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Reviewers' comments:

Reviewer #1 (Remarks to the Author):

This is a well conceived study on the difference in neural responses to speech of others vs our own 

speech. The introduction provides a good background discussion and motivation. The main finding 

appears consistent with prior literature showing reduced EEG responses to our own speech. The 

results, if confirmed, would generalize artificial laboratory tasks to natural dialog. Unfortunately the 

study has a small sample size (N=9 pairs of speakers/listeners) and the main result – the contrast in 

neural responses while both individuals are speaking – is uncertain, because statistics are not 

adequately performed. Generally, the manuscript is lacking in presentation of the statistics and 

analysis methods. Perhaps this can be fixed with a thorough rewrite of the Results section, but the 

small sample size will remain a hurdle.

In the following are comments to text in the order it appears in the manuscript.

“We were able to reproduce previous results and even slightly improve the performance of previous 

models using naturalistic stimuli (Fig. 2.2). We obtained a maximum correlation value of 0.57 for the 

envelope and 0.67 for the spectrogram, where the best previous correlation values were 

approximately 0.5 for the envelope [23].” The values reported in Fig. 2.2 are indeed high. However, 

the presentation of the results is lacking. Neither caption nor text describe the results adequately. This 

is true for most of the Results section. Fortunately all this has an easy fix. Just say what the results 

are: No where in the figures can one see values 0.57 of 0.67. Instead, it appears from panel B that 

values max out below 0.41 and 0.28. Besides, reporting maxima is not particularly insightful as 

maximum values are inherently noisy. Panel A shows distributions, but it is not said over what these 

distributions are taken (electrodes? Subjects?). If it is over subjects, was the mean or maximum taken 

across electrodes for each subject? It is also unclear what the different EEG bands mean. Are you 

modeling the power of those signals, or the filtered signals itself? The methods only say that you 

filtered in those bands.

From reading the rest of the paper, I am guessing you are not attempting to predict power in those 

bands, but instead the filtered signal itself in the band. That is a fine idea, but there is no need to 

estimate new TRF for each of these filtered signals. TRFs can capture all frequencies in an 

input→output mapping. There is no need to filter the output in different frequency bands. Typically the 

way you do this is to find a single mapping to the broadband signal. To measure how well each 

frequency band was predicted you can just measure the coherence spectrum between predicted 

output and real output, i.e. eeg. This is quite conventional linear systems. The only caveat is that 

regularization has a nonlinear effect on the estimate. So different bands may be variably affected, and 

so the TRF (vs the decomposed TRFs) may yield somewhat different results. But it does reduce the 

number of free parameters (by a factor of 5, to be exact, as you are using 5 different versions of the 

same signal in your current approach, broadband + 4 pass-band filtered version). Given the small 

sample size of this study, this may be helpful.

Panel 2.2 C top shows a scalp plot that is not explained. The time courses are not clear. There are 

multiple curves, are these for multiple electrodes or a single electrode and multiple subjects? Or 

perhaps each curve is for one of the different spectrogram features? The caption of figure 2.3 seems 

to suggest that. It should really be made clear already in figure 2.2. They look all very similar, maybe 

they can all use the same TRF and thus have the same number of parameters with the envelope, so 

the correlation coefficients are comparable. As it is, the higher values with the spectrogram (Figure 

2.2B) could simply result from the larger number of free parameters. How exactly were the different 

bands in the spectrogram combined?



“In the Theta band, the representation of the spectrogram is stronger in the frontal lateral regions of 

both hemispheres, more lateralized to the left, where language-related areas such as Broca are found 

(Fig. 2.2 B; Wilcoxon test: z=12, n=12, p-value = 0.034).” How was this set of electrodes selected? 

The p-value here is borderline, if more than one set of electrodes was tested, this clearly is no longer 

meaningful. Also, the word “representation” is something you can propose in the discussion, but it's 

not the data. What you probably mean to say is that the spectrogram predicts those electrodes best, 

or that the correlation is highest for those electrodes. It does not mean that this part of the brain 

“represents'' the spectrogram. Indeed, low level features like that are likely best “represented” in the 

auditory cortex at a much faster timescale. Why the theta (power?) is more robustly driven by the 

spectrogram features in those frontal electrodes is worth a discussion, in the Discussion section.

“It is possible to observe a gradual lateralization effect from frontal electrodes in higher frequency 

bands to more lateral in the Theta band (Fig. 2.2 A).” I am sorry, but I can’t see that in figure 2.2A. 

And even if there was a subjective impression on those figures, colormaps can be incredibly deceptive. 

I would like to see some sort of statistical analysis to support this observation. Otherwise it's just tea 

leafing.

“The number of subjects for which the obtained correlations were significantly different from the 

random distribution in all folds was …” In the methods this test was performed separately per 

electrode. But here there is only talk of subjects. Do you mean where at least one electrode generated 

significant correlation? Or how else are these numbers established? Incidentally, there are only 9 pairs 

of subjects. The numbers here suggest that this was done for 18 subjects. Is that right? Also, it is not 

clear if this analysis is for the spectrogram features or the envelope.

“non-alterated evaluation set” I don't know what you mean by “alterated”. You mean “altered”? What 

was altered in the rest of the data, but no on the “evaluation set”? And in the “random permutation” 

what exactly was permuted? Details here matter. As with all random stats, if correlation structure in 

the data is perturbed (except for the one specifically to be tested) the Null distribution can be quite 

incorrect.

“Moreover, within the spectrogram, the more important features are the audio mel-bands ranging from 

to 1907 Hz, which correspond to the ones where human speech carries more information.” How was 

this established? If Figure 2.2C shows TRF to different frequency bands, they all look very similar. You 

would need some sort of statistical test to say one is bigger than another, perhaps do stats across 

subjects.

“The mTRFs present an absence of response in any frequency band in both situations, and are similar 

to the response to background noise when both participants are silent (Fig. 2.3 E). This was confirmed 

by a pairwise comparison between the correlation coefficients from (S) and (S|B) conditions with 

Silence.” The lack of evidence for an effect is not the same as evidence for a lack of an effect. But that 

is not even what is interesting in this experiment. Suppression does not need to be so strong as to not 

have a response at all to self speech. Additionally, poor correlation with simultaneous speaking may be 

due to noise in the EEG during speaking, which is substantial – something you acknowledge later in 

the result section.

Rather, what you want to show is that the response is weaker, i.e. a contrast between panels C and D. 

Namely, both are speaking, but the EEG response to the other speaker is stronger than the EEG 

response to self speech. This analysis you do in fact perform a little later. It is the central finding of 

the paper, as it controls for speaking noise in EEG, and shows an effect, rather than arguing for a lack 

of an effect, which is always difficult to establish. And this begin the



“Fig. 2.4; S vs Silence: uncorrected p-value > 0.12 for all channels, mean uncorrected p-values = 

0.52; (S|B) vs Silence: uncorrected p-value > 5.3 × 10 −4 for all channels, mean uncorrected p-

values = 0.22” If you really want to show evidence in support of the Null hypothesis, you should 

report Bayes factors.

“(Fig. 2.4; uncorrected p-values < 3.9x10-4 for 84 channels; mean uncorrected p-values < 4.4 × 10 

−4 )'' It is never clear in this paper how statistical comparisons have been done. Are correlation values 

computed per subject and then the stats performed across subjects? The degrees of freedom or the 

sample size needs to be reported for each statistical evaluation in the results section. It’s hard to 

imagine small p-values with N=18 subjects, and Bonferroni correction across 128 electrodes (as stated 

in the methods).

Also, comparisons rarely tell the reader what measures are being used? I am guessing mostly 

correlation with theta band EEG predicted from spectrogram? Or from an envelope?

Also, it is never explained if TRFs are computed per subject, or together for all subjects.

Now to the actual result shown in figure 2.4 “This was statistically confirmed by pairwise comparison 

between the correlation values from (E|B) and (S|B) when both participants were speaking 

simultaneously, … (Fig. 2.4; uncorrected p-values < 3.9x10-4 for 84 channels).” To me, this is the 

central result of the paper, so it deserves some attention. The relevant scalp plot in figure 2.4 looks 

rather noisy in the sense that neighboring electrodes have quite different p-values. Real brain activity 

is expected to have smoother spatial distribution due to the blurring function of CSF and scalp. P-

values also tend to be noisy, certainly on N=18. My first suggestion is to do a proper multiple 

comparison correction, like FDR. That 84 of 128 channels are below some arbitrary hand-picked p-

value is not appropriate statistical comparison or reporting. The second recommendation is to show 

the effect size, rather than p-values, for instance, Cohen’s d-prime. That will be a lot more 

informative, and likely smoother in space. My guess is that with N=18 and 128 electrodes, you are not 

adequately powered to detect statistically significant differences.

“This method averages single tone vectors in the complex plane, where the phase of those vectors 

corresponds to the phase difference between signals at each time (t). ... This analysis was repeated 

time-shifting the envelope signal … to find the time-lag when the synchronization between signals is 

maximum.”

PLV -- as introduced in Lachaux 1999 (reference below) – averages phase angle across trials. It is not 

clear what was done here. What are “single tone vectors”? And over what are averages computed, i.e. 

what exactly is t in equation (2)? Given the argument about time-shift, it seems the average was 

taken across time samples within utterances? Multiplying the angle difference with t makes little sense 

to me. Also, how are angles computed? Usually Hilbert transforms of some band-passed signal. But 

here the stimulus (envelope?) does not seem to have been band-passed? All this is rather 

unconventional. There is no reference provided to maybe see some alternative definition of PLV. Also, 

in the conventional definition of PLV shifting two signals by some time-lag will change the average of 

exp(phi1-phi2) but not its absolute value. I can’t quite decide if the problem here is with the 

description of the method, or the method itself. As written, I don't understand any of it.

Besides, the time-shift argument seems to suggest that you are measuring some sort of delay 

correlation, very similar to the TRF. So I really do not see what the added value is of PLV. It seems to 

me the paper would be better off without it.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873296/pdf/HBM-8-194.pdf

I have not read the Discussion, so can not comment on appropriateness.

Reviewer #2 (Remarks to the Author):

Title: “Speech-induced suppression during natural dialogues”

The authors present an EEG study where they assess the neural responses to spoken and heard 

speech. They find strong TRF responses to heard but not spoken speech, suggesting stimulus-induced-

suppression. The experiment is interesting and the hypothesis reasonable. The narrative is very good, 

making the manuscript very enjoyable to read. However, there are substantial issues with the 

methodology and missing descriptions that make me doubt the results and interpretation. Key pieces 

of methodology that have not been reported. A risky double-filtering operations in preprocessing (as 

well as the details of those filters) was carried out without justification. Very large EEG prediction 

correlations are measured (about 5 or 10 times what is typically seen in the literature), without a 

proper explanation on how those correlations were calculated. Furthermore, one key issue is the 

denoising. “Good” auditory responses likely correlate with the removed “motor” activity. Could that 

explain why the TRF to produced speech is very small? These main issues prevent publication of this 

work in its current form. The missing methodological details might clarify the paper and convince me 

of the validity of the procedure. However, as it stands, the paper cannot be accepted for publication in 

my view. Please find my comments below.

Major comments

1. Results in Fig. 2.3B and D. Could it be that ICA is simply removing too much from the EEG data? 

This is a very important issue that should be discussed, as it mines the whole point of the paper.

2. Line 93: It’s unclear how such high prediction correlation values are obtained. Even the paper cited 

by the authors shows maximum EEG prediction correlations of around 0.05 (not 0.5!). The specific 

section of the methods does not clarify this aspect. That must be clarified.

3. Line 310: So, does that mean that you re-filter data that was filtered already. That is problematic. 

As you don’t report the details of the second round of filters, it is impossible for me to estimate the 

impulse/step responses of the series of filters, which is worrying. Also, are we talking about zero-

phase shift filters? Please clarify.

4. Was the data re-referenced to the mastoids (I assume so, but it’s not indicated in the text)? The 

TRFs don’t show much polarisation (how does the GFP look like?). Is that all that response coming 

from the mastoids for some reasons? How do the results look like with a different referencing.

Other comments

5. Abstract. It is unclear what the authors mean with “better performances” (Stronger effects of SIS?)

6. Line 79: It’s unclear if the authors intend to analyse perception only at first or production. I assume 

perception, since the text says that they are trying to replicate previous work initially (but the text 

does not indicate which exact previous work we should refer to among the many ones cited above)

7. Line 60: True, but is imprecise. The parameters are called TRF because they estimate the TRF. But 

there are many ways to estimate a TRF. To be fair, even a cross-correlation is an estimate of the TRF 

(even if less accurate). This is me being picky here. This one is not important.

8. Fig. 2.2C. The ylabel is incorrect. I should be “Frequency (Hz)”

9. Fig. 2.2B-Right. That is visually confusing and not convincing, honestly. But I won’t go into detal 

until it’s clear why those prediction correlation values are so high

10. Line 111 and 312. Broad ERP band? Do you mean “EEG”? Or simply broader-band?

11. The caption of figure 2.2 could be clearer. It should stand on its own. Instead, it’s unclear what 



“frequency band” refers to (in this case, EEG frequency band) and what the correlaton is calculated 

on.

12. How were the electrodes selected for the lateralisation analysis

13. Line 314: It’s fine that you explain that you used MNE for the filtering. However, you should 

indicate the version of MNE, as well as all the details of the filters (not just what function you used).

14. Line 309: What do you mean with “supervised by an expert”? Was that one of the authors? Could 

you not simply say “manually detected”? Also, are there some parameters that one should specify with 

those functions (as you did on line 303)? Keep in mind that this must be replicable.

15. Line 130: “An absence of response” s a tricky thing to say, statistically speaking. Maybe you mean 

that no TRF component was significantly above chance?

16. Figure 2.3 should be improved from a graphical perspective (e.g., hard to read, labels not 

aligned).

17. How is the “silence” TRF calculated? i.e., what is the stimulus vector in the encoding model?

18. The TRFs look delayed compared to previous studies (using encoding models). The N1 usually 

emerges around 80ms, and the P2 around 140-160ms (in adults). However, the only discussion about 

that seems to be on lines 115 and 204, where the TRF is compared with ERPS instead.

19. Lines 186 and 205: That statement is incorrect. A few studies focused on the 1-15Hz band, but 

there is a lot of variability in the field in this regard. Also, please note that on of the two studies 

included as a reference to support that statement actually looked into the various sub-bands. 

Furthermore, saying that theta-band shows “greater representation” of acoustic features s debatable. 

You could say that the prediction correlations are larger than in other bands. But that could mean 

many other more methodological things. Also, line 209: “main frequency band” and “this could be due 

to the cortical entrainment effect”. All these statements are vague and, frankly, it is unclear what the 

authors are trying to say.

20. Line 221. This is EEG. It is fine if the authors want to speculate on that, as long as it’s clear that it 

is only a speculative reflection. However, I recommend not to go down that rabbit hole. This is only 

EEG!

21. Line 176. This paragraph is absolutely misleading. Those numbers are from different metrics. As 

far as I understand, some of that work uses a re-scaled prediction correlation (based on an ideal 

maximum estimated based on the trial-by-trial noise), while others do not. That discussion has to be 

corrected and the methods regarding this specific paper should also be much clearer about the 

procedure here.

22. Line 192: That also depends on how the envelope and spectrogram are calculated.

23. What happens for pre-stim lags? It is unclear why that is not included. This is particularly relevant 

as we are talking about speech production. Pre-stim responses would not only be related to muscle 

movement and motion! That would also be a further validation on the author’s assumption that their 

denoising is actually removing the motion/motor components.

24. I might have missed it. Is there a data sharing statement?

25. Some details are missing in the caption for Figure 2.5.



Reviewer #1 (Remarks to the Author):
Comment: This is a well conceived study on the difference in neural responses to speech of
others vs our own speech. The introduction provides a good background discussion and
motivation. The main finding appears consistent with prior literature showing reduced EEG
responses to our own speech. The results, if confirmed, would generalize artificial laboratory
tasks to natural dialog. Unfortunately the study has a small sample size (N=9 pairs of
speakers/listeners) and the main result – the contrast in neural responses while both individuals
are speaking – is uncertain, because statistics are not adequately performed. Generally, the
manuscript is lacking in presentation of the statistics and analysis methods. Perhaps this can be
fixed with a thorough rewrite of the Results section, but the small sample size will remain a
hurdle.

Response: We greatly appreciate the reviewer’s constructive feedback and time. In the
following we provide a point-by-point response to each of their comments, highlighting in blue
the major changes in the manuscript. We strongly believe that the manuscript has significantly
improved its quality after taking into account the reviewer's comments.

Comment: In the following are comments to text in the order it appears in the manuscript.

“We were able to reproduce previous results and even slightly improve the performance of
previous models using naturalistic stimuli (Fig. 2.2). We obtained a maximum correlation value
of 0.57 for the envelope and 0.67 for the spectrogram, where the best previous correlation
values were approximately 0.5 for the envelope [23].”
The values reported in Fig. 2.2 are indeed high. However, the presentation of the results is
lacking. Neither caption nor text describe the results adequately. This is true for most of the
Results section. Fortunately all this has an easy fix. Just say what the results are: No where in
the figures can one see values 0.57 of 0.67. Instead, it appears from panel B that values max
Fout below 0.41 and 0.28. Besides, reporting maxima is not particularly insightful as maximum
values are inherently noisy. Panel A shows distributions, but it is not said over what these
distributions are taken (electrodes? Subjects?). If it is over subjects, was the mean or maximum
taken across electrodes for each subject? It is also unclear what the different EEG bands mean.
Are you modeling the power of those signals, or the filtered signals itself? The methods only say
that you filtered in those bands.

Response: We thank the reviewer for their careful lecture of our manuscript. The encoding
models were used to fit and predict the filtered EEG signals (using the standard band limits and
names). Following the reviewer's suggestion, we split our previous Figure 2.2 into Figure 2.2
and 2.3 in the current version of our manuscript, for easier and more complete description. The
new Figure 2.2-A shows the distribution of correlation values obtained between the real and the
predicted EEG signal for each electrode. These correlation values were first averaged across
the 5 folds within each participant and then averaged across participants, obtaining in the end
one value for each electrode. The top panel A shows the spatial distribution of those correlation



values to better illustrate the regions where higher correlations are achieved. On the other hand,
the distribution shown in the lower part of panel A consists of those same values but presented
as a violin plot (128 values per violin, each corresponding to a different electrode) for an easier
comparison across frequency bands. This plot aims to provide an easier comparison between
the correlation obtained when predicting different EEG bands.

The maximum values reported in the text corresponded to the highest 5-fold-average
correlation values obtained for an individual participant and electrode, thus cannot be seen
directly in the plots, where the average is also taken from all participants. This maximum value
was reported for the sake of comparison with a previous highly related work
[Desai2021preprint], where the authors present the correlation maximum value of ~0.5 for the
band 1 - 15 Hz (see Fig. 2 from [Desai2021preprint]). The maximum value is usually reported
because it is not expected that the speech signal impacts all the electrodes in the same way,
and thus averaging correlation values across 128 electrodes could largely shadow the results.
Following the reviewer's comments, we have updated the values by reporting the subject
averages and maximum values, in the final version (lines 100 - 103).

From reading the rest of the paper, I am guessing you are not attempting to predict power in
those bands, but instead the filtered signal itself in the band. That is a fine idea, but there is no
need to estimate new TRF for each of these filtered signals. TRFs can capture all frequencies in
an input→output mapping. There is no need to filter the output in different frequency bands.
Typically the way you do this is to find a single mapping to the broadband signal. To measure
how well each frequency band was predicted you can just measure the coherence spectrum
between predicted output and real output, i.e. eeg. This is quite conventional linear systems.
The only caveat is that regularization has a nonlinear effect on the estimate. So different bands
may be variably affected, and so the TRF (vs the decomposed TRFs) may yield somewhat
different results. But it does reduce the number of free parameters (by a factor of 5, to be exact,
as you are using 5 different versions of the same signal in your current approach, broadband +
4 pass-band filtered version). Given the small sample size of this study, this may be helpful.

Response: As the reviewer correctly pointed out, the predictions are indeed realised on
different filtered EEG signals, which is standard practice for analysing EEG. Aiming to better
show the Speech Induced Suppression (SIS) effect during natural dialogues, we focus only on
the frequency band with higher response, filtering out as much noise as possible. Thus,
analysing the EEG data only in the Theta band for the SIS effect gives us more statistical power.

As it can be seen in Fig. 2.2A the correlation obtained using the broad-band (1 - 40 Hz)
is significantly lower, with an average of 0.17, compared with the one obtained using the same
EEG signal filtered in the Theta band (4 - 8 Hz), 0.37. Moreover, the Temporal Response
Function (TRF) depicted in Figure R1 (see below), only presents a small peak (~0.0025) close
to 0ms and lacks the expected waveform. Similar results were obtained for the [1, 15] Hz band
used in other studies [DiLiberto2015, Desai2021]. This is not shown in the manuscript, as the
focus is on the SIS effect.

broad-band (1-40 Hz)



1-15 Hz as [DiLiberto2015, Desai2021]

Theta band

Figure R1. mTRF for all electrodes for the spectrogram model fitted to the broad-band (left) and a 1-15
Hz band (right). Both broad-bands present a lower amplitude (~0.003, ~0.009) peak close to zero,
compared to the theta band (~0.014).

Concerning the sample size, this study has 9 dialogue sessions, with 17 to 30 trials per
session (average of 24.3 trials). Each trial has a duration between 1 to 5 minutes, with an
average of 82.6 seconds (SD=61s). This results in a total of 18 different participants. Each
participant had their own unique stimuli (i.e. distinct self/interlocutor's speech pairs), and their
own EEG recording. Thus, we have 18 independent samples for the most part of our statistical
analysis; in particular, the comparisons between conditions were performed across participants,
over the correlation values estimated for each participant (Fig. 2.4, 2.5 in the new version).
Compared with the literature, our number of participants is actually higher than the ones
reported by other highly related works in this area, for instance: Desai et al. (2021): 17
participants, Etard et al. (2019): 12 participants, Di Liberto et al. (2015): 10 participants.

Moreover, the estimation and validation of the model was performed at the participant
level, obtaining significant results for all participants, assessed by a permutation test. Figure D.1
B in the Supplementary materials shows the results of the permutation tests for each band and



input feature. Panel C presents the distribution of the number of participants that passed the
permutation test for each electrode (see Figure R5 and the new figure caption below for a more
detailed explanation of this figure).

Panel 2.2 C top shows a scalp plot that is not explained. The time courses are not clear. There
are multiple curves, are these for multiple electrodes or a single electrode and multiple
subjects? Or perhaps each curve is for one of the different spectrogram features? The caption
of figure 2.3 seems to suggest that. It should really be made clear already in figure 2.2. They
look all very similar, maybe they can all use the same TRF and thus have the same number of
parameters with the envelope, so the correlation coefficients are comparable. As it is, the higher
values with the spectrogram (Figure 2.2B) could simply result from the larger number of free
parameters. How exactly were the different bands in the spectrogram combined?

Response: Figure 2.3-A (in the new version of the manuscript) shows the mTRF for the
spectrogram feature. It was obtained by fitting a model to each participant and then averaging
the resulting mTRFs. Given that the spectrogram feature has multiple dimensions (16
mel-frequency bands), the data from each band was concatenated and one model for each
channel was fitted. As the reviewer correctly pointed out, the spectrogram model had 16 times
the number of features, and therefore 16 times the number of free parameters, compared with
the model fitted using the envelope signal. Therefore, the obtained mTRF for each electrode is a

2D matrix, and then they are aggregated across electrodes to build a𝑁
𝑑𝑒𝑙𝑎𝑦𝑠

 ×  𝑁
𝑏𝑎𝑛𝑑𝑠

3D matrix.𝑁
𝑑𝑒𝑙𝑎𝑦𝑠

 ×  𝑁
𝑏𝑎𝑛𝑑𝑠

×  𝑁
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠

 

Figure 2.3 shows different representations of this matrix. Panel A presents the results
averaged across frequency bands where each electrode is presented as a coloured curve and
the electrode positions are referenced in the colour scalp plot ( matrix).𝑁

𝑑𝑒𝑙𝑎𝑦𝑠
 ×  𝑁

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠

Panel B presents the results averaged across electrodes depicted as a heatmap (
matrix).𝑁

𝑑𝑒𝑙𝑎𝑦𝑠
 ×  𝑁

𝑏𝑎𝑛𝑑𝑠

As the reviewer correctly states, it is possible that the spectrogram model outperforms
the envelope model because of the greater number of free parameters involved. Nevertheless,
the regularisation parameter was computed for each feature separately. It took greater values
(1325 vs 976) for the spectrogram compared to the envelope, which could contribute to
mitigating the effects of a greater number of coefficients. Furthermore, the comparison made in
Figure 2.2 B is made within each feature (spectrogram and envelope). The difference between
the correlations obtained for each feature are out of the main scope of the present manuscript.
They are discussed here to make a comparison with the bibliography.

Figure 2.2 B aims to show how different features (spectrogram and envelope) present
different lateralization between frontal left and right electrodes, represented in the blue and
orange box plots respectively. These 12 electrodes were selected because they present the
highest correlation in each region. Further details for this experiment are explained in the next
response.



Following the reviewer's suggestion, we added more detailed captions in Figures 2.2 and
2.3 in the new version of our manuscript, aiming for a more clear interpretation of the graph.

“In the Theta band, the representation of the spectrogram is stronger in the frontal lateral
regions of both hemispheres, more lateralized to the left, where language-related areas such as
Broca are found (Fig. 2.2 B; Wilcoxon test: z=12, n=12, p-value = 0.034).”
How was this set of electrodes selected? The p-value here is borderline, if more than one set of
electrodes was tested, this clearly is no longer meaningful. Also, the word “representation” is
something you can propose in the discussion, but it's not the data. What you probably mean to
say is that the spectrogram predicts those electrodes best, or that the correlation is highest for
those electrodes. It does not mean that this part of the brain “represents'' the spectrogram.
Indeed, low level features like that are likely best “represented” in the auditory cortex at a much
faster timescale. Why the theta (power?) is more robustly driven by the spectrogram features in
those frontal electrodes is worth a discussion, in the Discussion section.

Response: The electrodes were selected by visual inspection, based on the regions with higher
correlation values (symmetric on both hemispheres). These regions partially matched the
regions reported in [Etard2019, DiLiberto2015] and intracranial EEG studies [Tang2017,
Hamilton2018]. Nevertheless, the result does not critically depend on the exact electrode
selection. Aiming to clarify this valid reviewer's concern, we performed new experiments to
better demonstrate the mentioned effect. We repeated the analysis, but selected different
combinations of channels based on a different number of higher correlation values (and all
frontal lateral electrodes). The new results are depicted in the following figures.

Figure R2. Spectrogram response lateralization on the theta band. The top panel shows the average
correlation values distribution. The bottom panels show correlation distribution for left and right electrodes
indicated in the topographic figure, for the spectrogram model for 8, 10, 12, and 22 selected electrodes.
The electrodes were chosen in each case, as the ones presenting higher correlation values in the frontal
region for each hemisphere. A signed-rank Wilcoxon test was performed to compare the values obtained
in each hemisphere. The correlation values for the spectrogram show a significant lateralization effect
towards the left hemisphere in all cases. Significance: ** p-value < 0.01, *** p-value < 0.001.



Figure R3. Envelope response lateralization on the theta band. The top panel shows the average
correlation values distribution. The lower panels show the correlation distribution for left and right
electrodes indicated in the topographic figure, for the envelope model for 8, 10, 12, and 22 selected
electrodes. The electrodes were chosen in each case, as the ones presenting higher correlation values in
the frontal region for each hemisphere. A signed-rank Wilcoxon test was performed to compare the
values obtained in each hemisphere. The correlation values for the envelope show no significant
lateralization effect when considering the higher correlation values, but it does when considering all
electrodes in the frontal lateral region. Significance: n.s. p-value > 0.05, * p-value < 0.05.

Following the reviewer’s suggestion, we replaced the term ‘representation’ in the Results
section, and discussed it in the Discussion section, line 210.

“It is possible to observe a gradual lateralization effect from frontal electrodes in higher
frequency bands to more lateral in the Theta band (Fig. 2.2 A).” I am sorry, but I can’t see that in
figure 2.2A. And even if there was a subjective impression on those figures, colormaps can be
incredibly deceptive. I would like to see some sort of statistical analysis to support this
observation. Otherwise it's just tea leafing.

Response: Following this reviewer’s suggestions, we replaced our previous claim by “It is
possible to observe a lateralization effect in all frequency bands (Supplementary Fig. C.3).” in
lines 112-113 of the new version of our manuscript. Moreover to better back up our findings, we
performed a new analysis where we observed the same lateralization using the spectrogram
features in the other EEG frequency bands. In Figure. R4 we can observe that the lateralization
effect is significant across all frequency bands used for the analysis, with p-value lower than
0.0009 in all cases.



Figure R4. Spectrogram response lateralization across frequency bands. The top panels show the
selected number and positions of frontal electrodes with higher correlation values on each
hemisphere.The bottom panels show the difference in the correlation values between hemispheres.
Significance: *** p-value < 0.001.

“The number of subjects for which the obtained correlations were significantly different from the
random distribution in all folds was …” In the methods this test was performed separately per
electrode. But here there is only talk of subjects. Do you mean where at least one electrode
generated significant correlation? Or how else are these numbers established? Incidentally,
there are only 9 pairs of subjects. The numbers here suggest that this was done for 18 subjects.
Is that right? Also, it is not clear if this analysis is for the spectrogram features or the envelope.

Response: The statistical analysis made in Section 2.1 was done to assess the performance of
the model on each participant. This also allowed us to endorse the significance of the results
about the representation of acoustic features in the EEG signal. To that end, a permutation test,
described in Section 4.7.1, was performed for each electrode of each participant separately.
This test was repeated over the 5 folds of the cross-validation.

An electrode was considered to have a significant effect if its correlations passed the
permutation test in all folds. After this analysis, each electrode is marked as significant or
non-significant for each participant. To summarise this process for all the participants, we can
determine in how many participants each electrode was considered significant or not, where the
maximum possible value is 18, as the number of participants. The scalp plots from
Supplementary Figure D.1-C show the number of participants where the electrodes are
considered significant for the spectrogram model.

Figure R5. Spatial distribution of model significance across participants for every frequency band of the
spectrogram feature, corresponding to the first row of panel B. A permutation test was applied to each
electrode, fold, and participant (see Section 4.7.1). An electrode was considered as having a significant
effect if its correlations passed the test in all the folds. The scalp distributions show the number of



participants with significant results for each electrode. The maximum possible value was 18, as the
number of participants.

To summarise the results in the text, we averaged these values (i.e. the number of
significant participants per electrode) across electrodes, and presented them as the mean ±
s.e.m in lines 117-121.

“non-alterated evaluation set” I don't know what you mean by “alterated”. You mean “altered”?
What was altered in the rest of the data, but not on the “evaluation set”? And in the “random
permutation” what exactly was permuted? Details here matter. As with all random stats, if
correlation structure in the data is perturbed (except for the one specifically to be tested) the
Null distribution can be quite incorrect.

Response: We thank the reviewer for bringing up this important topic. In the previous version,
the “non-alterated evaluation set” refered to the “original data”. Please, find a more detailed
explanation of the permutation procedure below.

The input matrix for the model consisted of ( ) rows and ( )𝑁
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁
𝑡𝑖𝑚𝑒𝑠

× 𝑁
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

columns. Each sample corresponded to an interval where the participant had been
uninterruptedly listening to their partner speak for at least 0.6 seconds (condition E in our
manuscript). Using overlapped sliding windows with 1 time-point step, all the valid intervals
within each session were extracted (for each condition separately). Around 50,000 samples per
participant for the E condition were obtained (Fig. R6.A,B).

As the EEG and audio sampling rates were both 128Hz, each interval (or sample) of 0.6
seconds contained 77 time-points (n_times=77). In the case of the spectrogram, as there are 16
frequency bands, the n_times x features correspond to a 77 x 16 = 1232 vector.

The permutations test was implemented by making 3000 random permutations of the
input matrix. This analysis was performed for each participant, electrode and fold. The
permutations consisted only in rearranging the samples, i.e. assigning the EEG interval to a
different audio interval. Thus, these random permutations conserved the correlation structure
between subsequent time-points (Fig. R6.C). A similar procedure was also implemented in
[Desai2021] but with a much lower number of permutations (100).

The evaluation set kept its samples and time ordering, as in the original data.
Following the reviewer’s comment, we explain in more detail this procedure in the 4.6

and 4.7.1 section of our manuscript.



Figure R6. Schema of the definition of samples, valid samples, and permuted samples.

“Moreover, within the spectrogram, the more important features are the audio mel-bands
ranging from 583 to 1907 Hz, which correspond to the ones where human speech carries more
information.” How was this established? If Figure 2.2C shows TRF to different frequency bands,
they all look very similar. You would need some sort of statistical test to say one is bigger than
another, perhaps do stats across subjects.

Response: We thank the reviewer for this comment. To statistically support the claim, we
performed a threshold-free cluster-enhancement (TFCE) [Mensen2013] test on the mTRFs
across participants and identified the significant cluster of the averaged response shown in Fig.
2.3B (2.2C in the previous version of the manuscript). We used the 1-sample permutations test
implementation of MNE
(https://mne.tools/stable/generated/mne.stats.permutation_cluster_test.html).

The new Figure 2.3-C shows the resulting p-values, where a significant cluster is present
between 583 to 2281 Hz mel-bands, supporting our previous hypothesis.

We now include a new section in our manuscript, explaining the used methodology in
page 22-23 (Section 4.7.3).

“The mTRFs present an absence of response in any frequency band in both situations, and are
similar to the response to background noise when both participants are silent (Fig. 2.3 E). This
was confirmed by a pairwise comparison between the correlation coefficients from (S) and (S|B)
conditions with Silence.”
The lack of evidence for an effect is not the same as evidence for a lack of an effect. But that is
not even what is interesting in this experiment. Suppression does not need to be so strong as to

https://mne.tools/stable/generated/mne.stats.permutation_cluster_test.html


not have a response at all to self speech. Additionally, poor correlation with simultaneous
speaking may be due to noise in the EEG during speaking, which is substantial – something you
acknowledge later in the result section.

Rather, what you want to show is that the response is weaker, i.e. a contrast between panels C
and D. Namely, both are speaking, but the EEG response to the other speaker is stronger than
the EEG response to self speech. This analysis you do in fact perform a little later. It is the
central finding of the paper, as it controls for speaking noise in EEG, and shows an effect, rather
than arguing for a lack of an effect, which is always difficult to establish. And this begin the
“Fig. 2.4; S vs Silence: uncorrected p-value > 0.12 for all channels, mean uncorrected p-values
= 0.52; (S|B) vs Silence: uncorrected p-value > 5.3 × 10 −4 for all channels, mean uncorrected
p-values = 0.22” If you really want to show evidence in support of the Null hypothesis, you
should report Bayes factors.

Response: As the reviewer correctly stated, the comparison between panels C and D in Figure
2.4 are central to our manuscript, as those are the ones showing a much stronger response to
the other speaker audio compared to the self-produced speech. This is supported by other
results such as the comparison between panels D and E, Listening to the self-produced speech
while both are speaking (S | B) and Silence, where no significant differences between them
were found even though this could not be considered proof for lack of response, it shows a
response more similar to the silent stimulus.

We want to remark that we did not aim to, or could, prove a complete lack of response,
as we acknowledge that “the lack of evidence for an effect is not the same as evidence for a
lack of an effect”. However, we believe that it is important to highlight that we showed not only a
significative reduction of the response to the own speech in comparison with the response to the
other’s speech, as in previous studies, but also that the response to the own participant speech
is indistinguishable from Silence condition even with a stronger analysis approach (than ERPs).
Silence condition is presented as a negative control condition.

In the discussion, we present two alternative hypotheses, the SIS effect could be driven
by a corollary discharge mechanism or by a selective attention mechanism. Although we
acknowledge that our results are not conclusive, we argue that the full attenuation is more
consistent with a corollary discharge mechanism as proposed by the bibliography
[Scheerer2013,Wang2014]. This mechanism was largely explored in other motor-sensory
phenomena such as eye movements or tickles in which a complete attenuation is observed
[Blakemore1998,Thiele2002]. Although several works also proposed a corollary discharge
mechanism but observed on a partial attenuation [Curio2000, Houde2002], a partial attenuation
could be more consistent with a selective attention hypothesis, in agreement with auditory or
visual selective attention experiments [Power2012,Osullivan2015].

Regarding the noise, as discussed also by [Perez2022] the noise in this case would
possibly increase correlation instead of disrupting it since, if present, it is associated with one's
own speech.



Following this reviewer's comments, we changed the term ‘no response’, for ‘no
evidence for response’ in the results and method sections. Also, to better support our findings,
and following a later reviewer's recommendation, we added Cohen’s d-prime analysis in the
current version of our manuscript, and FDR analysis in the supplementary section.

“(Fig. 2.4; uncorrected p-values < 3.9x10-4 for 84 channels; mean uncorrected p-values < 4.4 ×
10 −4 )'' It is never clear in this paper how statistical comparisons have been done. Are
correlation values computed per subject and then the stats performed across subjects? The
degrees of freedom or the sample size needs to be reported for each statistical evaluation in the
results section. It’s hard to imagine small p-values with N=18 subjects, and Bonferroni correction
across 128 electrodes (as stated in the methods).

Response: The comparisons between the predicted and original signals were made for each
electrode separately. Correlation values were estimated for each fold, electrode, participant, and
condition separately. They were first averaged within folds yielding 18 values (one per
participant) per condition and electrode. These values were paired between conditions.

We perform a Wilcoxon signed-rank test between two conditions for each electrode
(using scipy.stats.wilcoxon function from scipy 1.7.1), resulting in 128 tests per pair of
conditions. We corrected the threshold of significance using the Bonferroni procedure (equal to
0.05 / 128) and we also added Cohen’s d-primes to express the effect sizes. The results were
presented as scalp distributions by illustrative means.

Regarding the low p-value, by observing Figure 2.4 one can appreciate that the
correlation values in (E | B) for the Theta band are on average around 0.2 for all electrodes,
whereas for (S | B) and Silence, the average is around 0.05. Given these considerable
differences, it is not unlikely that the Wilcoxon test would yield such values, even with N=18. We
now specified which function we used in the text. For a more practical example, we perform a
simple experiment with a sample of N=18 values in which the p-value is as low as:

from scipy.stats import wilcoxon

import numpy as np

n = 18

a = np.random.rand(n)

b = np.random.rand(n) + 2

z,p = wilcoxon(a,b)

print("p-value = %.7f"%p) # p-value = 0.0000076

Along the manuscript, four different statistical tests were used. In the present version of
our manuscript we expanded the explanation in sections 4.6 - 4.7 following the reviewer’s
comments. The statistical tests performed are the following:

1. The predictive capacity of each model (for each fold, electrode, and participant) was
assessed using the permutation test, as explained in section 4.7.1. This test was



performed using both the spectrogram and the envelope as input features and using the
different filter EEG frequency bands as target.

2. When comparing the lateralization effect, depicted in Figure 2.2B, we used a Wilcoxon
signed-rank test (scipy.stats module v1.7.1) to compare the correlation values obtained
for the left and right electrodes across participants (see section 4.7.2).

3. To identify the significant time-points and frequency bands for the fitting and prediction of
the EEG signal across participants, we used a 1-sample permutations test
(Threshold-Free Cluster Enhancement, TFCE) [Mensen2013] (see Fig. 2.3 and section
4.7.3).

4. For comparing the different listening conditions depicted in Figure 2.5, we used a
Wilcoxon signed-rank test between correlation values for each condition across
participants. We repeated this comparison for each electrode and corrected the
threshold for multiple comparisons using Bonferroni’s correction (see section 4.7.4.).

Also, comparisons rarely tell the reader what measures are being used? I am guessing mostly
correlation with theta band EEG predicted from spectrogram? Or from an envelope?

Response: As the reviewer correctly points out, values presented in Figures 2.3 and 2.4 are the
correlations measured using the spectrogram as an input feature and the EEG Theta band as
the target, as this model is the one that shows better results. The envelope signal was used with
the mTRF approach as a complementary analysis to compare with the literature, as it is
commonly used in several related works [DiLiberto2015, Etard2019, Desai2021], and helped us
validate that our model was properly working. The envelope is finally also used in the
Phase-Locking value (PLV) analysis (Figure 2.6).

Following the reviewer’s comments now we stated this more clearly in the Methods
section 4.7.4, and in the caption of Figure 2.5.

Also, it is never explained if TRFs are computed per subject, or together for all subjects.

Response: The TRFs are computed for each electrode and participant separately, obtaining
128 TRF time series, and thus 128 correlation values, per participant. In the new version of our
manuscript we further clarified this important point along with the statistical comparisons in the
results section (lines 89-90) and Methods section 4.6.

Now to the actual result shown in figure 2.4 “This was statistically confirmed by pairwise
comparison between the correlation values from (E|B) and (S|B) when both participants were
speaking simultaneously, … (Fig. 2.4; uncorrected p-values < 3.9x10-4 for 84 channels).”
To me, this is the central result of the paper, so it deserves some attention. The relevant scalp
plot in figure 2.4 looks rather noisy in the sense that neighbouring electrodes have quite different
p-values. Real brain activity is expected to have smoother spatial distribution due to the blurring
function of CSF and scalp. P-values also tend to be noisy, certainly on N=18. My first suggestion
is to do a proper multiple comparison correction, like FDR. That 84 of 128 channels are below
some arbitrary hand-picked p-value is not appropriate statistical comparison or reporting. The
second recommendation is to show the effect size, rather than p-values, for instance, Cohen’s



d-prime. That will be a lot more informative, and likely smoother in space. My guess is that with
N=18 and 128 electrodes, you are not adequately powered to detect statistically significant
differences.

Response: We thank the reviewer for taking special attention to the central finding of our
manuscript. We decided to choose Bonferroni’s correction as it is the most rigorous correction.
Although we acknowledge that Bonferroni assumes independence between electrodes, which is
more strict than what we have, having significant results with such correction seems very robust.

The FDR test is a less conservative approach, compared with Bonferroni’s correction,
that allows false-positives and it does not take into account the spatial dependence between
electrodes. Still, following the reviewer's suggestion, we performed a FDR and Cohen’s d’
analysis. The results are depicted in Figure R7 below. As expected, the scalp distributions of the
p-values present a similar pattern of results that the one present in Figure 2.5-A using
Bonferroni’s correction. As Bonferroni’s correction is more rigorous analysis we strongly believe
that it better represents our results. We decide to include the Cohen’s d-primes for the effect
sizes.

The 3.9x10-4 value result for correcting the threshold with Bonferroni (0.05 / 128). Now
we changed the reference to p-values as ‘uncorrected p-values’. We hope the procedure is
clearer now.

Figure R7. Comparison between listening conditions. Top left: Cohen’s d-prime for the distribution of
average correlation values of each electrode from different conditions in the Theta band (N=18). Top
Right: FDR corrected p-values and Bottom: Uncorrected p-values from a Wilcoxon signed-rank test,
channel-by-channel, between the average correlation values of each electrode from different conditions in



the Theta band (N=18; see Fig. 2.3). The p-values were corrected using FDR and non-significant
electrodes. The conditions are abbreviated as follows: Listening to external speech (E), Listening to
self-produced speech (S), Listening to the external speech while both are speaking (E|B), Listening to the
self-produced speech while both are speaking (S|B).

“This method averages single tone vectors in the complex plane, where the phase of those
vectors corresponds to the phase difference between signals at each time (t). ... This analysis
was repeated time-shifting the envelope signal … to find the time-lag when the synchronisation
between signals is maximum.”

PLV -- as introduced in Lachaux 1999 (reference below) – averages phase angle across trials. It
is not clear what was done here. What are “single tone vectors”? And over what are averages
computed, i.e. what exactly is t in equation (2)? Given the argument about time-shift, it seems
the average was taken across time samples within utterances? Multiplying the angle difference
with t makes little sense to me. Also, how are angles computed? Usually Hilbert transforms of
some band-passed signal. But here the stimulus (envelope?) does not seem to have been
band-passed? All this is rather unconventional. There is no reference provided to maybe see
some alternative definition of PLV. Also, in the conventional definition of PLV shifting two signals
by some time-lag will change the average of exp(phi1-phi2) but not its absolute value. I can’t
quite decide if the problem here is with the description of the method, or the method itself. As
written, I don't understand any of it.

Besides, the time-shift argument seems to suggest that you are measuring some sort of delay
correlation, very similar to the TRF. So I really do not see what the added value is of PLV. It
seems to me the paper would be better off without it.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873296/pdf/HBM-8-194.pdf

Response: We agree with the reviewer that the PLV has similar implications than the TRF. But,
being a different implementation, we had added it as a model free confirmation of the results
obtained by the TRF. In addition, it also brings information about the latency of the
synchronisation to the heard audio envelope. Please, find a more detailed explanation of the
PLV implementation and its methodological aspects below.

Single tone vectors referred to the “unit vectors”, meaning phase angles, represented as
unit vectors in the complex space. We replaced the term “single tone vector” to “unit vectors” in
the new version of the manuscript to follow a terminology consistent with the bibliography. The
phase of those unit vectors corresponds to the phase difference between the envelope and a
given electrode signal.

“...where the phase of those vectors corresponds to the phase difference between
signals at each time (t).” As the reviewer points out, "t" stands for time, but it is not multiplying in
the equation (2), but only a sub index indicating the phase difference between those angles at a
given time “t”. We changed the equation (2) for a more clear visualisation and interpretation. We
averaged these phase difference vectors across all the time samples for every condition as one
unique trial. For example, to calculate the phase synchronisation from time lag 0 in one

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873296/pdf/HBM-8-194.pdf


condition, all the samples of the EEG at that condition were taken, and used in the PLV equation
alongside with the samples from the envelope corresponding to the same time. To calculate the
phase synchronisation at time lag 200 ms, the EEG samples from that condition were used in
the PLV equation, but this time with the envelope signal delayed 200 ms.

This PLV implementation consists of only one trial using the samples corresponding to
each condition ((S), (E | B), …) on which we compare the phase of the envelope signal and the
EEG signal of each electrode. As the reviewer points out, this method is traditionally
implemented for epoched data, obtaining the synchronisation of multiple signals (often from
different sensors) over time along the trial. But also, it is often used as a connectivity measure,
indicating the synchronisation between pairs of signals. In that case, the PLV is computed for
pairs of signals across whole trials, and the results are then averaged over trials to yield one
measure of connectivity for each pair of signals. The analysis implemented in our manuscript is
similar to this one, but considering the whole signal as one trial. We used trials of 0.6 seconds of
envelope and EEG signals to compute the synchronisation over each trial, and then average the
results over trials that would have been possible. However, having a PLV value determined by
the whole signal as a trial rather than an average of averages seemed more rigorous.

As the reviewer suggests, the phase angles were computed using the Hilbert transform
of the Theta filtered signal of the EEG electrodes, and the Hilbert transform of the envelope
signal without any filter. It is true that this method traditionally filters both signals in the same
frequency bands, and we corrected that in the new version. We implemented a 3rd order
butterworth filter with scipy butter and filtfilt functions between 4 and 8 Hz on the envelope
signal (to prevent phase distortions in the envelope signal), and then extracted the phase from
the analytic signal with the Hilber transform. The results are consistent with our previous results,
but with higher values. We thank the reviewer for this suggestion, as it is an improvement that
brings a more correct implementation of our method.

With regards to the affirmation that a phase difference would not change the absolute
value of the average of imaginary exponentials, we are sorry but we are not sure we
understand. If two signals were pure sines with one frequency, then yes, the phase difference
would be constant, and the absolute value of the average of the imaginary exponentials (PLV)
would not depend on the phase difference. That would happen because all the imaginary unit
vectors would be aligned, and their average would have an amplitude of 1. However, with more
complex signals, time lags introduce changing correspondence between the two phase vectors,
and thus the phase differences over time, making the resulting imaginary unit vectors spread
through the complex plane, and the resulting average of those vectors would have different
absolute values.

The subscripts are very small in the equation, now we slightly changed the notation to
make it clearer:

I have not read the Discussion, so can not comment on appropriateness.



Response: We highly appreciate the reviewer’s time for reading the rest of the manuscript.
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Reviewer #2 (Remarks to the Author):

Title: “Speech-induced suppression during natural dialogues”
The authors present an EEG study where they assess the neural responses to spoken and
heard speech. They find strong TRF responses to heard but not spoken speech, suggesting
stimulus-induced-suppression. The experiment is interesting and the hypothesis reasonable.
The narrative is very good, making the manuscript very enjoyable to read. However, there are
substantial issues with the methodology and missing descriptions that make me doubt the
results and interpretation. Key pieces of methodology that have not been reported. A risky
double-filtering operation in preprocessing (as well as the details of those filters) was carried out
without justification. Very large EEG prediction correlations are measured (about 5 or 10 times
what is typically seen in the literature), without a proper explanation on how those correlations
were calculated. Furthermore, one key issue is the denoising. “Good” auditory responses likely
correlate with the removed “motor” activity. Could that explain why the TRF to produce speech is
very small? These main issues prevent publication of this work in its current form. The missing
methodological details might clarify the paper and convince me of the validity of the procedure.
However, as it stands, the paper cannot be accepted for publication in my view. Please find my
comments below.

Response: We greatly appreciate the reviewer’s time and constructive evaluation. We strongly
believe that the reviewer's comments have significantly improved the manuscript’s quality.
Please, find a point-by-point response to each of their comments below and the major changes
in the manuscript highlighted in blue.

Major comments
1. Results in Fig. 2.3B and D. Could it be that ICA is simply removing too much from the EEG
data? This is a very important issue that should be discussed, as it mines the whole point of the
paper.

Response: We thank the reviewer for pointing out this important issue. We do not restrict
movements during the task, aside from having an EEG cap, remaining seated, having a blanket
between them (to discourage facial and hand gestures) and asking to minimise unnecessary
movements. Thus, during preprocessing we aimed to remove as much unrelated noise as
possible without affecting neural signals.

We use Independent Components Analysis (ICA) mainly to remove eye-movements
(using EyeCatch [Bigdely-Shamlo2013] and ADJUST criteria [Mognon2011]) and discontinuities
that correspond to bad electrodes or isolated electrodes with high noise for an interval of time
(using ADJUST criteria [Mognon2011]). Both methods recommend that the researchers
supervise the selected components, and sometimes we include a rejected component, for
instance when it showed a peak in alpha frequencies. The same components were used for the
whole EEG recording, independently of whether the participant was speaking or listening, thus
we do not expect correlations with the spectrogram or the envelope for these components
introduced by bias on component selection.



We also removed other muscular artifacts. We identified these components as having
sharp spatial distributions located in the edgemost temporal electrodes (over the ears), with high
frequency spectra (typically flat or U-shaped spectra), and without a peak in alpha. These
components are usually just referred to as ‘muscle components’ in the bibliography [Tran2004,
Muthukumaraswamy2013, Jansen2020] and tutorials on artifact removal with ICA (for instance
https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html). They more likely capture neck or
jaw movements, but not lips or tongue. The lips and tongue movement certainly could have a
spectra more concentrated in lower frequencies, but an occipital-frontal dipole [Porcaro2015].
Furthermore, over the different articulators, the jaw is probably the one with lower correlations
with the speech spectrogram [Chartier2018]. Thus, we do not expect the ICA preprocess to
remove much of the spectrogram responses and thus introduce a potential bias towards lower
responses in the speaking condition. On the contrary, as we are not removing components
specifically related to tongue or lips artifacts, in the worst case, we could expect some
immediate increase in the response in that condition, as discussed by [Perez2022].

It is important to note that the artifact removal was performed in the continuous data,
before the separation into conditions. Overall, we removed 22 out of 128 components per
participant. 17.5 using EyeCatch and ADJUST, and 4.5 using the following criteria for muscle
artifacts: “spatial distributions with sharp peaks located in the edgemost temporal electrodes
(over the ears), with high frequency spectra (typically an U-shaped spectra), and without a peak
in alpha.”.

We updated the information of the artifact correction in Section 4.3, pages 18-19 .

2. Line 93: It’s unclear how such high prediction correlation values are obtained. Even the paper
cited by the authors shows maximum EEG prediction correlations of around 0.05 (not 0.5!). The
specific section of the methods does not clarify this aspect. That must be clarified.

Response: We thank the reviewer for pointing this out. Our prediction values are obtained by
computing the correlation between the real and the predicted EEG signal, for all the samples
from the corresponding condition (E: listening to the other participant speak for at least 0.6 s;
etc…). To do so we follow the following steps: First, an encoding model was fitted for each
participant and each electrode, obtaining one mTRF and a predicted signal for each electrode
and participant. Then, Pearson’s correlation values between the original and predicted signals
were computed, yielding one correlation value per electrode and participant. As this procedure
was repeated in a 5-fold cross-validation loop, the 5 correlation values of every electrode were
averaged to report one correlation for each electrode and participant. These fold-averaged
correlation values reached a maximum of 0.67 for one electrode of one participant, and they
were reported as a comparison to the results obtained in [Desai2021preprint], where correlation
values were displayed in Figure 2. From that plot, the maximum correlation value for one
electrode was approximately 0.5 (for the envelope feature). Moreover, we argue that it is
important to report maximum correlation values (over the electrodes) because it was not
expected that all the 128 electrodes have strong responses to the stimulus and thus, the effect

https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html


could be washed out by the average. We now included not only maximum values but also mean
values (even though mean values have the disadvantage of averaging over not-necessarily
relevant electrodes).

Di Liberto et al. (2015) presented correlation values obtained for a broad-band (1-15 Hz)
of around 0.03 for the envelope, and 0.04 for the spectrogram, but also presented results for
independent frequency bands, obtaining 0.08 and 0.09 respectively for the Theta band.
However, they decided to use the broad-band, given that relative differences between features
were preserved using separate bands or a broad-band.

In the published version of the Desai et al. (2021) paper, the correlation values
presented in the figures were normalised to the maximum possible correlation from the data
(and the figure changed), but the average uncorrected values were reported in the text. From
there, the average uncorrected correlation values from the TIMIT model were 0.26 for the
envelope feature, 0.31 for the pitch, 0.09 for the spectrogram, and 0.35 for what they called “Full
Model”, that includes envelope, pitch and phonetic features. The performance for the
spectrogram model in this case is strikingly low compared to the envelope performance
considering the precedent of Di Liberto et al. 2015 where the spectrogram model presented a
higher predictive power than the envelope. Our average correlation values were 0.26 for the
envelope, and 0.37 for the spectrogram. This increase was in agreement with [DiLiberto2015].
The greater predictive power for the spectrogram feature was also expected considering the
spectrogram carries more information about the stimulus than the envelope. The Movie Trailer
model presented average values of 0.07 and 0.05 respectively [Desai2021]. However, given the
nature of the stimuli that involves visual stimulation and sound effects, we think that the
comparison with the TIMIT model is fairer. The differences in this case are that TIMIT has clean
short pre-recorded phrases and we have unsubscripted dialogues. In that sense, the correlation
values of our work are similar for the envelope feature to the ones in [Desai2021] and greater
for the Spectrogram feature.

We acknowledge that our work shows significantly greater correlation values. The
uncorrected correlation values of the envelope were similar to those in Desai et al (2021)
[Desai2021preprint,Desai2021], but the ones for the Spectrogram were 4 times greater, than the
spectrogram results for previous work, and 1.5 times greater than the envelope result for Desai
et al (2021) [Desai2021preprint,Desai2021]. Also they followed the increased relationship that
the Spectrogram presents over the Envelope correlations in [DiLiberto2015], but [Desai2021]
showed a decrease in the spectrogram in relation to the envelope. First, it is worth mentioning
that there are only a few papers on this topic at the moment and they don’t fully agree. Both in
the results, the methods, and the stimuli. Thus, more work is needed in order to fully uncover
the impact of the different features and their interactions in the brain. We speculate that both the
methods and the stimuli could explain these differences. Regarding the methods, for instance,
using narrow frequency bands versus broader bands. And regarding the stimuli, for instance,
using natural stimuli in which participants have to act in consequence (with certain content and
timing), or the language that could favour one feature over the other.



Reference Database Input feature Target Uncorrected
Correlations

Di Liberto et al. (2015) Audiobook Envelope (1-15 Hz) 0.03 (1)

Di Liberto et al. (2015) Audiobook Spectrogram (1-15 Hz) 0.04 (1)

Di Liberto et al. (2015) Audiobook Envelope Theta 0.08 (2)

Di Liberto et al. (2015) Audiobook Spectrogram Theta 0.09 (2)

Desai et al. (2021) TIMIT Envelope (1-15 Hz) 0.26 (3)

Desai et al. (2021) TIMIT Spectrogram (1-15 Hz) 0.09 (3)

Ours Natural Dialogue Envelope Theta 0.26

Ours Natural Dialogue Spectrogram Theta 0.37

Ours Natural Dialogue Spectrogram (1-15 Hz) 0.29

Table R1. Comparison between uncorrected correlations in different studies
(1) See Figure 2 [DiLiberto2015]
(2) See Figure 3 [DiLiberto2015]
(3) See Page 8952 [Desai2021]

3. Line 310: So, does that mean that you re-filter data that was filtered already. That is
problematic. As you don’t report the details of the second round of filters, it is impossible for me
to estimate the impulse/step responses of the series of filters, which is worrying. Also, are we
talking about zero-phase shift filters? Please clarify.

Response: We thank the reviewer for their timely comment regarding the details of the filtering
process. As the reviewer correctly pointed out, we first apply a broad-band and a notch filter
(before ICA; see page 18), and then filter again in narrower frequency bands. For this, we use a
Minimum-phase lag causal filter (see page 19 and Supplementary Section F for further details).

Briefly, the reason why minimum phase filters were used is that non-causal zero-phase
filters would modify the temporal causality in the EEG signal, which would have considerable
and undesirable implications in the TRF fitting and the timing. According to [Etard2019] the TRF
results from causal and non-causal filters only slightly, with a delay in the response of around 50
ms for causal filters. In our case, we had a 100 ms difference between the two filters, as it can
be observed in the new Figure F.1 in the Supplementary section (also depicted below as R8).
Moreover, the linear phase filter and the causal filter presented opposed polarisations in the
mTRFs, where the causal filter showed results agreeing with the previous literature [Lalor2009,
Lalor2010, DiLiberto2015].



Figure R8. Average mTRF of all participants fitted using spectrogram features as input in the Theta
band from -300 ms to 400 ms as target. The top panel shows the mTRF when the EEG signal was
filtered using a causal filter. The lower panels show the same procedure when using non-causal zero
phase filters.

4. Was the data re-referenced to the mastoids (I assume so, but it’s not indicated in the text)?
The TRFs don’t show much polarization (how does the GFP look like?). Is that all that response
coming from the mastoids for some reasons? How do the results look like with a different
referencing.

Response: The data was referenced to linked-mastoids. Our TRF are similar to those in
DiLiberto et al. (2015), who also used mastoids as reference. Following the reviewer's
suggestions, we ran a new analysis where the data was re-referenced to the EEG average. The
procedure description and new results are now included in section G of the Supplementary
information. The resulting TRF are similar to those presented in Etard et al. (2019), who also
used average-reference, showing a high polarisation in the GFP peaks. Another observation is
that the predictive power in central channels drops significantly, as they are predominant in the
re-referencing to the average of all channels. Below, the mTRF obtained using the mastoid (top)
and average (bottom) are depicted for an easier comparison for the reviewer.



Figure R9 mTRFs for the spectrogram in the Theta band averaged across participants. The top panel
shows the mTRF for each electrode referenced to linked-mastoids, averaged across mel-bands (same
as Figure 2.3A). The position of each electrode is indicated by the scalp plot on the top-left corner. The
gray area on the bottom indicates the Global Field Power. The bottom panel shows the mTRF for each
electrode re-referenced to the average, and averaged across mel-bands (same as Supplementary
Figure G.1A). Scalp distributions at the time of the peak are presented on the top with the
corresponding times.

Other comments
5. Abstract. It is unclear what the authors mean with “better performances” (Stronger effects of
SIS?)

Response: We thank the reviewer for the comment. By better performance of the model, we
mean greater correlation values obtained from the encoding model, compared with the ones
obtained in other papers [Desai2021,DiLiberto2015]. In the present version of our manuscript
we added this clarification in line 8.

6. Line 79: It’s unclear if the authors intend to analyze perception only at first or production. I
assume perception, since the text says that they are trying to replicate previous work initially



(but the text does not indicate which exact previous work we should refer to among the many
ones cited above)

Response: As the reviewer correctly points out, our goal is to analyse only the perception of
speech. The first part of our manuscript aims to validate the performance of the encoding model
on our unscripted natural dialogues dataset.

As stated, we analysed the perception and aim to replicate diverse results from previous
work. We replicate results regarding predictive power of the model for the Envelope and
Spectrogram (and even Pitch) from [Desai2021,DiLiberto2015] (see Table R1). Also, regarding
the regions of higher representation (ie. regions with greater correlation values) similar to those
presented in Di Liberto et al (2015) were obtained. Moreover, the TRFs obtained in our work
resemble those known in the literature [Lalor2009,Lalor2010,DiLiberto2015]. Finally, by
analysing our data in frequency bands, we found analog results to the backward (decoding)
model presented by Etard et al (2019), showing greater acoustic stimuli representation in Delta
and Theta bands. We added more information in the Results section lines 95-98 to better clarify
this point.

7. Line 60: True, but is imprecise. The parameters are called TRF because they estimate the
TRF. But there are many ways to estimate a TRF. To be fair, even a cross-correlation is an
estimate of the TRF (even if less accurate). This is me being picky here. This one is not
important.

Response: Following this recommendation we further clarify this point in lines 62-66.

8. Fig. 2.2C. The ylabel is incorrect. I should be “Frequency (Hz)”

Response: We again greatly appreciate the reviewer’s careful read of the manuscript. We
correct this mistake in the new version.

9. Fig. 2.2B-Right. That is visually confusing and not convincing, honestly. But I won’t go into
detal until it’s clear why those prediction correlation values are so high

Response: In Fig 2.2 B the correlation obtained using a left and right set of electrodes is
depicted for the Envelope and Spectrogram features. Regarding the results for the envelope,
there is no significant difference between the correlation values obtained from the right and left
set of electrodes (Wilcoxon signed-rank test; Fig. 2.2B right panel). As pointed out before, in
question #2, these values are in a similar order of magnitude that the ones obtained in previous
related works [Desai2021]. Regarding the spectrogram, the correlation values obtained using
the right set of electrodes are significantly higher than the ones using the left set (Wilcoxon
signed-rank test; Fig. 2.2B left panel). In the new version of the manuscript, we updated the way
of selecting the channels for the lateralization comparison effect, by now choosing the 12
channels in the frontal region with higher correlation values for each hemisphere. We also
added a new section (C) in the Supplementary information with further details of the
Lateralization analysis performed.



10. Line 111 and 312. Broad ERP band? Do you mean “EEG”? Or simply broader-band?

Response: We thank the reviewer for pointing this typo out. We corrected to broad-band
(0.1-40 Hz) in the new version of the manuscript.

11. The caption of figure 2.2 could be clearer. It should stand on its own. Instead, it’s unclear
what “frequency band” refers to (in this case, EEG frequency band) and what the correlation is
calculated on.

Response: Following the reviewer’s suggestion, we split the previous Figure into the current
Figures 2.2 and 2.3, for easier interpretation. Also, following the reviewer’s suggestion, we
included further details in the caption of Fig 2.2 and 2.3 in the new version of the manuscript.

12. How were the electrodes selected for the lateralisation analysis

Response: Originally, the electrodes were selected by visual inspection, looking for the
electrodes that matched the higher regions in both hemispheres. In the new version of the
manuscript we updated this by selecting the electrodes separately for each hemisphere. We
selected the 12 channels in the frontal region with higher correlation values for each hemisphere
as explained in response 9. We include the details in the new Section C in the Supplementary
information.

13. Line 314: It’s fine that you explain that you used MNE for the filtering. However, you should
indicate the version of MNE, as well as all the details of the filters (not just what function you
used).

Response: We agree those details were missing. Now, the details of the filtering and the
packages and versions used are included in the new version of our manuscript in lines 363-373
and in Supplementary section F. We also would like to point out that all versions and
environment used to obtain the results reported in this manuscript are detailed in the repository:
https://github.com/jegonza66/SIS-during-natural-dialogue/

14. Line 309: What do you mean with “supervised by an expert”? Was that one of the authors?
Could you not simply say “manually detected”? Also, are there some parameters that one
should specify with those functions (as you did on line 303)? Keep in mind that this must be
replicable.

Response: We thank the reviewer for pointing out the replication of the results. As correctly
pointed out by the reviewer, the selection was supervised by one of the authors of the
manuscript. We corrected the statement in the new version and expanded on the independent
component selection criteria in the Section 4.3 (lines 348-362) (also in accordance with question
#1).

https://github.com/jegonza66/SIS-during-natural-dialogue/


15. Line 130: “An absence of response” s a tricky thing to say, statistically speaking. Maybe you
mean that no TRF component was significantly above chance?

Response: We thank the reviewer for this important observation. We referred to the lack of
significance in the correlation values. Now, we changed the statement for “no evidence of
response” in the new version, as well as we added Cohen’s d-prime analysis to assess the
effect size between the correlation value distributions in Standard deviation units.

16. Figure 2.3 should be improved from a graphical perspective (e.g., hard to read, labels not
aligned).

Response: We improved the quality and size of the labels in the new version of the manuscript.

17. How is the “silence” TRF calculated? i.e., what is the stimulus vector in the encoding model?

Response: The stimulus vector in the encoding model is extracted from the other participant’s
microphone in the time intervals when neither of the participants was speaking. The silence
interval was determined by the manual annotations that are provided in the dataset
[Gravano2023].

18. The TRFs look delayed compared to previous studies (using encoding models). The N1
usually emerges around 80ms, and the P2 around 140-160ms (in adults). However, the only
discussion about that seems to be on lines 115 and 204, where the TRF is compared with ERPS
instead.

Response: As stated in [Lalor2006,Lalor2010,Eingher2019,Crosse2016,Crosse2021], there is a
direct relationship between the mTRF and the ERPs. Their major differences being the
assumption of linear relationship between stimulus features and EEG signals, and isolating the
response to specific features entangled within a stimulus. It is in this sense that we compare the
obtained mTRFs to the evoked potentials from auditory stimuli.

Regarding the time delays, as previously stated in response 3 (and in the Methods in
lines 363-373 and Supplementary Section F), in order to filter the signal in different frequency
bands, linear phase filters were implemented to maintain the temporal causality of the signals.
In a previous work [Etard2019], they compared the results from causal and non-causal filters,
and obtained similar results but presenting a time delay of approximately 50 ms in the TRFs
from causal filters, compared to non-causal.

We incorporated these comments in the Introduction and the Results sections (lines
126-133). As mentioned before, we include a Filtering and Pre-Stimulus Onset section in the
Supplementary material section discussing the filtering impact.

19. Lines 186 and 205: That statement is incorrect. A few studies focused on the 1-15Hz band,
but there is a lot of variability in the field in this regard. Also, please note that on of the two
studies included as a reference to support that statement actually looked into the various
sub-bands. Furthermore, saying that theta-band shows “greater representation” of acoustic



features s debatable. You could say that the prediction correlations are larger than in other
bands. But that could mean many other more methodological things. Also, line 209: “main
frequency band” and “this could be due to the cortical entrainment effect”. All these statements
are vague and, frankly, it is unclear what the authors are trying to say.

Response: We thank the reviewer for their comments. From the bibliography we could find, the
works with EEG that used encoding models for continuous audio representation were the ones
cited [Lalor2009,Lalor2010,Desai2021,DiLiberto2015,Etard2019] and others that did not use
speech [OSullivan2015] or envelope/spectrogram features [Khalighinejad2017]. As correctly
pointed out, [DiLiberto2015] looked into different frequency bands, and obtained values 1.5
times greater for prediction correlations, when compared to the 1-15 Hz band, which concurs
with our statement regarding the reason for a performance improvement. [Etard2019] also
analyses the different frequency bands, but the performance in that work is computed for the
prediction of a Decoding model, estimating the audio envelope from the EEG signal.

Following this reviewer's comments, we now replace the expression “higher
representation” for “predictive power” as it was not what we aimed to state. In that regard, we
also changed the term “Main frequency band”.

Regarding the cortical entrainment effect, we meant to sustent the observed higher
correlations in the Theta band by recalling a well established effect of “cortical entrainment”
[Giraud2012, Poeppel2020], considering that the frequency of syllable pronunciation in english
is around 4-7 Hz [Ding2016], slightly below the syllable pronunciation rate in Spanish [Pellegrino
et al., 2011]. We further discussed this matter in the Discussion section lines 245-255 to make it
clearer.

20. Line 221. This is EEG. It is fine if the authors want to speculate on that, as long as it’s clear
that it is only a speculative reflection. However, I recommend not to go down that rabbit hole.
This is only EEG!

Response: We agree with the reviewer, nevertheless within the discussion we tried to link our
results with the existing bibliography. We rewrote the sentence in line 263-265.

21. Line 176. This paragraph is absolutely misleading. Those numbers are from different
metrics. As far as I understand, some of that work uses a re-scaled prediction correlation (based
on an ideal maximum estimated based on the trial-by-trial noise), while others do not. That
discussion has to be corrected and the methods regarding this specific paper should also be
much clearer about the procedure here.

Response: As correctly stated by the reviewer, [Desai2021] uses a re-scaled correlation,
whereas the other work does not. However, by analysing the plots in [Desai2021] we believe
that only the plots were corrected, and not the reported values in the text, as it doesn't seem
that the average of those plots would yield such low values as 0.26 for example. Also, when
referring to the figure, and in the figure caption, the authors always clearly stated “noise
ceiling-corrected correlation values”, whereas they do not make such a statement when
reporting the average values (“The average correlation value…”). In that sense, we believe that



the reported averaged values in the text correspond to the average of uncorrected correlation
values, presented in the pre-print figure.

In our case, just like [DiLiberto2015,Hamilton2018,Hamilton2020], the metric is the
Pearson correlation value, in our case averaged first across folds for every subject, then across
subjects for every channel. Then, all the values reported in that paragraph correspond to
Pearson correlation.

We better explained this comparison at the end of that paragraph in lines 218-221 in the
new version of our manuscript.

22. Line 192: That also depends on how the envelope and spectrogram are calculated.

Response: Both [DiLiberto2015, Desai2021] computed the spectrogram using 16 mel-bands
(as the envelope computed over the corresponding frequencies of each band), and 15
mel-bands respectively. There are no details in [Desai2021] about the computation of the
spectrogram. In our work we used 16 mel-bands following [DiLiberto2015].

23. What happens for pre-stim lags? It is unclear why that is not included. This is particularly
relevant as we are talking about speech production. Pre-stim responses would not only be
related to muscle movement and motion! That would also be a further validation on the author’s
assumption that their denoising is actually removing the motion/motor components.

Response: We thank the reviewer for this remark, as it is very accurate. This was originally
discussed only in the Supplementary Information (see supplementary section E). Indeed, the
pre-stimulus times in the EEG show no response whatsoever, either to the external stimulus or
to the self-speech (see Figure R10).

(E) (E | B)

Figure R10. TRF of the spectrogram model in the Theta band with pre-stim times, for 2 conditions:
Left: Only listening to external speech, Right: Listening to external speech while both are speaking.

For representation purposes, we have now updated all the corresponding figures in the
text presenting the mTRFs, to include the pre-stim time lags. However, the predictions from the
model were done using only positive times, to avoid providing the model with information from
future time-points.

24. I might have missed it. Is there a data sharing statement?



Response: Speech data was part of the UBA Games Corpus, which was already released in an
institutional public repository (https://ri.conicet.gov.ar/handle/11336/191235) [Gravano2023].
EEG data can be found in https://figshare.com/s/53bcdc00470c59e29605 [private link, the
permanent will be publish upon acceptance] and the code to replicate the results obtained in
this manuscript can be found in https://github.com/jegonza66/SIS-during-natural-dialogue/. We
include this information in the new version of our manuscript.

25. Some details are missing in the caption for Figure 2.5.

Response: Following the reviewer’s suggestion, we included more details in the caption of Fig
2.6 in the new version of the manuscript.
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Reviewers' comments:

Reviewer #1 (Remarks to the Author):

The authors have provided acceptable answer to my suggesfions and concerns.

Things that I sfill find a problemafic and which the authors may want to consider, for sake of their own 

reputafion and the benefit of the readers:

Stafisfical reporfing requires the degrees of freedom to each and every test. This is sfill not in the 

manuscript.

There are sfill several suggesfions for a lack of an effect, which minor word-smithing did not change. 

Reporfing Bayes Factors is really not hard to do. I have found this code easy-to-use: 

hftps://klabhub.github.io/bayesFactor/ It can compute the BF along with the p-values for most 

convenfional stafisfical tests.

Extensive explanafions are provided to reviewers in the response document, but appear to be missing in 

the manuscript. I suspect readers would appreciate many of these clarificafions as well. Consider 

including some of them.

Reviewer #3 (Remarks to the Author):

Title: “Speech-induced suppression during natural dialogues”

I appreciate the authors effort in addressing my previous comments. While some issues were addressed, 

the remains fundamental problems that, in my opinion, mine the validity of the analysis. I’ll include the 

main issues below.

Major comments

1. Filtering. I am afraid that the authors’ answer reinforces my concerns. I had previously highlighted the 

risks that come with filtering.

a. First, regarding the causal vs. non-causal filter. The authors show that the two filters lead to 

completely different TRFs. That is worrying and only highlights that the result seems to be largely 

dependent on the choice of filters. The authors show more than a simple shift, but an actual change in 

the polarity of the TRF. Again, that is worrying. Using a zero-phase shift filter (e.g., by using the same 

filter twice in opposite direcfions, with the funcfion filffilt) is typically done in the literature to preserve 

the latency. Since the consequence is that the TRF components will be “larger” (so, they may start rising 

before that is actually “true” in the neural signal), only the peak of the TRF components is usually 

studied, as the fiming of the peak is unaffected. Instead, using a causal filter changes that fime, which is 

a problem.

b. Some details of the filter are sfill missing. Nonetheless, I tried replicafing some of the filters in the 



study. The firs high-pass filter, for example, with an order of 16896, seem to correspond to worryingly 

delayed impulse responses. Could the authors provide the impulse responses of their exact filters (as 

well as complemenfing the descripfion of the filters in the manuscript – not that menfioning the 

tool/funcfion used is insufficient – one should be able to replicate the filter with whatever toolbox).

c. In my understanding, the authors insisted with refiltering the data mulfiple fimes, rather than fixing 

the issue. Again, that is worrying, as the negafive impacts of the filters will accumulate, as I explained in 

the previous review. The authors should report the impulse response of the individual filters and of the 

combined filters.

d. In sum, it is possible that the results are largely reflecfing the filter used (as showed by the authors 

themselves in the rebuftal lefter). As such, in addifion to fixing the issue and reporfing the informafion 

menfioned above, I suggest running the analysis with milder filters of different type (e.g., Bufterworth), 

as done in recent TRF studies.

2. The authors have not convinced be on the point of the predicfion correlafion values. EEG signals are 

mostly noise, so those numbers are not believable (I am referring to the uncorrected ones). I suggest 

analysing the listening porfion of the data as in previous studies to see if the different is really due to the 

sfimuli (as claimed by the authors) or to the filters and ICA used. So, running the analysis without ICA 

and with milder zero-phase shift filters, to rule out the likely possibility that the current results are driven 

by filtering arfifacts.

3. I have similar concerns regarding the ICA, but that is harder for me to evaluate without seeing the 

components removed and the resulfing EEG data.

Overall, I don’t find the results convincing, and instead they appear to be the result of methodological 

flaws. As always in science, I might be wrong. But this is my honest opinion on the current version of this 

manuscript.



Reviewer #1 (Remarks to the Author):

Comment 1: The authors have provided acceptable answer to my suggestions and
concerns.

Things that I still find a problematic and which the authors may want to consider, for sake of
their own reputation and the benefit of the readers:

Response 1: Thanks for the positive comments, we address the remaining issues below,

Comment 2: Statistical reporting requires the degrees of freedom to each and every test.
This is still not in the manuscript.

Response 2: Thanks to the reviewer’s observation, we now included the degrees of
freedom (d.f.) in the Methods section and every statistical statement on pages 7, 8, and 11.
Briefly, for the comparison of the correlation values between conditions (Fig. 2.5A) the d.f. is
also equal to 17 (considering 18 participants), for each comparison (before multiple
comparisons correction) in the TFCE approach (Fig. 2.3B) the d.f. is equal to 17 (considering
18 participants), and for the lateralization analysis (Fig. 2.2B) the d.f. is equal to 11
(considering 12 channels). Finally, for the permutation test to assess the model significance
it is not correct to report a d.f. because we are not using any defined null distribution, instead
we reported the number of observations (when mentioned) and the number of permutations
(in Methods section).

Comment 3: There are still several suggestions for a lack of an effect, which minor
word-smithing did not change. Reporting Bayes Factors is really not hard to do. I have found
this code easy-to-use: https://klabhub.github.io/bayesFactor/ It can compute the BF along
with the p-values for most conventional statistical tests.

Response 3: We appreciate the reviewer's feedback and the repository link. We include the
Bayes Factor analysis [Kass and Raftery, 1995; Hoijtink, et al., 2019] in (Figure 2.5) and
discuss pages 9 and 10. From this analysis, we did not find a conclusive result that can
support the complete inhibition of the response of one's own speech. However, there is a lot
of convergent evidence and at least a strong attenuation. We changed the manuscript in
accordance.

In Figure R1 we contrast the evidence in favor of the alternative hypothesis (H1),
which is that there is an effect (a difference between conditions), and in favor of the null
hypothesis (H0), which is the absence of the effect. The evidence in favor of one hypothesis
over the other is estimated by the Bayes Factors (BF10 and BF01 respectively). In the first
two rows of each panel, we can observe that there was a larger effect of the Listening
condition over the others. Including a larger response of the Listening alone versus Listening
while both are speaking that could be explained by the larger number of samples (see Supp.
Fig. H.1). These results are consistent with the results already presented in the previous
version of the manuscript.

In the second two rows we compare the Speaking conditions (Speaking alone: (S)
and Speaking while both are speaking (S|B)) between them and with the Silence condition.
When comparing (S) versus Silence we observed that all channels favor the H0, and there is
substantial evidence in 58 channels. In the case of (S|B) versus (S) or Silence we find

https://klabhub.github.io/bayesFactor/


mainly channels in which the evidence favors H0 but also channels in which the evidence
favors H1. These last channels are mainly located in the fronto-temporal regions and could
be due to the presence of signals of the speech of the other participant in their own channel.

Overall, these results support previous findings and stress the evidence in favor of
the lack of response in the Speaking condition. Nevertheless, as the magnitude of the BF01s
is small and there is also some evidence in favor of H1, the results are not conclusive and
we will replace the “lack of response” with a “very strong attenuation of the response” that
could be supported by different approaches (TRF and PLV) and different visualizations (TRF
and correlations) and statistics (permutation test of each condition and signed-rank, Cohen’s
d prime, and Bayes Factors between conditions).

A) 0.0 (white) and 2.0 (dark red) B) 0.0 (white) and 2.0 (dark red)

Figure R1: Bayes factors analysis between the hypotheses that there is or there is no
difference between conditions (H1 or H0 respectively): A) log10(BF10), B) log10(BF01). We
set the map limits between 0.0 (white) and 2.0 (dark red) which correspond to Positive
evidence above 0.0 and decisive evidence above 2.0.
The Bayes Factor was used in the paired situation using functions from the Bayes factor
library for Matlab (https://github.com/klabhub/bayesFactor).

References:
[1] Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Soc. 90, 733-795 (1995).

https://doi.org/10.1080/01621459.1995.10476572
[2] Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing hypotheses

using the Bayes factor. Psychol. Meth., 24(5), 539–556.
https://doi.org/10.1037/met0000201

Comment 4: Extensive explanations are provided to reviewers in the response document,
but appear to be missing in the manuscript. I suspect readers would appreciate many of
these clarifications as well. Consider including some of them.

Response 4: Thanks for the careful reading, we tried to balance the information and
readability, and we included many aspects of the reviewer’s response to the supplementary
material. Now, we revised the manuscript trying to include some comments and references
that we had left out before. Firstly, we expand the explanation on how the correlation values
were summarized across participants and electrodes (see Methods>Model Performance)

https://github.com/klabhub/bayesFactor
https://doi.org/10.1080/01621459.1995.10476572
https://psycnet.apa.org/doi/10.1037/met0000201


that completes the explanation on how they were calculated and the discussion on how
other researchers estimated them (and why that does not apply here). Secondly, we now
included a figure showing the mTFR to the 1-8 Hz band with a discussion about the filters
implemented, that expands the response on analyzing different frequency bands and Theta
in particular. Thirdly, in the current version, we included the condensed explanation on the
model and the permutation in Supplementary Section I with the Figure that we prepared for
our previous responses, accompanying the explanations on Methods > Encoding models
and Methods > Model’s performance. Fourthly, we rewrote the Results section to include the
Bayes Factors analysis, with its corresponding explanation in Methods > Models’
comparison Methods subsection, and we added a comment on these results in the
Discussion section. Finally, we added a new supplementary material on different filters and a
subsection in the Discussion with a presentation of methodological decisions and their
implications (ICA, filters, and how the correlation values are calculated).

Reviewer #2 (Remarks to the Author):

Comment 1: Title: “Speech-induced suppression during natural dialogues”
I appreciate the authors effort in addressing my previous comments. While some issues
were addressed, the remains fundamental problems that, in my opinion, mine the validity of
the analysis. I’ll include the main issues below.
Major comments
1. Filtering. I am afraid that the authors’ answer reinforces my concerns. I had previously
highlighted the risks that come with filtering.
a. First, regarding the causal vs. non-causal filter. The authors show that the two filters lead
to completely different TRFs. That is worrying and only highlights that the result seems to be
largely dependent on the choice of filters. The authors show more than a simple shift, but an
actual change in the polarity of the TRF. Again, that is worrying. Using a zero-phase shift
filter (e.g., by using the same filter twice in opposite directions, with the function filtfilt) is
typically done in the literature to preserve the latency. Since the consequence is that the
TRF components will be “larger” (so, they may start rising before that is actually “true” in the
neural signal), only the peak of the TRF components is usually studied, as the timing of the
peak is unaffected. Instead, using a causal filter changes that time, which is a problem.
b. Some details of the filter are still missing. Nonetheless, I tried replicating some of the
filters in the study. The firs high-pass filter, for example, with an order of 16896, seem to
correspond to worryingly delayed impulse responses. Could the authors provide the impulse
responses of their exact filters (as well as complementing the description of the filters in the
manuscript – not that mentioning the tool/function used is insufficient – one should be able to
replicate the filter with whatever toolbox).
c. In my understanding, the authors insisted with refiltering the data multiple times, rather
than fixing the issue. Again, that is worrying, as the negative impacts of the filters will
accumulate, as I explained in the previous review. The authors should report the impulse
response of the individual filters and of the combined filters.
d. In sum, it is possible that the results are largely reflecting the filter used (as showed by the
authors themselves in the rebuttal letter). As such, in addition to fixing the issue and
reporting the information mentioned above, I suggest running the analysis with milder filters
of different type (e.g., Butterworth), as done in recent TRF studies.



Response 1: We thank the reviewer for their careful reading, please find point-by-point
responses below. We hope to dispel the reviewer's doubts.

First of all, all the filters are applied to the continuous data, and the conditions correspond to
small cropped partitions of this data. Thus, alterations in the signal of interest and the
correlations should be observed in all the conditions. Then, in Supp Fig F1 (causal vs
non-causal) we showed a displacement of the signal, but in both situations the response is
clear and the effects are present.

(a. / d.) The reviewer says that the displacement of the signal of interest when comparing
causal and non-causal filters is “... worrying and only highlights that the result seems to be
largely dependent on the choice of filters” As it can be seen in the figures below, regardless
of the filters applied, the correlation values (see Table R2) as well as the scalp distribution of
the TRF are the same. Only the latencies of the TRF peaks change. In the manuscript, we
rephrased the statements on the latencies, the only important message is that there is no
signal observable before zero and that the most relevant information is in the first 200 ms.
We think that the exact latencies are not really relevant to our results, and the take-home
message is that when applying non-causal filters the audio samples from the future are not
used for the prediction of the EEG sample at time zero. But most importantly, The statistical
tests that endorse our main results are based on the correlation values obtained from the
model (not the TRFs), and as it can be seen in the figure below, those values are robust to
the different filtering methods proposed by the reviewer.

Filter Frequency band Condition Correlation

FIR Theta All listening: ‘(E)’ 0.367 ± 0.032

FIR Theta All speaking: ‘(S)’ 0.020 ± 0.005

Butterworth Theta All listening: ‘(E) + (E|B) + Silence’ 0.333 ± 0.029

Butterworth Theta All speaking: ‘(S) + (S|B) + Silence’ 0.014 ± 0.005

FIR Theta All listening: ‘(E) + (E|B) + Silence’ 0.308 ± 0.029

FIR Theta All speaking: ‘(S) + (S|B) + Silence’ 0.013 ± 0.005

Butterworth 1-8Hz All listening: ‘(E) + (E|B) + Silence’ 0.301 ± 0.027

Butterworth 1-8Hz All speaking: ‘(S) + (S|B) + Silence’ 0.022 ± 0.005

FIR 1-8Hz All listening: ‘(E) + (E|B) + Silence’ 0.276 ± 0.028

FIR 1-8Hz All speaking: ‘(S) + (S|B) + Silence’ 0.040 ± 0.009

Table R1: Correlations values for the different combinations of filters and frequency
bands. The FIR filter corresponds to the causal finite-impulse response filter implemented
in our work, and described in the manuscript. The Butterworth filter is a non-causal 3rd
order Butterworth filter suggested by the reviewer.



Figure R2: Correlation values and TRFs obtained from different filtering methods, and
over All Listening ((E) + (E|B) + Silence) and All Speaking ((S) + (S|B) + Silence)
conditions. The FIR filter corresponds to the causal finite-impulse response filter
implemented in our work, and described in the manuscript. The Butterworth filter is a
non-causal 3rd order Butterworth filter suggested by the reviewer.

Then the reviewer states that “Since the consequence is that the TRF components will be
“larger” (so, they may start rising before that is actually “true” in the neural signal), only the
peak of the TRF components is usually studied, as the timing of the peak is unaffected”. As
mentioned before, we are not interested in the exact timing (other than checking that the
information from the future is not relevant). But also, we are in agreement with Etard et al.
(2019) (see Figure 7 in Etard et al., 2019) where it is possible to see how the timing of the
TRFs from causal filters is affected by a delay of approximately 50 ms, and not a broadening
of the TRF, as stated by the reviewer.

(a. / b. / c.) The initial filters are broad enough (0.1 and 100 Hz) and applied to continuous
data to prevent significant alterations in the ERPs. The successive filtering of causal filters is
actually recommended rather than accumulating negative impacts as stated, for instance, in
the EEGLAB web page (https://eeglab.org/others/Firfilt_FAQ.html). To apply a band pass
filter, it is recommended to first apply a high pass filter and then a low pass filter. The filters
applied in the preprocessing instance were all zero-phase non-causal filters, applied
following the instructions of the EEGlab toolbox (Figure R3 presents the impulse response of
both filters and the combination). Unfortunately, we do not have the raw data to undo the
initial [0.1 100]Hz filters, but considering how broad the filters were and consistent with the
recommendations from the EEGlab toolbox among others, we have no reason to doubt our
results.

https://eeglab.org/others/Firfilt_FAQ.html


Figure R3: Impulse response of the initial broad filters.

The impulse response of the causal filter (in the Theta band) is presented in Figure R4A, but
it was not combined with the impulse response of the previous filters because those were
non-causal filters applied in both directions whereas this is a causal filter applied forward. To
address the possibility of a “worryingly delayed impulse response” being introduced by the
causal filters, we replicated the main analysis of the manuscript but in this case, using time
windows centered in the past and in the future. We used non-overlapping time windows of
0.6s wide centered from -3.6s to 3.6s. A clear peak in the correlation is observed in the
window centered around zero and, being a causal filter, it is reasonable to also observe an
increase in the correlation before time zero as some of the past could influence the
prediction (Figure R4B). No sign of any large introduced delay was observed.

A) B)

Figure R4: A) Impulse response of the causal filter in Theta band. B) Mean correlation
values and standard deviation using the spectrogram features as input and filtering in the
Theta band with causal filters.



Comment 2: 2. The authors have not convinced be on the point of the prediction correlation
values. EEG signals are mostly noise, so those numbers are not believable (I am referring to
the uncorrected ones). I suggest analysing the listening portion of the data as in previous
studies to see if the different is really due to the stimuli (as claimed by the authors) or to the
filters and ICA used. So, running the analysis without ICA and with milder zero-phase shift
filters, to rule out the likely possibility that the current results are driven by filtering artifacts.

Response 2: When revising previous studies we find similar correlation values for instance
in [Desai 2021 preprint] and [Desai 2022] (please see the uncorrected correlation values
mentioned in the text). Due to the nature of our stimuli, natural dialogues, we cannot run
multiple repetitions of the same stimuli as in passive listening, which are necessary to
estimate the ceiling corrected correlation values, as discussed in the Discussion section.

We are not sure what the reviewer refers to when suggesting ”... analysing the listening
portion of the data as in previous studies to see if the different is really due to the stimuli (as
claimed by the authors)” because that is exactly what we do in Figures 2.3, 2.4 A, 2.6 A and
then compare with the portions of the data in which the other was speaking, both are
speaking, or both are silent in Figures 2.5. Nevertheless, showing larger correlation values in
natural dialogues in comparison to passive listening is not the point of this study and we
agree with the reviewer that we can not demonstrate here that difference. We are running a
different set of experiments to address that question.

Finally, as we mentioned before, unfortunately, we do not have the raw data to undo the ICA
step and compare. Nevertheless, in the manuscript, we argue why we think it could not
produce the pattern of responses presented here. Please, find a discussion on the filters in
the previous response.

Comment 3: 3. I have similar concerns regarding the ICA, but that is harder for me to
evaluate without seeing the components removed and the resulting EEG data.

Response 3: ICA is a common approach for removing eye movements and noise from the
EEG signal, please, find a detailed explanation of how it was done in the previous response
and in the current version of the manuscript (section 4.3). Now, the reviewer can also find
some examples of the scalp distributions below.

Horizontal EM Vertical EM Blinks Discontinuities “Jaws”

s24-1 s24-1 s24-1 s24-1 s24-1

IC: 8 IC: 88 IC: 2 IC: 22 IC: 86



Horizontal EM Vertical EM Blinks Discontinuities “Jaws”

s30-2 s30-2 s30-2 s30-2 s30-2

IC: 30 IC: 9 IC: 7 IC: 36 IC: 64

Moreover, it is clear that any correlation with muscular artifacts would have an
immediate impact on the EEG signal, resulting in responses around t=0, but not in later
times, where we are focusing our analysis. Also, the response of the EEG to auditory stimuli
does not necessarily correlate with the muscular artifacts of the production. In that sense,
the response to auditory stimuli would not match the muscular artifacts neither in time nor in
shape, so we don’t see the problem with this methodology.

We are not sure how the reviewer expects that removing ICs with that procedure
affects the results in line with our observations. It would be great to have some references to
follow.

Comment 4: Overall, I don’t find the results convincing, and instead they appear to be the
result of methodological flaws. As always in science, I might be wrong. But this is my honest
opinion on the current version of this manuscript.

Response 4: We appreciate the honest concerns of the reviewer, and we learned a lot by
responding to them. We do our best to respond to many of them during the iterations and
include their concerns in the paper for the readers to judge although we do not agree with
many of them. Nevertheless, we sincerely think there is enough evidence to support our
claims.



REVIEWERS' COMMENTS:

Reviewer #3 (Remarks to the Author):

I appreciate the direct answer. The reply clarified some of my concerns, such as the little interest in 

the specific latencies, in this paper (but note that the readers might use that information in future 

work nonetheless). I remain doubtful on some points, such as whether correlation values around 0.4-

0.5 are meaningful. I appreciate all the work done by the authors to address my comments. At this 

stage, we agree to disagree on such points, which is fine. I'll leave this to the editor and, in case of 

publication, to the readers. Again, I think the authors did a great job with this review process, even 

though not all comments could be addressed.
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