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Suppl. Figure S1: SGLT2i effects on mice and organ proteome. A. Phenotypes of wt and

hyperglycemic diabetic Akita mice treated with SGLT2i. B. Overview on quantified proteins and

phosphorylation sites, as well as significantly regulated proteins and phosphorylation sites on organ

level. Wt mice responded with stronger changes in the kidney cortex and other organs than diabetic

mice. Numbers of proteins and phosphorylation sites are presented without missing values.
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Suppl. Figure S2: Analysis of the regulated proteome in mice. A. Top enriched GOCC terms from
the proteome analysis in kidney cortex. B. Enrichments for GOBP and GOMF and associated proteins
after one-week dapagliflozin treatment. C. Connection between urinary metabolites and downregulated

Slc transporters in wt kidney by STITCH analysis.
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Suppl. Figure S3. Phosphoproteome analysis reveals SGLT2i-induced metabolic interorgan
signaling in mice. A. Volcano plot quantification of SGLT2i dependent phosphorylation sites in the
kidney cortex in wt and diabetic mice. B, C. Top enriched GO terms from the phosphoproteome analysis
in kidney cortex in wt mice after one week of dapagliflozin treatment. D. Amino acid sequence logo
analysis of differentially phosphorylated sites (kidney FDR < 0.05, others: p val < 0.05) in wt mice.

Overrepresented sites of statistically increased and decreased phosphorylation sites per organ are



depicted. E. Kinase substrate enrichment analysis. Liver reacts with increased metabolic signaling via
RPS6 kinase to SGLT2i, while kidneys show decreased AMPK (PRKAA1), mTOR (wt) and SGK1
(Diabetic) signaling. F. Analysis of activity conferring phosphorylation sites in the heart in wt and Diabetic
mice. These include HDAC2, Raptor, Pgam2, Sik1 phosphorylation sites, all proteins involved in

sensing of metabolism.
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Suppl. Figure S4: SGLT2i effects on other organs in mice as well as on plasma/urine metabolite
ratios in hypertensive rats. Volcano plot quantification of proteome and phosphoproteome in wt and
diabetic mice for A. liver and B. WAT. Significant proteins or phosphosites are highlighted (p val < 0.01,
downregulated — blue, upregulated — red). Most significant proteins or phosphosites are annotated with
gene symbol. (Top 5 proteins, top 3 phosphosites). C. Decreased abundance of lipid species in adipous
tissue. D. Altered creatin/creatinephosphate ratio in muscle, but not other tissues. E. SGLT2i-dependent
shifts in plasma/urine ratio in hypertensive rats indicate reduced reabsorption of glucose and glucose

metabolites, increased net excretion of selected gut-derived metabolites of tryptophan (e.g., kynurenic



acid) while the ratios for other tryptophan metabolites are strongly reduced (e.g., indole-lactic acid), and
less secretion of substrates of the organic anion transporter — see text for details. Urine metabolites

were normalized to creatinine. All changes are statistically significant (p<0.05).
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Suppl. Figure S5: SGLT2i induced changes on the metabolome in mice. Metabolite expression
(log2FC(DAPA/veh.) for selected metabolite categories in wt and Diabetic mice. Significant fold changes
are highlighted by asterisks (*- p val < 0.05; ** - p val < 0.01; *** - p val < 0.001).
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Suppl. Figure S6: Effects of SGLT2i on the gut microbiome in mice as well as on the phenotype

Gut microbiota in SGLT2
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of Sglt2 KO mice. A. Overview of metaproteomics workflow. B. Proportional distribution of gut

microbiota metaproteome on genera level for wt and dapa mice under SGLT2i. Shown are the 8 most

abundant genera, besides “Unclassified”, while the remainder is summarized in “Other”. C. Alpha-

diversity of metaproteomic communities D. Beta diversity of metaproteomic communities *-p<0.05 E.

Blood sugar and food intake in Sglt2 KO vs wildtype (WT) mice. Two-way ANOVA to probe for a

significant effect of Sglt2 genotype (Sglt2), dapagliflozin (dapa), or the interaction between the two

factors (Pinter). If the interaction was statistically significant, then a pair-wise multiple comparison

procedure (Holm-Sidak method) identified the significant effects. * p<0.05 vs. vehicle; # p<0.05 vs.

WT.
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Suppl. Figure S7 A. Impact of p-cresol and indole lactic acid on human engineered heart tissue
(EHT). EHTs were exposed to DMSO (black), 3 mM p-cresol (PCL) (green), or 3 mM indolelactic acid
(IA) (brown) for 5 days. Bar charts show beating frequency (bpm), force (mN) and relaxation time from
peak to 80% relaxation (RT 80%; s) for A spontaneously contracting EHTs or B. paced EHTs treated
with 3 mM PCL, and C. spontaneously contracting EHTs treated with 3 mM indole lactic acid (lA)
(brown). D. EHT GO-term enrichment for proteins altered with 300 uM PCL.
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Suppl. Figure S8: Omics integration for proximal tubule segment S2/3. Summary of findings and

metabolic communication of SGLT2i in a late proximal tubule centric view in wt mice. Clustering of

differentially expressed proteins in wt mice to S2/3 segment based on nephron segment-resolved RNA-

seq data®’. Proteins with red lining were upregulated and proteins with blue lining downregulated by

SGLT2i.



Supplemental Data Legends

Suppl. Data 1: Statistical analyses of SGLT2i on the proteome for heart, kidney, liver, muscle,
white adipose tissue (WAT) in wildtype (wt) and diabetic (Akita) mice. Limma statistics (empirical
Bayes moderated t-statistics) results with Log2 fold changes (LogFC), p value (P.Value) and adjusted
p values (adj.P.Val, Benjamini-Hochberg adjustment) are listed for each tissue (heart, liver, muscle,
WAT) and genetic background (Akita, wt). Tables can be filtered for significance: Tier 1 (FDR<0.05),
and Tier 2 (p<0.01)

Suppl. Data 2: Gene Ontology enrichment analysis for kidney proteome and phosphoproteome

for wt and diabetic mice. (Input data FDR<0.05, except for phosphoproteome of diabetic mice p<0.05).

Suppl. Data 3: Clustering of SGLT2i-induced differentially expressed proteins in wt kidney. 900

out of 940 could be mapped to a nephron-segment resolved RNA-seq dataset?”.

Suppl. Data 4: SGLT2 interactome for mouse and human. (including clustered nephron-segment
expression of integrated SGLT2 interactome).

Suppl. Data 5: Statistical analyses of SGLT2i on the phosphoproteome for heart, kidney, liver,
muscle, white adipose tissue (WAT) in wt and diabetic mice. Limma statistics (empirical Bayes
moderated t-statistics) results with Log2 fold changes (LogFC), p value (P.Value) and adjusted p values
(adj.P.Val, Benjamini-Hochberg adjustment) are listed for each tissue (heart, liver, muscle, WAT) and
genetic background (Akita, wt). Tables can be filtered for significance: Tier 1 (FDR<0.05), and Tier 2
(p<0.01).

Suppl. Data 6: Statistical analyses of SGLT2i on the metabolome for heart, kidney, liver, muscle,

red blood cells (RBC), plasma and urine in wt and diabetic mice.

Suppl. Data 7: Statistical analyses of SGLT2i on the gut metaproteome. Limma statistics (empirical
Bayes moderated t-statistics) results with Log2 fold changes (LogFC), p value (P.Value) and adjusted
p values (adj.P.Val, Benjamini-Hochberg adjustment) are shown for for the gut microbiome (MBIO) in

wt and diabetic mice. Tables can be filtered for significance: Tier 1 (FDR<0.05) and Tier 2 (p<0.01).

Suppl. Data 8: Statistical analyses of SGLT2i on plasma and urine metabolome in SGLT2KO and
SGLT2WT mice. Tables contain Limma statistics results for all measured metabolites. Data from the

two gradients (HILIC, reversed-phase) were analyzed separately.

Suppl. Data 9: Statistical analyses of EHTs treated with metabolites including p-cresol. Filtered
Limma statistics results for proteome analyses are shown (FDR < 0.1). Each compound tested (p-
cresol, indole-3-lactic acid, cinnemoylglycine, 2-hydroxycinnamic acid, transcinnamic acid) was
compared to DMSO.

Suppl. Data 10: Transition lists and details for targeted metabolomics including HILIC and

reversed-phase method.



Supplemental Video Legend

Supplemental Video S1: P-cresol effect on EHTs. This video shows contracting EHTs which were
treated with either 3 mM p-cresol (PCL) or DMSO as vehicle control and followed over a time course of
5 days. Recordings were taken on day 0, day 3 and day 5. P-cresol was replaced by DMSO on day 3

to demonstrate a wash-out effect.



