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Supplementary Figure 1: Simulation performances of different PRSs methods in multi-
ancestry settings under a strong negative selection model. Each of the four non-EUR 
populations has a training sample size of 45,000 (Sup. Fig. 2a) or 100,000 (Sup. Fig. 2b). For 
the EUR population, the size of the training sample is set at 100,000. The number of samples 
for each population in the tuning dataset is always 10,000. Prediction 𝑅! values are reported 
based on an independent validation dataset with 10,000 subjects for each population. Common 
SNP heritability is assumed to be 0.4 across all populations, and effect-size correlation is 
assumed to be 0.8 across all pairs of populations. The causal SNPs proportion (degree of 
polygenicity) is varied across 0.01 (top panel), 0.001 (medium panel), 5 × 10"# (bottom panel). 
All data are generated based on ~19 million common SNPs across the five populations, but 
analyses are restricted to ~2.0 million SNPs that are used on Hapmap3 + Multi-Ethnic 
Genotyping Arrays chip. PolyPred-S+ and PRS-CSx analyses are further restricted to ~1.3 
million HM3 SNPs. All approaches are trained using data from the EUR and the target 
population. CT-SLEB and PRS-CSx are further evaluated using training data from five 
ancestries. The red dashed line represents the prediction performance of EUR PRS generated 
using single ancestry method (best of CT or LDpred2) in the EUR population.  
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Supplementary Figure 1 continued - Panel B: Simulation with training sample size of 
100,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 2: Simulation performances of different PRSs methods in multi-
ancestry settings under a mild negative selection model. Each of the four non-EUR 
populations has a training sample size of 15,000 (Sup. Fig. 3a), 45,000 (Sup. Fig. 3b), 80,000 
(Sup. Fig. 3c) or 100,000 (Sup. Fig. 3d). For the EUR population, the size of the training sample 
is set at 100,000. The number of samples for each population in the tuning dataset is always 
10,000. Prediction 𝑅! values are reported based on an independent validation dataset with 
10,000 subjects for each population. Common SNP heritability is assumed to be 0.4 across all 
populations, and effect-size correlation is assumed to be 0.8 across all pairs of populations. The 
causal SNPs proportion (degree of polygenicity) is varied across 0.01 (top panel), 0.001 
(medium panel), 5 × 10"# (bottom panel). All data are generated based on ~19 million common 
SNPs across the five populations, but analyses are restricted to ~2.0 million SNPs that are used 
on Hapmap3 + Multi-Ethnic Genotyping Arrays chip. PolyPred-S+ and PRS-CSx analyses are 
further restricted to ~1.3 million HM3 SNPs. All approaches are trained using data from the EUR 
and the target population. CT-SLEB and PRS-CSx are further evaluated using training data 
from five ancestries. The red dashed line shows the prediction performance of EUR PRS 
generated using single ancestry method (best of CT or LDpred2) in the EUR population.  
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Supplementary Figure 2 continued - Panel b: Simulation with training sample size of 
45,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 2 continued - Panel c: Simulation with training sample size of 
80,000 for each of the four non-EUR populations.

 

  



Supplementary Figure 2 continued - Panel d: Simulation with training sample size of 
100,000 for each of the four non-EUR populations.

 
  



Supplementary Figure 3: Simulation performances of different PRSs methods in multi-
ancestry settings under a no negative selection model. Each of the four non-EUR 
populations has a training sample size of 15,000 (Sup. Fig. 4a), 45,000 (Sup. Fig. 4b), 80,000 
(Sup. Fig. 4c) or 100,000 (Sup. Fig. 4d). For the EUR population, the size of the training sample 
is set at 100,000. The number of samples for each population in the tuning dataset is always 
10,000. Prediction 𝑅! values are reported based on an independent validation dataset with 
10,000 subjects for each population. Common SNP heritability is assumed to be 0.4 across all 
populations, and effect-size correlation is assumed to be 0.8 across all pairs of populations. The 
causal SNPs proportion (degree of polygenicity) is varied across 0.01 (top panel), 0.001 
(medium panel), 5 × 10"# (bottom panel). All data are generated based on ~19 million common 
SNPs across the five populations, but analyses are restricted to ~2.0 million SNPs that are used 
on Hapmap3 + Multi-Ethnic Genotyping Arrays chip. PolyPred-S+ and PRS-CSx analysis is 
further restricted to ~1.3 million HM3 SNPs. All approaches are trained using data from the EUR 
and the target population. CT-SLEB and PRS-CSx are further evaluated using training data 
from five ancestries. The red dashed line shows the prediction performance of EUR PRS 
generated using single ancestry method (best of CT or LDpred2) in the EUR population.  
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Supplementary Figure 3 continued – Panel b: Simulation with training sample size of 
45,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 3 continued – Panel c: Simulation with training sample size of 
80,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 3 continued – Panel d: Simulation with training sample size of 
100,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 4: Simulation performances of different PRSs methods in multi-
ancestry settings under a strong negative selection model with per-SNP heritability fixed 
across all populations. Each of the four non-EUR populations has a training sample size of 
15,000 (Sup. Fig. 5a), 45,000 (Sup. Fig. 5b), 80,000 (Sup. Fig. 5c) or 100,000 (Sup. Fig. 5d). 
For the EUR population, the size of the training sample is set at 100,000. The number of 
samples for each population in the tuning dataset is always 10,000. Prediction 𝑅! values are 
reported based on an independent validation dataset with 10,000 subjects for each population. 
Common SNP heritability is assumed to be 0.4 across all populations, and effect-size 
correlation is assumed to be 0.8 across all pairs of populations. The causal SNPs proportion 
(degree of polygenicity) is varied across 0.01 (top panel), 0.001 (medium panel), 5 × 10"# 
(bottom panel). All data are generated based on ~19 million common SNPs across the five 
populations, but analyses are restricted to ~2.0 million SNPs that are used on Hapmap3 + Multi-
Ethnic Genotyping Arrays chip. PolyPred-S+ and PRS-CSx analysis is further restricted to ~1.3 
million HM3 SNPs. All approaches are trained using data from the EUR and the target 
population. CT-SLEB and PRS-CSx are further evaluated using training data from five 
ancestries. The red dashed line shows the prediction performance of EUR PRS generated using 
single ancestry method (best of CT or LDpred2) in the EUR population.  
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Supplementary Figure 4 continued – Panel b: Simulation with training sample size of 
45,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 4 continued – Panel c: Simulation with training sample size of 
80,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 4 continued – Panel d: Simulation with training sample size of 
100,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 5: Simulation performances of different PRSs methods in multi-
ancestry settings under a strong negative selection model with per-SNP heritability fixed 
across all populations (genetic correlation = 0.6). Each of the four non-EUR populations has 
a training sample size of 15,000 (Sup. Fig. 6a), 45,000 (Sup. Fig. 6b), 80,000 (Sup. Fig. 6c) or 
100,000 (Sup. Fig. 6d). For the EUR population, the size of the training sample is set at 
100,000. The number of samples for each population in the tuning dataset is always 10,000. 
Prediction 𝑅! values are reported based on an independent validation dataset with 10,000 
subjects for each population. Common SNP heritability is assumed to be 0.4 across all 
populations, and effect-size correlation is assumed to be 0.8 across all pairs of populations. The 
causal SNPs proportion (degree of polygenicity) is varied across 0.01 (top panel), 0.001 
(medium panel), 5 × 10"# (bottom panel). All data are generated based on ~19 million common 
SNPs across the five populations, but analyses are restricted to ~2.0 million SNPs that are used 
on Hapmap3 + Multi-Ethnic Genotyping Arrays chip. PolyPred-S+ and PRS-CSx analysis is 
further restricted to ~1.3 million HM3 SNPs. All approaches are trained using data from the EUR 
and the target population. CT-SLEB and PRS-CSx are further evaluated using training data 
from five ancestries. The red dashed line shows the prediction performance of EUR PRS 
generated using single ancestry method (best of CT or LDpred2) in the EUR population.  
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Supplementary Figure 5 continued – Panel b: Simulation with training sample size of 
45,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 5 continued – Panel c: Simulation with training sample size of 
80,000 for each of the four non-EUR populations

 

 

  



Supplementary Figure 5 continued – Panel d: Simulation with training sample size of 
100,000 for each of the four non-EUR populations.

 

 

  



Supplementary Figure 6: Prediction performance of CT-SLEB and PRS-CSx on HapMap3 
array (HM3). The training sample sizes are 15,000 (Sup. Fig. 6a), 45,000 (Sup. Fig. 6b), 
80,000 (Sup. Fig. 8c) or 100,000 (Sup. Fig. 8d) for each of the four non-EUR populations. The 
training sample size for the EUR population is fixed at 100,000. Prediction 𝑅! values are 
reported based on independent validation dataset with 10,000 subjects for each population. 
Common SNP heritability is assumed to be 0.4 across all populations and effect-size correlation 
is assumed to be 0.8 across all pairs of populations. The causal SNPs proportion are varied 
across 0.01 (top panel), 0.001 (medium panel), 5 × 10"# (bottom panel) and effect sizes for 
causal variants are assumed to be related to allele frequency under a strong negative selection 
model. 
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Supplementary Figure 6 continued – Panel b: Simulation with training sample size of 
45,000 for each of the four non-EUR populations. 

 

 
  



Supplementary Figure 6 continued – Panel c: Simulation with training sample size of 
80,000 for each of the four non-EUR populations. 

 

  



Supplementary Figure 6 continued – Panel d: Simulation with training sample size of 
100,000 for each of the four non-EUR populations. 

  



Supplementary Figure 7: Prediction performance of CT-SLEB PRS across different 
ancestries relative to single ancestry EUR PRS in the EUR population. The training sample 
size for the EUR population is fixed at 100,000, and PRS performance is assessed using single 
ancestry CT or LDpred2, whichever performs the best in each setting. Three different models for 
genetic architectures are considered: the common SNP heritability is fixed (at 0.4) with mild 
negative selection (Sup. Fig. 7a) and with no negative selection (Sup. Fig. 7b) and fixed per-
SNP heritability with strong negative selection (Sup. Fig. 7c). The effect-size correlation is 
assumed to be 0.8 across all pairs of populations for settings in Sup. Fig. 7a and 7b. The effect-
size correlation is assumed to be 0.6 for the setting in Sup. Fig. 7c. 
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Supplementary Figure 7 continued - Panel C: Prediction performance of CT-SLEB PRS 
with fixed per-SNP heritability, strong negative selection, and an effect-size correlation of 
0.6. 

 

 

 

 

  

 

  



Supplementary Figure 8: Prediction performance of CT-SLEB under different SNP 
density. Analysis of each simulated data based on ~19 million SNPs are restricted to three 
different SNP sets Hapmap3 (~1.3 million SNPs), Hapmap3 + Multi-Ethnic Genotyping Arrays 
(~2.0 million SNPs), and 1000 Genomes Project (~19 million SNPs). The training sample size is 
45,000 (Sup. Fig. 10a) or 100,000 (Sup. Fig. 10b) for each of the four non-EUR populations. 
The training sample size for the EUR population is fixed at 100,000. Prediction 𝑅! values are 
reported based on independent validation dataset with 10,000 subjects for each population. 
Common SNP heritability is assumed to be 0.4 across all populations and effect-size correlation 
is assumed to be 0.8 across all pairs of populations. The causal SNPs proportion are varied 
across 0.01 (top panel), 0.001 (medium panel), 5 × 10"# (bottom panel) and effect sizes for 
causal variants are assumed to be related to allele frequency under a strong negative selection 
model.  
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Supplementary Figure 9: Manhattan plot and QQ plot1 based on the 23andMe, Inc. GWAS 
summary statistics for any cardiovascular disease (any CVD) in five populations: European, 
African American, Latino, East Asian, South Asian (from top panel to bottom panel). The red 
and blue shaded regions around the diagonal line in the QQ plots indicate the 95% confidence 
intervals expected under the null hypothesis of no association between genetic markers and the 
trait of interest, for minor allele frequencies (MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], 
respectively. Under the null hypothesis, the p-value follows a uniform (0,1) distribution. The jth 
order statistic follows a Beta (j, N-j+1) distribution, where N is the total number of variants given 
a specific MAF cutoff.  
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Supplementary Figure 9 continued: Manhattan and QQ plots for any CVD in the East 
Asian and South Asian populations. 
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Supplementary Figure 10: Manhattan plot and QQ plot1 based on the 23andMe, Inc. GWAS 
summary statistics for depression in five populations: European, African American, Latino, East 
Asian, South Asian (from top panel to bottom panel). The red and blue shaded regions around 
the diagonal line in the QQ plots indicate the 95% confidence intervals expected under the null 
hypothesis of no association between genetic markers and the trait of interest, for minor allele 
frequencies (MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the null 
hypothesis, the p-value follows a uniform (0,1) distribution. The jth order statistic follows a Beta 
(j, N-j+1) distribution, where N is the total number of variants given a specific MAF cutoff.  
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Supplementary Figure 10 continued: Manhattan and QQ plots for depression in the East 
Asian and South Asian populations. 
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Supplementary Figure 11: Manhattan plot and QQ plot1 based on the 23andMe, Inc. GWAS 
summary statistics for heart metabolic disease burden in five populations: European, African 
American, Latino, East Asian, South Asian (from top panel to bottom panel). The red and blue 
shaded regions around the diagonal line in the QQ plots indicate the 95% confidence intervals 
expected under the null hypothesis of no association between genetic markers and the trait of 
interest, for minor allele frequencies (MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], 
respectively. Under the null hypothesis, the p-value follows a uniform (0,1) distribution. The jth 
order statistic follows a Beta (j, N-j+1) distribution, where N is the total number of variants given 
a specific MAF cutoff.  
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Supplementary Figure 11 continued: Manhattan and QQ plots for heart metabolic disease 
burden in the East Asian and South Asian populations. 
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Supplementary Figure 12: Manhattan plot and QQ plot1 based on the 23andMe, Inc. GWAS 
summary statistics for height in five populations: European, African American, Latino, East 
Asian, South Asian (from top panel to bottom panel). The red and blue shaded regions around 
the diagonal line in the QQ plots indicate the 95% confidence intervals expected under the null 
hypothesis of no association between genetic markers and the trait of interest, for minor allele 
frequencies (MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the null 
hypothesis, the p-value follows a uniform (0,1) distribution. The jth order statistic follows a Beta 
(j, N-j+1) distribution, where N is the total number of variants given a specific MAF cutoff.  
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Supplementary Figure 12 continued: Manhattan and QQ plots for height in the East Asian 
and South Asian populations. 
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Supplementary Figure 13: Manhattan plot and QQ plot1 based on the 23andMe, Inc. GWAS 
summary statistics for sing back musical note (SBMN) in five populations: European, African 
American, Latino, East Asian, South Asian (from top panel to bottom panel). The red and blue 
shaded regions around the diagonal line in the QQ plots indicate the 95% confidence intervals 
expected under the null hypothesis of no association between genetic markers and the trait of 
interest, for minor allele frequencies (MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], 
respectively. Under the null hypothesis, the p-value follows a uniform (0,1) distribution. The jth 
order statistic follows a Beta (j, N-j+1) distribution, where N is the total number of variants given 
a specific MAF cutoff.  
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Supplementary Figure 13 continued: Manhattan and QQ plots for sing back musical note 
in the East Asian and South Asian populations. 
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Supplementary Figure 14: Manhattan plot and QQ plot1 based on the 23andMe, Inc. GWAS 
summary statistics for migraine diagnosis in five populations: European, African American, 
Latino, East Asian, South Asian (from top panel to bottom panel). The red and blue shaded 
regions around the diagonal line in the QQ plots indicate the 95% confidence intervals expected 
under the null hypothesis of no association between genetic markers and the trait of interest, for 
minor allele frequencies (MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], respectively. 
Under the null hypothesis, the p-value follows a uniform (0,1) distribution. The jth order statistic 
follows a Beta (j, N-j+1) distribution, where N is the total number of variants given a specific 
MAF cutoff.  
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Supplementary Figure 14 continued: Manhattan and QQ plots for migraine diagnosis in 
the East Asian and South Asian populations. 
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Supplementary Figure 15: Manhattan plot and QQ plot1 based on the 23andMe, Inc. GWAS 
summary statistics for morning person in five populations: European, African American, Latino, 
East Asian, South Asian (from top panel to bottom panel). The red and blue shaded regions 
around the diagonal line in the QQ plots indicate the 95% confidence intervals expected under 
the null hypothesis of no association between genetic markers and the trait of interest, for minor 
allele frequencies (MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the 
null hypothesis, the p-value follows a uniform (0,1) distribution. The jth order statistic follows a 
Beta (j, N-j+1) distribution, where N is the total number of variants given a specific MAF cutoff.

 

 

 

  1 For continuous traits, 𝜆!""" scales the genomic inflation factor 𝜆 to a study with 1000 subjects using 𝜆!""" = 1 + 1000 ∗
(𝜆 − 1)/𝑁, where N is the total sample size. For binary traits, 𝜆!""" scales 𝜆 to a study with 1000 cases and 1000 controls 
using 𝜆!""" = 1 + 1000 ∗ (𝜆 − 1) ∗ ( !

#!"#$
+ !

#!%&'(%)
) 



Supplementary Figure 15 continued: Manhattan and QQ plots for morning person in the 
East Asian and South Asian populations. 
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Supplementary Figure 16: Manhattan plot and QQ plot1 based on the Global Lipids Genetics 
Consortium (GLGC) GWAS summary statistics for high-density lipoprotein cholesterol (HDL) 
in five populations: European, African (primarily African American), Latino, East Asian, South 
Asian (from top panel to bottom panel). The red and blue shaded regions around the diagonal 
line in the QQ plots indicate the 95% confidence intervals expected under the null hypothesis of 
no association between genetic markers and the trait of interest, for minor allele frequencies 
(MAF) within the ranges (0.05, 0.5]and [0.01, 0.05], respectively. Under the null hypothesis, the 
p-value follows a uniform (0,1) distribution. The jth order statistic follows a Beta (j, N-j+1) 
distribution, where N is the total number of variants given a specific MAF cutoff
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Supplementary Figure 16 continued: Manhattan and QQ plots for HDL in the East Asian 
and South Asian populations. 

.  
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Supplementary Figure 17: Manhattan plot and QQ plot1 based on the Global Lipids Genetics 
Consortium (GLGC) GWAS summary statistics for low-density lipoprotein cholesterol (LDL) 
in five populations: European, African (primarily African American), Latino, East Asian, South 
Asian (from top panel to bottom panel). The red and blue shaded regions around the diagonal 
line in the QQ plots indicate the 95% confidence intervals expected under the null hypothesis of 
no association between genetic markers and the trait of interest, for minor allele frequencies 
(MAF) within the ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the null hypothesis, the 
p-value follows a uniform (0,1) distribution. The jth order statistic follows a Beta (j, N-j+1) 
distribution, where N is the total number of variants given a specific MAF cutoff. 
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Supplementary Figure 17 continued: Manhattan and QQ plots for LDL in the East Asian 
and South Asian populations. 

.  
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Supplementary Figure 18: Manhattan plot and QQ plot1 based on the Global Lipids Genetics 
Consortium (GLGC) GWAS summary statistics for log triglycerides (logTG) in five 
populations: European, African (primarily African American), Latino, East Asian, South Asian 
(from top panel to bottom panel). The red and blue shaded regions around the diagonal line in 
the QQ plots indicate the 95% confidence intervals expected under the null hypothesis of no 
association between genetic markers and the trait of interest, for minor allele frequencies (MAF) 
within the ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the null hypothesis, the p-
value follows a uniform (0,1) distribution. The jth order statistic follows a Beta (j, N-j+1) 
distribution, where N is the total number of variants given a specific MAF cutoff. 
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Supplementary Figure 18 continued: Manhattan and QQ plots for logTG in the East Asian 
and South Asian populations. 

.  
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Supplementary Figure 19: Manhattan plot and QQ plot1 based on the Global Lipids Genetics 
Consortium (GLGC) GWAS summary statistics for total cholesterol (TC) in five populations: 
European, African (primarily African American), Latino, East Asian, South Asian (from top panel 
to bottom panel). The red and blue shaded regions around the diagonal line in the QQ plots 
indicate the 95% confidence intervals expected under the null hypothesis of no association 
between genetic markers and the trait of interest, for minor allele frequencies (MAF) within the 
ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the null hypothesis, the p-value follows a 
uniform (0,1) distribution. The jth order statistic follows a Beta (j, N-j+1) distribution, where N is 
the total number of variants given a specific MAF cutoff. 
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Supplementary Figure 19 continued: Manhattan and QQ plots for TC in the East Asian 
and South Asian populations. 
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Supplementary Figure 20: Manhattan plot and QQ plot1 based on All of Us (AoU) GWAS 
summary statistics for body mass index (BMI) in three populations: European, African, Latino 
(from top panel to bottom panel). The red and blue shaded regions around the diagonal line in 
the QQ plots indicate the 95% confidence intervals expected under the null hypothesis of no 
association between genetic markers and the trait of interest, for minor allele frequencies (MAF) 
within the ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the null hypothesis, the p-
value follows a uniform (0,1) distribution. The jth order statistic follows a Beta (j, N-j+1) 
distribution, where N is the total number of variants given a specific MAF cutoff.

 

 

 
  1 For continuous traits, 𝜆!""" scales the genomic inflation factor 𝜆 to a study with 1000 subjects using 𝜆!""" = 1 + 1000 ∗
(𝜆 − 1)/𝑁, where N is the total sample size. For binary traits, 𝜆!""" scales 𝜆 to a study with 1000 cases and 1000 controls 
using 𝜆!""" = 1 + 1000 ∗ (𝜆 − 1) ∗ ( !

#!"#$
+ !

#!%&'(%)
) 



Supplementary Figure 21: Manhattan plot and QQ plot1 based on All of Us (AoU) GWAS 
summary statistics for height in three populations: European, African, Latino (from top panel to 
bottom panel). The red and blue shaded regions around the diagonal line in the QQ plots 
indicate the 95% confidence intervals expected under the null hypothesis of no association 
between genetic markers and the trait of interest, for minor allele frequencies (MAF) within the 
ranges (0.05, 0.5] and [0.01, 0.05], respectively. Under the null hypothesis, the p-value follows a 
uniform (0,1) distribution. The jth order statistic follows a Beta (j, N-j+1) distribution, where N is 
the total number of variants given a specific MAF cutoff.
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Supplementary Figure 22: Number of SNPs across five populations in 1000 Genomes 
Project (Phase 3). SNPs are selected with MAF > 0.01 in at least one of five populations: 
African (AFR), American (AMR), East Asian (EAS), European (EUR) and South Asian (SAS).  

 

  



Supplementary Note 

Area under the ROC curve (AUC) to logit-scale variance 

For continuous traits, the relative-R2 is used to compare the performance of two 

different PRS methods. Relative-R2 can be viewed as the ratio of the amount of 

outcome variance that two different PRS methods can explain. However, for binary 

traits, AUC is bounded between 0.5 to 1. Relative-AUC is not directly comparable to 

relative-R2 to measure the relative performance between two different methods. 

Therefore, we convert the AUC to logit-scale variance using the formula1, 𝜎! = 2 ∗

𝜙(𝐴𝑈𝐶)"#, where 𝜎! is the amount of variance the PRS can explain on the logit-scale, 

𝜙 is the cumulative distribution of the standard normal distribution. To compare the 

prediction performance of two different PRS for binary traits, we use relative logit scale 

variance for binary traits (Supplementary Table 10-11).  

 

Super learning 

Let 𝑋 = (𝑃𝑅𝑆#, 𝑃𝑅𝑆!, … , 𝑃𝑅𝑆$) be the input dataset. Suppose the predicted outcome are 

𝜓(𝑋)% for 𝑣 = 1,2, …𝑉 different prediction algorithms. For continuous traits, the objective 

function for each of the prediction algorithm is defined to minimize {𝑌 − 𝜓(𝑋)%}!. We 

propose a weighted combination of the 𝑉 different predictors as 𝐹(𝑋) =

∑ 𝛼%	𝜓=(𝑋)%	&
%'# with ∑ 𝛼%&

%'# = 1 and 𝛼% ≥ 0 for any 𝑣. Then the weights 𝛼 are determined 

using the tuning dataset with: 

𝛼@ = argmin
(
{𝑌 − 𝐹(𝑋)}!, 

For binary traits, the objective function for each of the algorithm is to maximize the AUC. 

The weights 𝛼 are determined using the tuning dataset by maximizing the AUC while 

using 𝐹(𝑋) to predict 𝑌. With the optimal weights of the 𝑉 different algorithm, the super 

learner estimator is: 



𝜓=)* =G𝛼@%	𝜓=%

&

%'#

. 

In practice, we use three different prediction algorithms implemented in the 

SuperLearner package2 to generate the super learning estimate: Lasso3, ridge 

regression4 and neural networks5. The tuning parameters for these algorithms are put 

as the defaults as SuperLearner package. Other common prediction algorithms, such as 

random forest6 and XGBoost7,  are also available in the R package, and can be added 

for constructing PRSs by the user. For binary traits, since the ridge regression algorithm 

is not supported by SuperLearner package now, we only use Lasso and neural 

networks in real data analysis. To use AUC as the objective function, we use the flag 

“method = method.AUC” in the SupearLearner package.  

 

CT-SLEB with more than two ancestries 

When more than two ancestries’ summary statistics are provided, CT-SLEB is 

implemented as follows. To build the PRS, we first choose the target population. In the 

CT step, we only use the GWAS summary statistics from the target population and the 

European population. This step is implemented as such due to the potential computing 

burden by increasing the dimensions of CT step. After the CT step finishes, we use the 

summary statistics for all available ancestries for estimating the posterior effect-size for 

each SNP. By incorporating the other available GWAS summary statistics from non-

European populations, the precision of the EB estimates is more accurate than only 

using the target population and European population. Suppose 𝐿 ancestries are 

available in the analyses, after the EB step, the posterior effect-size for the kth SNP is 

𝜷K+,- = (	𝛽M+#,- , 𝛽M+!,- , … , 𝛽M+.,- , … , 𝛽M+*,-), where the 𝑙th element is the posterior effect-size for 

the 𝑙th ancestry. Let 𝑙 = 1 represents the target population, 𝑙 = 2 represents the 

European population, and 𝑙 = 3,… , 𝐿 represents the other non-European populations. 

By cross-combing 6 𝑟! thresholds * 2 𝑤/ windows * 81 value thresholds, we can 

compute 972 PRSs for each population using the posterior effect-size. In practice, we 

only compute 1944 PRSs using the posterior effect-size from the target population 



(∑𝐺+𝛽M+#,-) and the European population (∑𝐺+𝛽M+!,-).	This explains why the computation 

time for five ancestries and two ancestries CT-SLEB is comparable. The EB step is very 

fast since we compute the posterior effect-size for one SNP at a time. The 972 PRSs 

based on other non-European populations are not included since the adding more 

PRSs can increase the computation time for PRSs calculations and significantly 

increase the time in the super learning step.  

 

Mild and no negative selection simulation generation 

Suppose 𝑢+. is the standardized effect size for 𝑘th causal SNP for the 𝑙th population. 

We consider generating the effect size of causal variants are related to allele frequency 

under mild negative selection (𝑢+.! ∝ [𝑓+.(1 − 𝑓+.)]0.23) and no negative selection (𝑢+.! ∝

[𝑓+.(1 − 𝑓+.)]) scenarios. To generate the required effect-size, we first draw from a 

multivariate normal distribution: 

𝑣+.~𝑁[0,
ℎ!

𝐶.
] , 𝑐𝑜𝑣`𝑣+.! , 𝑣+."a =

𝜌ℎ!

c𝐶.!𝐶."
, 

where 𝑣+. is on a temporary generating scale, and ℎ! is set to 0.4. Then, the temporary 

effect size is defined 𝑢+.∗ = 𝑣+.{c2𝑓+.(1 − 𝑓+.)}( , where 𝛼 = 0.75 is for mild negative 

selection and 𝛼 = 1 was for no negative selection. To control the common SNPs 

heritability as 0.4, the standardized effect size is generated by scaling the temporary 

effect-size as 𝑢+. = 𝑢+.∗ {f
0.5

∑ 78#$
∗ 9"&$

$'!
}. The genetic correlation 𝜌 is defined on the 

generating scale. For both mild and no negative selection setting, 𝜌 is set to 0.8. 

 

Genotyping of 23andMe data 

DNA extraction and genotyping were performed on saliva samples by National Genetics 

Institute (NGI), a CLIA licensed clinical laboratory and a subsidiary of Laboratory 

Corporation of America. Samples were genotyped on one of five genotyping platforms. 



The v1 and v2 platforms were variants of the Illumina HumanHap550+ BeadChip, 

including about 25,000 custom SNPs selected by 23andMe, with a total of about 

560,000 SNPs. The v3 platform was based on the Illumina OmniExpress+ BeadChip, 

with custom content to improve the overlap with our v2 array, with a total of about 

950,000 SNPs. The v4 platform was a fully customized array, including a lower 

redundancy subset of v2 and v3 SNPs with additional coverage of lower-frequency 

coding variation, and about 570,000 SNPs. The v5 platform, in current use, is an 

Illumina Infinium Global Screening Array (~640,000 SNPs) supplemented with ~50,000 

SNPs of custom content. This array was specifically designed to better capture global 

genetic diversity and to help standardize the platform for genetic research. Samples that 

failed to reach 98.5% call rate were re-analyzed. Individuals whose analyses failed 

repeatedly were re-contacted by 23andMe customer service to provide additional 

samples. 

 

Ancestry determination of 23andMe data 

For our standard GWAS, we restrict participants to a set of individuals who have a 

specified ancestry determined through an analysis of local ancestry8. Briefly, our 

algorithm first partitions phased genomic data into short windows of about 300 SNPs. 

Within each window, we use a support vector machine (SVM) to classify individual 

haplotypes into one of 31 reference populations (https://www.23andme.com/ancestry-

composition-guide/). The SVM classifications are then fed into a hidden Markov model 

(HMM) that accounts for switch errors and incorrect assignments, and gives 

probabilities for each reference population in each window. Finally, we use simulated 



admixed individuals to recalibrate the HMM probabilities so that the reported 

assignments are consistent with the simulated admixture proportions. The reference 

population data is derived from public datasets (the Human Genome Diversity Project, 

HapMap, and 1000 Genomes), as well as 23andMe customers who have reported 

having four grandparents from the same country. 

Ancestries are defined as follow: 

Ancestry Classification criteria 

European European + Middle Eastern > 0.97, European > 0.90 

East Asian East Asian + Southeast Asian > 0.97 

South Asian South Asian > 0.97 

Middle Eastern (& North African) Middle Eastern + European > 0.97, Middle Eastern > 0.90 

African American + Latinos European + African + East Asian + Native American + 

Middle Eastern > 0.90, African + Native American > 0.01 

 

African Americans and Latinos are admixed with broadly varying contributions from 

Europe, Africa and the Americas. Therefore, no single threshold of genome-wide 

ancestry will be able to effectively discriminate African Americans and Latinos. 

However, the distributions of the length of segments of European, African and American 

ancestry are very different between African Americans and Latinos, because of distinct 

admixture timing between the three ancestral populations in the two ethnic groups. 

Therefore, we trained a logistic classifier that takes one customer's length histogram of 

segments of African, European and American ancestry, and predict whether the 

customer is likely African American or Latino.  

 



Selecting unrelated individuals within 23andMe data 

A maximal set of unrelated individuals was chosen for each analysis using a segmental 

identity-by-descent (IBD) estimation algorithm9. Individuals were defined as related if 

they shared more than 700 cM IBD, including regions where the two individuals share 

either one or both genomic segments IBD. This level of relatedness (roughly 20% of the 

genome) corresponds approximately to the minimal expected sharing between first 

cousins in an outbred population. When selecting individuals for case/control phenotype 

analyses, the selection process is designed to maximize case sample size by 

preferentially retaining cases over controls. Specifically, if both an individual case and 

an individual control are found to be related, then the case is retained in the analysis.  

 

Imputation of 23andMe data 

Imputation panels created by combining multiple smaller panels have been shown to 

give better imputation performance than the individual constituent panels alone10. To 

that end, we combined the May 2015 release of the 1000 Genomes Phase 3 

haplotypes11 with the UK10K imputation reference panel12 to create a single unified 

imputation reference panel. To do this, multiallelic sites with N alternate alleles were 

split into N separate biallelic sites. We then removed any site whose minor allele 

appeared in only one sample. For each chromosome, we used Minimac313 to impute 

the reference panels against each other, reporting the best-guess genotype at each 

site. This gave us calls for all samples over a single unified set of variants. We then 

joined these together to get, for each chromosome, a single file with phased calls at 



every site for 6,285 samples. Throughout, we treated structural variants and small 

indels in the same way as SNPs. 

 

In preparation for imputation we split each chromosome of the reference panel into 

chunks of no more than 300,000 variants, with overlaps of 10,000 variants on each side. 

We used a single batch of 10,000 individuals to estimate Minimac3 imputation model 

parameters for each chunk. 

 

To generate phased participant data for the v1 to v4 platforms, we used an internally-

developed tool, Finch, which implements the Beagle graph-based haplotype phasing 

algorithm14, modified to separate the haplotype graph construction and phasing steps. 

Finch extends the Beagle model to accommodate genotyping error and recombination, 

in order to handle cases where there are no consistent paths through the haplotype 

graph for the individual being phased. We constructed haplotype graphs for all 

participants from a representative sample of genotyped individuals, and then performed 

out-of-sample phasing of all genotyped individuals against the appropriate graph. For 

the X chromosome, we built separate haplotype graphs for the non-pseudoautosomal 

region and each pseudoautosomal region, and these regions were phased separately. 

For the 23andMe participants genotyped on the v5 array, we used a similar approach, 

but using a new phasing algorithm, Eagle215. We imputed phased participant data 

against the merged reference panel using Minimac3, treating males as homozygous 

pseudo-diploids for the non-pseudoautosomal region.  

 



We compute association test results for the genotyped and the imputed SNPs. For case 

control phenotypes, we compute association by logistic regression assuming additive 

allelic effects. For tests using imputed data, we use the imputed dosages rather than 

best-guess genotypes. As standard, we include covariates for age, gender, the top five 

principal components to account for residual population structure, and indicators for 

genotype platforms to account for genotype batch effects. The association test P value 

we report is computed using a likelihood ratio test, which in our experience is better 

behaved than a Wald test on the regression coefficient. For quantitative traits, 

association tests are performed by linear regression. Results for the X chromosome are 

computed similarly, with male genotypes coded as if they were homozygous diploid for 

the observed allele. 

 

Principal component (PC) calculation using 23andMe data 

A principal component analysis was performed independently for each ancestry, using 

~65,000 high quality genotyped variants present in all five genotyping platforms. It was 

computed on a subset of participants randomly sampled across all the genotyping 

platforms (137K, 102K, 1000K, 360K and 32K participants were used for African-

American, East-Asian, European, Latino, and South-Asian, respectively). PC scores for 

participants not included in the analysis were obtained by projection, combining the 

eigenvectors of the analysis and the SNP weights.  

 

Quality control of 23andMe data 



The vast majority of SNPs are only imputed and not genotyped, and therefore they only 

have imputed GWAS results. A small proportion of SNPs (often rare) have only 

genotyped GWAS results. Finally, the majority of genotyped SNPs are also imputed. 

When choosing between imputed and genotyped GWAS results for these SNPs, if they 

both passed quality control (QC), we report the imputed result. 

 

Variant QC is applied independently to genotyped and imputed GWAS results, and we 

flag the SNPs failing QC. For QC of genotyped GWAS results, we flagged SNPs that 

were only genotyped on our “v1” and/or “v2” platforms due to small sample size, and 

SNPs on chrM or chrY because many of these are not currently called reliably. Using 

trio data, we flagged SNPs that failed a test for parent-offspring transmission; 

specifically, we regressed the child’s allele count against the mean parental allele count 

and flagged SNPs with fitted β<0.6 and P<10−20 for a test of β<1. We flagged SNPs with 

a Hardy-Weinberg P<10−20, or a call rate of <90%. We also tested genotyped SNPs for 

genotype date effects, and flagged SNPs with P<10−50 by ANOVA of SNP genotypes 

against a factor dividing genotyping date into 20 roughly equal-sized buckets. We 

flagged SNPs with large sex effect (ANOVA of SNP genotypes, r2>0.1). Finally, we flag 

SNPs with probes matching multiple genomic positions in the reference genome (‘self 

chain’). 

 

For imputed GWAS results, we flagged SNPs with rsq<0.3, as well as SNPs that had 

strong evidence of a platform batch effect. The batch effect test is an F test from an 

ANOVA of the SNP dosages against a factor representing v4 or v5 platform; we flagged 



results with P<10−50. Prior to GWAS, we identified, for each SNP, the largest subset of 

the data passing these criteria, based on their original genotyping platform -- either 

v2+v3+v4+v5, v4+v5, v4, or v5 only -- and computed association test results for 

whatever was the largest passing set. As a result, there are no imputed results for SNPs 

that fail these filters.  

 

Across all results, we flag SNPs that have an available sample size of less than 20% of 

the total GWAS sample size. We also flag logistic regression results that did not 

converge due to complete separation, identified by abs (effect) >10 or stderr>10 on the 

log odds scale. We also flag linear regression results for SNPs with MAF < 0.1% 

because tests of low frequency variants can be sensitive to violations of the regression 

assumption of normally distributed residuals. 

 

Quality control of the GWAS summary statistics for 23andMe, Global Lipids 

Genetics Consortium (GLGC), and All of Us (AoU) data 

Before training the PRS models, the GWAS summary statistics for 23andMe, GLGC 

and AoU are cleaned using the following steps: 

1. Keep the SNPs that are available on HapMap3 (HM3) + Multi-Ethnic Genotyping 

Arrays (MEGA) arrays. 

2. Remove SNPs with duplicated positions. 

3. Keep only common SNPs for each ancestry (ancestry specific MAF > 0.01). For 

GLGC data, due to the lack of ancestry-specific MAF, so we used the ancestry-



specific MAF from the 1000 Genomes Project Phase 3 (1KG) data for this step of 

filtering. 

4. Remove SNPs with alleles are “AT”, “TA”, “CG”, “GC” to avoid undetectable 

flipping strands when matching with UK Biobank (UKBB) data in the tuning and 

validation step. This step is not necessary for 23andMe data because we also 

use 23andMe individuals for tuning and validation. 

5. Remove SNPs from the analysis whose sample size is less than 90% of the total 

sample size. 

6. Keep the SNPs that are present in the 1KG, which is used as the reference data 

for LD estimation.  

 

Genetic predicted ancestry in UKBB dataset 

We compute genetic ancestry for all individuals in UKBB who are not self-reported 

Whites. To balance the samples from all ancestries, we also include 8,000 unrelated 

Whites to form the set of UKBB individuals in this analysis. We use individuals from 

1KG as the reference data for ancestry prediction. We initially compute 20 genetic PCs 

for all UKBB and 1KG individuals together by--pca 20 allele-wts in PLINK2.016. The PCs 

are calculated based on a set of variants from gnomAD17 

(https://gnomad.broadinstitute.org/help/how-should-i-cite-discoveries-made-using-

gnomad-data) that can be used to capture enough ancestral information. After obtaining 

the top 20 PCs, we train a random forest classifier with 1500 trees using PCs of 1KG 

individuals with their true ancestral labels. To train the random forest classifier, we use 



the R package randomForest version 4.6-1418. Finally, we apply this random forest 

classifiers to the PCs of UKBB individuals and get their genetic ancestry prediction.  
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