Derivation for bidirectional Mendelian randomization model

Recall, the bidirectional model is represented by joint system of equations:

$$
Y_1 = \beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \gamma_{21}Y_2 + \varepsilon_1
$$

$$
Y_2 = \beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \gamma_{12}Y_1 + \varepsilon_2
$$

In this model, the bidirectional relationship between Y_1 and Y_2 leads to a feedback loop between these two outcomes. After each feedback cycle, values of outcome variables Y_1 and Y_2 are altered. The transitional feedback steps are described in S1 Fig.

$$
Y_{2.1} = \beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \gamma_{12}Y_{1.1} + \varepsilon_{2.1}
$$

If we substitute the $Y_{2,1}$ in the equation $Y_{1,2}$, we get:

$$
Y_{1,2} = \beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \gamma_{21}Y_{2,1} + \varepsilon_{1,2}
$$

= $\beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \varepsilon_{1,2} + \gamma_{21}(\beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \gamma_{12}Y_{1,1} + \varepsilon_{2,1})$
= $\beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \varepsilon_{1,2} + \gamma_{21}(\beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \varepsilon_{2,1}) + \gamma_{12}\gamma_{21}Y_{1,1}$

We now substitute the $Y_{1,2}$ in the equation $Y_{2,2}$, we get:

$$
Y_{2,2} = \beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \gamma_{12}Y_{1,2} + \varepsilon_{2,2}
$$

= $\beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \varepsilon_{2,2} + \gamma_{12}(\beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \varepsilon_{1,2})$
+ $\gamma_{12}\gamma_{21}(\beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \varepsilon_{2,1}) + \gamma_{12}^2\gamma_{21}Y_{1,1}$

Resubstituting $Y_{2,2}$ in the equation again $Y_{1,3}$, we get:

$$
Y_{1.3} = \beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \gamma_{21}Y_{2.2} + \varepsilon_{1.3}
$$

= $\beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \varepsilon_{1.3} + \gamma_{21}(\beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \varepsilon_{2.2})$
+ $\gamma_{12}\gamma_{21}(\beta_{01} + \beta_{11}X_1 + \beta_{CY1}C + \varepsilon_{1.2}) + \gamma_{12}\gamma_{21}^2(\beta_{02} + \beta_{22}X_2 + \beta_{CY2}C + \varepsilon_{2.1})$
+ $\gamma_{12}^2\gamma_{21}^2Y_1$

After n substitutions, the coefficients can be represented as a geometric series as follows:

$$
Y_{1,n} = (\beta_{01} + \beta_{11}X_1 + \beta_{CY1}C)(1 + \gamma_{12}\gamma_{21} + (\gamma_{12}\gamma_{21})^2 + \dots + (\gamma_{12}\gamma_{21})^{n-1})
$$

+ $\gamma_{21}(\beta_{02} + \beta_{22}X_2 + \beta_{CY2}C)(1 + \gamma_{12}\gamma_{21} + (\gamma_{12}\gamma_{21})^2 + \dots + (\gamma_{12}\gamma_{21})^{n-1})$
+ $(\gamma_{12}\gamma_{21})^nY_1 + \varepsilon_{1,n}$

When $|\gamma_{12}\gamma_{21}| < 1$ and n goes infinite, $(\gamma_{12}\gamma_{21})^n$ converges to 0 and Y₁ can be written as:

$$
Y_1 = \frac{\beta_{01} + \gamma_{21}\beta_{02}}{1 - \gamma_{12}\gamma_{21}} + \frac{\gamma_{21}\beta_{CY2} + \beta_{CY1}}{1 - \gamma_{12}\gamma_{21}}C + \frac{\beta_{11}}{1 - \gamma_{12}\gamma_{21}}X_1 + \frac{\gamma_{21}\beta_{11}}{1 - \gamma_{12}\gamma_{21}}X_2 + \delta_1
$$

Similarly, Y_2 can be written as:

$$
Y_1 = \frac{\beta_{01} + \gamma_{21}\beta_{02}}{1 - \gamma_{12}\gamma_{21}} + \frac{\gamma_{21}\beta_{CY2} + \beta_{CY1}}{1 - \gamma_{12}\gamma_{21}}C + \frac{\beta_{11}}{1 - \gamma_{12}\gamma_{21}}X_1 + \frac{\gamma_{21}\beta_{11}}{1 - \gamma_{12}\gamma_{21}}X_2 + \delta_1
$$

MR assumptions

Although the relationship between Y_1 and Y_2 is recursive, the instruments variables X_1 and X_2 are chosen for the observed data Y_1 and Y_2 such that MR assumption are satisfied. Particularly, we chose X_1 directly associated with Y_1 but is not associated with Y_2 conditional on Y_1 . The instrumental variable X_2 was chosen similarly.