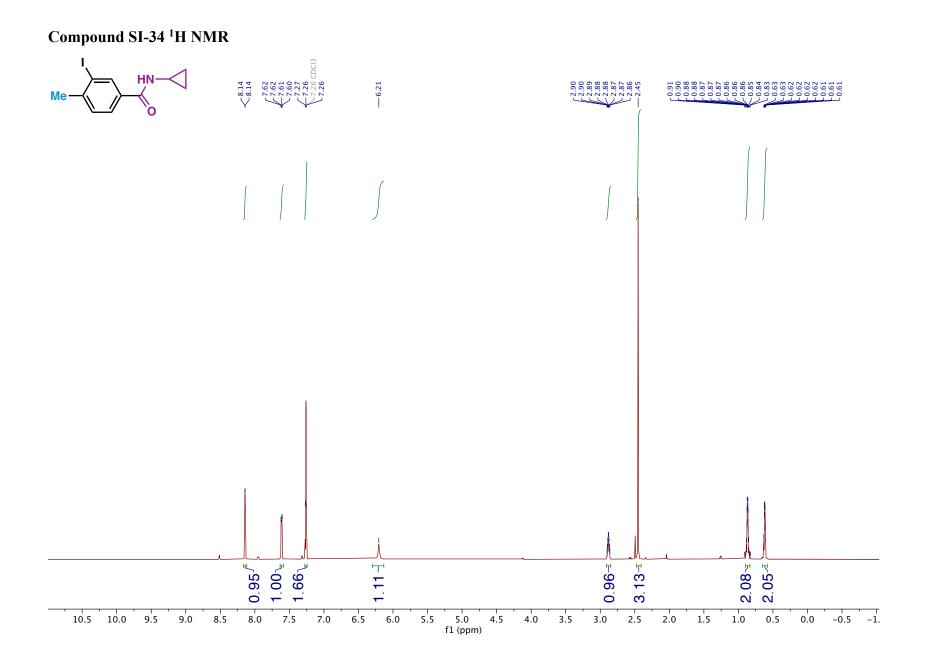
Compound SI-31 ¹H NMR










Compound 115 ¹H NMR

