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Supplementary Text 

Models for the effect of diffusion on reaction 

We begin by deriving a simple model to account for the observed rates of protein 

translation and degradation as a function of cytosolic protein concentration assuming a 

mass action kinetics. We assume that the rate determining reaction for each process is a 

mass action bimolecular reaction: 

 𝑉 = !"
!#
= 𝑘𝐸 ∙ 𝑆 (1) 

where V is the rate of the reaction, P is the product of the reaction, E is the enzyme, S the 

substrate, and P the product of the reaction. Alternatively, we could assume a two-step, 

saturable mechanism (see below). The enzyme and substrate concentrations are linearly 

proportional to the relative cytoplasmic concentration 𝜙. We can therefore write: 

 𝐸[𝜙] = 𝜙𝐸[1] (2) 

 𝑆[𝜙] = 𝜙𝑆[1], (3) 

where 𝐸[𝜙] and 𝑆[𝜙] are the enzyme and substrate concentrations at a relative 

cytoplasmic concentration of 𝜙, and 𝐸[1] and 𝑆[1] are the enzyme and substrate 

concentrations at a relative cytoplasmic concentration 1x. Substituting into Eq. S1 yields: 

 𝑉 = 𝑘𝜙$𝐸[1]𝑆[1]. (4) 

Next we consider the dependence of the rate constant on the cytoplasmic protein 

concentration. From the Smoluchowski equation1, the collision rate and the association 

rate constant 𝑘 are proportional to the sum of the diffusion coefficients of E and S, and 

from Phillies’s law (Eq. 1 in the main text) 2,3, we take the diffusion coefficients to be 

negative exponential functions of the cytoplasmic protein concentration: 

 𝑘[𝜙] ∝ 𝐷%[𝜙] + 𝐷&[𝜙] = 𝐷%[0]𝑒'(!) + 𝐷*[0]𝑒'("), (5) 

where 𝐷%[0] and 𝐷*[0] are the diffusion coefficients of the enzyme and the substrate at a 

cytoplasmic concentration of 0 (i.e. in filtrate), and the µ’s are scaling factors. For the 

special case where either one diffusion coefficient is much smaller than the other, or the 

scale factors are equal, we can simplify this to: 



 𝑘[𝜙] = 𝑘[0]𝑒'(). (6) 

Note that it is a bit awkward to consider a value of 𝑘 at a relative cytoplasmic 

concentration of 0, since the reacting species are cytoplasmic macromolecules that are 

absent from the filtrate. We can avoid this by instead writing: 

 𝑘[𝜙] = 𝑘[1]𝑒'(	()'-). (7) 

It follows that: 

 𝑉 = 𝑘[1]𝐸[1]𝑆[1]0𝜙$𝑒'(	()'-)1. (8) 

Finally, we can make use of the fact that the scaling factor µ is linearly proportional to 

the size of the diffusing particle dp, and write an expression that explicitly acknowledges 

particle size: 

 𝑉 = 𝑘[1]𝐸[1]𝑆[1]0𝜙$𝑒'/!#	()'-)1. (9) 

where a is a new scaling factor that relates dp to µ. Eq. S9 describes how the rate of a 

mass action, bimolecular reaction whose reactants obey Phillies’s law would be expected 

to vary with the cytoplasmic macromolecule concentration and molecular diameter. If we 

measure rates in arbitrary units with the rate at 𝜙 = 1 taken as 1, then: 

 𝑉 = 𝜙$𝑒'/!#	()'-). (10) 

Note that we have an experimental estimate for a (which, from Fig. 4f is 0.018 nm-1), 

leaving only one adjustable parameter, dp, the macromolecular diameter. Eq. S10 defines 

a biphasic, non-monotonic curve (Fig. 5a), and the larger the assumed macromolecular 

diameter, the further to the left the curve’s maximum lies (Fig. 5a). For a given value of 

dp, the optimal cytoplasmic concentration is given by: 

 𝜙01#23/4 =
$

/!#
. (11) 

This relationship is plotted in Fig. 5b. 

Alternatively, we can assume that the rate determining reaction for each process is a two-

step enzymatic reaction: 



 

where E is the enzyme, S the substrate, C the enzyme-substrate complex, and P the 

product of the reaction. If we assume that the system is in steady state, with !5
!#
= 0, and 

that the substrate concentration is much higher than the enzyme concentration, then the 

rate of this process is described by the Michaelis-Menten equation: 

 𝑉 = !"
!#
= 6$%%&%*

'()*'$
')

7*
, (12) 

where 𝐸#0# = 𝐸 + 𝐶.  

Next we want to add cytoplasmic concentration dependence to the terms on the right-

hand side of Eq. S12. The enzyme and substrate concentrations are linearly proportional 

to the relative cytoplasmic concentration 𝜙. We can therefore write: 

 𝐸#0#[𝜙] = 𝜙𝐸#0#[1], (13) 

 𝑆[𝜙] = 𝜙𝑆[1]. (14) 

Substituting into Eq. S12 yields: 

 𝑉 = 6$)$%%&%[-]*[-]
'()*'$

')
7)*[-]

. (15) 

Again, from the Smoluchowski equation 1 and Phillies’s law 2,3, we take the diffusion 

coefficients to be negative exponential functions of the cytoplasmic protein 

concentration: 

 𝑘-[𝜙] ∝ 𝐷%[𝜙] + 𝐷&[𝜙] = 𝐷%[0]𝑒'(!) + 𝐷*[0]𝑒'("). (16) 

For the special case where either one diffusion coefficient is much smaller than the other, 

or the scale factors are equal, we can simplify this to: 

 𝑘-[𝜙] = 𝑘-[0]𝑒'(). (17) 

Similarly, we can rewrite Eq. S17 as: 

E + S 
k1

k-1

C E + P
k2



 𝑘-[𝜙] = 𝑘-[1]𝑒'(	()'-). (18) 

Some models of protein complex dissociation assume that the rate of dissociation is 

directly proportional to the sum of the diffusion coefficients of the proteins4. Therefore 

we assumed that 𝑘'-is directly proportional to the diffusion coefficient, which varies 

with the cytoplasmic concentration according to Phillie’s law, and that 𝑘$, the rate 

constant for the catalytic step, is independent of the cytoplasmic concentration. It follows 

that: 

 𝑉 = 6$)$%%&%[-]*[-]
'()[)]-(.	(1())*'$

')[)]-(.	(1())
7)*[-]

. (19) 

Finally, since the scaling factor µ is linearly proportional to the size of the diffusing 

particle dp, we can write an expression that explicitly acknowledges particle size: 

 𝑉 = 6$)$%%&%[-]*[-]
'()[)]-

(34#	(1())*'$
')[)]-

(34#	(1())
7)*[-]

, (20) 

where a is a new scaling factor that relates dp to µ. Eq. S20 describes how the rate of a 

Michaelis-Menten reaction whose reactants obey Phillies’s law and the Smoluchowski 

equation would be expected to vary with the cytoplasmic macromolecule concentration 

and molecular diameter.  

We do not have experimental estimates for most of the parameters in Eq. S20 (except for 

a, which, from Fig. 4f is 0.018 nm-1) for either translation or protein degradation. 

However, we can get a feel for Eq. S20 by arbitrarily assuming some parameter values 

(𝑘-[1] = 0.01;	𝐸#0#[1] = 𝑆[1] = 𝑘'-[1] = 𝑘$[1] = 1) and plotting V as a function of 𝜙 

for macromolecules of different assumed macromolecular diameters. The equation 

defines a biphasic, non-monotonic curve (Supplementary Fig. 4a), and the larger the 

assumed macromolecular radius, the further to the left the curve’s maximum lies. The 

same was true for the mass action model (Eq. 11 and Fig. 5). The ratio between k-1 and k2, 

which determines whether the system is reaction-controlled or diffusion-controlled, also 

affects the optimal value of 𝜙; the more diffusion-controlled the system is, the further to 

the left the optimum is (Supplementary Fig. 4b).  



Supplementary Figures 

 

 

Supplementary Fig. 1: Trihalo compound-stained PAGE gel of proteins from 1x 

extract, filtrate, and 2x retentate. 

a representative trihalo compound-stained PAGE gel showing a BSA standard and two 

biological replicates of extract, retentate, and filtrate. The estimated protein 

concentrations in mg/mL (using the BSA standard as a reference) for the extract, 

retentate, and filtrate samples are shown in orange. However, it should be noted that the 

trihalo compound used in staining the gel depends on tryptophan residues to fluoresce. 

Since BSA has only 0.3% tryptophan residues (compared to 1% in proteins overall), the 

protein concentrations in the extract, retentate, and filtrate samples are likely 

overestimated. By Bradford assay the typical protein concentration of extracts was 50-70 

mg/mL. 

  



 

Supplementary Fig. 2: Using nominal vs. measured protein concentrations to 

compare translation rates in different experiments. 

a Translation rate as a function of nominal cytoplasmic concentration. These are the 

directly-measured data from experiments where the eGFP mRNA concentration was kept 

constant and the translation machinery was proportional to the cytoplasmic concentration. 

Data points from same experiment are connected. Data are normalized relative to the 

translation rates at a cytoplasmic concentration of 1x. Relative cytoplasmic concentration 

are assumed to be 1.0 for 1x extract and 2.0 for the 2x retentate. 

b Translation rate as a function of measured protein concentration. These are the directly-

measured data from experiments where the eGFP mRNA concentration was kept constant 

and the translation machinery was proportional to the cytoplasmic concentration. Data 

points from same experiment are connected. Data are normalized relative to the 

translation rates at a cytoplasmic concentration of 1x. Protein concentrations were 

measured for the starting extract and the retentate, instead of assuming that they were 1x 

and 2x. Protein concentrations for the dilutions were calculated from these the respective 

starting material. Note that the experiment-to-experiment variation is similar regardless 

of whether nominal or measured protein concentrations are used. 

Source data are provided as a Source Data file. 

  



 

Supplementary Fig. 3: Probability density of effective diffusion in various 

cytoplasmic concentrations. 

Histograms of the effective diffusion coefficient for 100 nm PEGylated polystyrene 

beads are plotted for extracts with various cytoplasmic dilutions, with offsets. The 

cytoplasmic concentration, coefficients of variation (C.V.), and p-values for the DIP test 

of unimodality are shown next to each curve. 

Source data are provided as a Source Data file. 

  



 

Supplementary Fig. 4: The effect of cytoplasmic concentration on translation and 

protein degradation in a Michaelis-Menten model. 

a Plot of Eq. S20, which relates a bimolecular reaction rate to the relative cytoplasmic 

concentration, for various sizes of proteins, assuming that Michaelis-Menten kinetics are 

relevant. We assumed a = 0.018 nm-1 (from Fig. 4f) and arbitrarily chose the following 

values for the parameters: 𝑘-[1] = 0.01 (so that the reaction was not close to saturation) 

and 	𝐸#0#[1] = 𝑆[1] = 𝑘'-[1] = 𝑘$[1] = 1 (so that the reaction was neither close to the 

reaction limit nor to the diffusion limit). 

b Plot of Eq. S20 for various assumed values of k2, as indicated. Larger values make the 

system more diffusion-controlled and smaller values make it more reaction-controlled. 

We again assumed a = 0.018 nm-1 and arbitrarily chose the following values for the 

parameters: 𝑘-[1] = 0.01, 	𝐸#0#[1] = 𝑆[1] = 𝑘'-[1], and the protein size to be 100 nm. 

The y-axis scales are different in panels (a) and (b).  
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