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Movie S1



Figure S1. (A) The morphology and (B) surface marker expression (related to 

mesenchymal/hematopoietic stem cells) of bone marrow mesenchymal stem cells (BMSCs). (C) 

The morphology and (D) surface marker expression (related to mesenchymal/hematopoietic stem 

cells) of tendon stem/progenitor cells (TSPCs).  (E) Immunofluorescence staining images of Col Ⅰ 

protein expressed by primary TSPCs. Both BMSCs and TSPCs adhered to the culture dish and 

possessed the morphological characteristics of mesenchymal stem cells. Besides, all TSPCs 

expressed high level of type I collagen, which was consistent with the previous work.(80) The 

above results demonstrated the successful isolation of BMSCs and TSPCs. 



Figure S2. (A) The stress-strain curve and (B) elastic modulus of scaffolds with different 

contents of MS nanoparticles (n = 4). (C) SEM images of GelMA-5MS bioink. *p < 0.05, **p 

< 0.01, ***p < 0.001. The incorporation of MS nanoparticles increased the mechanical 

strength of GelMA hydrogel but did not affect their porous structure. 



Figure S3. Live/dead staining images of TSPCs and BMSCs in multicellular scaffolds containing 

different concentrations of MS nanoparticles after cultured for 7 and 14 days. 



Figure S4. (A) Mn ions and (B) Si ions release curves of multicellular scaffolds containing 

different concentration of MS nanoparticles (n = 4) indicated that multicellular scaffolds based 

on MS nanoparticles could release Mn and Si ions stably during 21-day culture period. *p < 

0.05, **p < 0.01, ***p < 0.001. 



Figure S5. The number statistics of immune cells surrounding the damaged regions after 

implantation of GelMA-cells-MS scaffold. (A) Immunofluorescence staining images of CD4 (T 

cells marker), CD18 (neutrophils marker), CD21 (B cells marker) and CD68 (macrophages marker) 

at day 4, 7 and 14 after surgery. (B) The corresponding number statistics of T cells, neutrophils, B 

cells and macrophages (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 (comparing the expression of 

different marks at the same time points). &p < 0.05, &&p < 0.01, &&&p < 0.001 (comparing the 

expression of the same mark at different time points. Red: CD4; Blue: CD18; Green: CD21; Purple: 

CD68). 



Figure S6. (A) Walking apparatus for recording rat pawprints. (B) Schematic diagram of paw and 

gait parameters.  



Figure S7. Pawprints of rats in the Blank, GelMA-cells, and GelMA-cells-MS groups at 1 and 4 

weeks postoperatively. 



Table S1. The primer sequences used for RT-qPCR assays. 

The primer sequences of tenogenic and osteogenic genes. 

Gene Primer sequence 

GAPDH Forward TCACCATCTTCCAGGAGCGA 

GAPDH Reverse CACAATGCCGAAGTGGTCGT 

Runx2 Forward CCTCTGACTTCTGCCTCTGG 

Runx2 Reverse GATGAAATGCCTGGGAACTG 

OCN Forward ACAAGTCCCACACAGCAACTC 

OCN Reverse CCAGGTCAGAGAGGCAGAAT 

OPN Forward GAGACCGTCTGAAACAGCGT 

OPN Reverse AACCACTGCCAGTCTCATGG 

BMP2 Forward GAGGAGAAGCCAGGTGTCT 

BMP2 Reverse GTCCACATACAAAGGGTGC 

BSP Forward GAATCCACATGCCTATTGC 

BSP Reverse AGAACCCACTGACCCATT 

TNC Forward CGTGAAAAACAATACCCGAGGC 

TNC Reverse GCCGTAGGAGAGTTCAATGCC 

DCN Forward ACTGGGCACCAACCCTCTGA 

DCN Reverse ATCTGAAGGTGGATGGCTGGA 

BGN Forward GATGGCCTGAAGCTCAA 

BGN Reverse GGGTTGTTGAAGAGGCTG 



The primer sequences of macrophage phenotype-related genes. 

Gene Primer sequence 

GAPDH Forward TCACCATCTTCCAGGAGCGA 

GAPDH Reverse CACAATGCCGAAGTGGTCGT 

CCR7 Forward CCATGACGGATACCTACCTGCT 

CCR7 Reverse CCCTTACACAGGTAGACGCCAA 

iNOS Forward ACGCTTCACTTCCAATGCAAC 

iNOS Reverse CAGCCTCATGGTAAACACGTTC 

IL-6 Forward ATAGTCCTTCCTACCCCAATTTCC 

IL-6 Reverse GATGAATTGGATGGTCTTGGTCC 

IL-1β Forward CTACCTGTGTCTTTCCCGTG 

IL-1β Reverse TTTGTTGTTCATCTCGGAGC 

TNFα Forward CTGTAGCCCACGTCGTAGCAA 

TNFα Reverse TGTCTTTGAGATCCATGCCGTT 

CD206 Forward ATCCACGAGCAAATGTACCTCA 

CD206 Reverse TAGCCAGTTCAGATACCGGAA 

Arg-1 Forward ATCAACACTCCCCTGACAACC 

Arg-1 Reverse TCGCAAGCCAATGTACACGAT 

IL-10 Forward GAGAAGCATGGCCCAGAAATC 

IL-10 Reverse GAGAAATCGATGACAGCGCC 

IL-4 Forward AGATGGATGTGCCAAACGTCCTCA 

IL-4 Reverse AATATGCGAAGCACCTTGGAAGCC 



Video S1. Video of gait analysis of rats in all groups at different time points. 
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