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Supplementary Note 1: Data synchronization

Supplementary Figure 1: Recording and synchronization of EEG and audio channels.
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Supplementary Note 2: Lateralization

Supplementary Figure 2: Correlation distribution for left and right electrodes indicated in the topographic figure, for the
spectrogram model for 8, 10, 12, and 22 selected electrodes. The electrodes were chosen in each case, as the ones presenting
higher correlation values in the frontal region for each hemisphere. A signed-rank Wilcoxon test was performed to compare
the values obtained in each hemisphere. The correlation values for the spectrogram show a significant lateralization effect
towards the left hemisphere in all cases. Significance: ** p-value < 0.01, *** p-value < 0.001..

Supplementary Figure 3: Correlation distribution for left and right electrodes indicated in the topographic figure, for
the envelope model for 8, 10, 12, and 22 selected electrodes. The electrodes were chosen in each case, as the ones presenting
higher correlation values in the frontal region for each hemisphere. A signed-rank Wilcoxon test was performed to compare
the values obtained in each hemisphere. The correlation values for the envelope show no significant lateralization effect
when considering the higher correlation values, but it does when considering all electrodes in the frontal lateral region.
Significance: n.s. p-value > 0.05, * p-value < 0.05.
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Supplementary Figure 4: Correlation distribution for the left and right electrodes indicated in the topographic figure,
using the spectrogram as input for the model, repeated for all frequency bands. The electrodes were chosen in each case
as the 12 presenting higher correlation values in the frontal region for each hemisphere. A signed-rank Wilcoxon test was
performed to compare the values obtained in each hemisphere. The correlation values for the spectrogram show a significant
lateralization effect towards the left hemisphere in all cases. Significance: *** p-value < 0.001.
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Supplementary Note 3: Other features

The voice Pitch was calculated using Praat software,1 through a Python library (Praatio). Limit values

for pitch computation were set for men between 50 Hz and 300 Hz and for women between 75 Hz - 500

Hz, and the silence threshold value for pitch calculation was set to 0.03 of the maximum amplitude of

the audio signal. The resulting pitch for each participant was then downsampled to 128 Hz similarly

to the other variables. It should be noted that in the speech samples, there are moments of silence,

either between or within words, and in those moments pitch is not defined. For this reason, and in

order to perform an analysis like the one implemented with the audio envelope (which is always defined),

the missing values were completed with 0. In contrast with our results, previous studies that explore

the representation of speech acoustic features in the brain found a relatively higher importance of the

pitch. But, those studies were performed in English where there is a stronger connection between pitch-

accent and discourse meaning than in Spanish. Instead, the latter uses word order to express information

structure and to convey discourse prominence.2

The shimmer represents the amplitude variation of the audio signal over time. It was computed using

Praat software, through Parsemouth Python library.3

Supplementary Figure 5: Summary heatmaps for the correlation values (A) and the statistical significance (B) averaged
across channels, for each frequency band and feature. (C) Spatial distribution of model significance across participants for
every frequency band of the spectrogram feature, corresponding to the first row of panel B. A permutation test was applied
to each electrode, fold, and participant (see Section 4.7.1). An electrode was considered to have a significant effect if its
correlations passed the test in all the folds. The scalp distributions show the number of participants with significant results
for each electrode. The maximum possible value was 18, as the number of participants.

5



Supplementary Note 4: Pre-stimulus onset

Figure 6 shows the mTRFs as a traditional ERP response. For this analysis, we used the same 0.6 s for

the main analysis, but predicted the EEG sample corresponding to 0.4 s instead. In that way, the audio

feature samples of the last 0.2 s were pronounced after the time point of the EEG signal that we’re aiming

to predict, and thereby could have no causal connection. As the time axis represents the time elapsed

between the pronunciation of the audio features and the time point from the EEG signal being predicted,

such timelags correspond to the negative values in the axis. As expected, we can see that those time lags

show no response in the EEG to the input feature, except for around 20 ms before the time 0. This can

be explained by the fact that the contiguous samples of the audio envelope, and hence the audio features,

have a temporal correlation to one another, making the model capture a response to a temporal time lag

because of the similarity to the samples of that feature after the onset time.

Supplementary Figure 6: mTRFs as ERP with negative timelags. The shaded grey times correspond to time lags with
no causal connection to the EEG signal. In red, is the mean decorrelation time of the Envelope of the listened audio signal.
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Supplementary Note 5: Signal filters

As explained in the Methods section, the filters applied to band-pass filter the EEG signals were causal

FIR filters using the window method.4 The parameters were set to use a ’hamming’ window, to pad

the edges with the signal edge values, and to introduce a ’minimum’ phase lag in the causal filter. The

Hamming window width was 0.0194s pass-band ripple and 53 dB stop-band attenuation.

The reason why minimum phase filters were used is that non-causal zero-phase filters would modify

the temporal causality in the EEG signal, which would have considerable and undesirable implications

in the mTRF fitting and timing. According to,5 the mTRF results from causal and non-causal filters

only slightly differed by delaying the response around 50 ms for causal filters. In our case, we had

approximately a 100 ms difference between the two filters (see below). Moreover, the linear phase filter

and the causal filter presented opposed polarisations in the mTRFs, where the causal filter showed results

agreeing with the previous literature.6–8

Supplementary Figure 7: Average mTRF of all participants fitted using spectrogram features as input in the Theta
band from -300 ms to 400 ms as target. The top panel shows the mTRF when the EEG signal was filtered using a causal
filter. The lower panels show the same procedure when using non-causal zero-phase filters.

Delta Theta Alpha Low Beta Broad

Lower transition (Hz) 1 2 2 3.25 -

Upper transition (Hz) 2 2 3.25 3.4.75 10

Filter length (samples) 1691 845 845 521 169

Supplementary Table 1: Filter parameters.
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Effect on results

To assess the robustness of the results and to compare them with previous work, we repeated the analysis

using combinations of dialogue conditions instead of each condition separately. This way, the "Silence"

intervals would also be considered in the encoding model, as is the case in most of the previous work.

Filter Frequency band Condition Correlation

FIR Theta Listening (E) 0.367 ± 0.032

FIR Theta Speaking (S) 0.020 ± 0.005

Butterworth Theta All listening: (E) + (E|B) + Silence 0.333 ± 0.029

Butterworth Theta All speaking: (S) + (S|B) + Silence 0.014 ± 0.005

FIR Theta All listening: (E) + (E|B) + Silence 0.308 ± 0.029

FIR Theta All speaking: (S) + (S|B) + Silence 0.013 ± 0.005

Butterworth 1 - 8 Hz All listening: (E) + (E|B) + Silence 0.301 ± 0.027

Butterworth 1 - 8 Hz All speaking: (S) + (S|B) + Silence 0.022 ± 0.005

FIR 1 - 8 Hz All listening: (E) + (E|B) + Silence 0.276 ± 0.028

FIR 1 - 8 Hz All speaking: (S) + (S|B) + Silence 0.040 ± 0.009

Supplementary Table 2: Correlations values for the different combinations of filters and frequency bands. The FIR filter
corresponds to the causal finite-impulse response filter implemented in our work, and described in the manuscript. The
Butterworth filter is a non-causal 3rd order Butterworth filter.
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Supplementary Figure 8: Correlation values and TRFs obtained from different filtering methods, over All Listening
((E) + (E|B) + Silence) and All Speaking ((S) + (S|B) + Silence) conditions. FIR corresponds to the causal finite-impulse
response filter implemented in our work, and described in the Methods section. Butterworth corresponds to a non-causal
3rd order Butterworth filter. The difference between causal and non-causal filters affects the timing on which the signal will
present the most prominent activity, so the time windows in each case were determined to capture the effect on the TRFs.
The time windows of TRFs corresponding to the Butterworth filters (non-causal) are from -0.3 to 0.3 s. The time windows
corresponding to the causal filters are from -0.1 to 0.5 s.

From Table 2 and Figure 8 we can see that the correlation values and TRF amplitude are robust to

the filters used as in all scenarios, the SIS effect seems to be present.
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Supplementary Note 6: Re-referencing

In this work, the data was referenced to linked-mastoids, and the resulting mTRF are similar to those

presented in,8 which also used mastoids as reference. We repeated the analysis for the spectrogram model

in the Theta band for the listening (E) condition, re-referencing the EEG signal to the EEG average. The

resulting mTRF looks like those presented in,5 who used average-reference, showing a high polarization

in the peaks (Fig. 9 A). However, the predictive power in central channels drops significantly (Fig. 9 B),

as they are predominant in the re-referencing to the average of all channels.

Supplementary Figure 9: Re-referencing responses to the average. Panel A shows the mTRF for each electrode re-
referenced to the average of electrodes, and averaged across mel-bands. The position of each electrode is indicated by the
scalp plot in the top-left corner. Scalp distributions at the time of the peak are presented on the top with the corresponding
times. Panel B shows the scalp distribution of the correlation values.
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Supplementary Note 7: mTRF amplitude

Repeating the encoding model analysis with the spectrogram in the Listening situation, using the whole

data but partitioned in subsets of 2000 samples for the training set, the resulting mTRFs present a

decreased amplitude. This could be due to the fact that now, each fold contains fewer and different

samples, making it more sensitive to “bad” subsets, in which the linear relationship between the envelope

and the EEG signals was null or with different patterns. Larger partitions would be more robust in this

sense, making it more probable for the dynamics of the mTRFs to emerge with more samples. Averaging

the model weights over these subsets, which are all averaged equally could significantly affect the resulting

mTRFs

Supplementary Figure 10: TRFs obtained from the Spectrogram feature to the Theta band for the Listening condition
using subsets of approximately 2000 samples for the training set.
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Supplementary Note 8: False-Discovery Rate (FDR) correction

Supplementary Figure 11: Comparison between listening conditions. False-Discovery Rate (FDR) corrected p-values
from a Wilcoxon signed-rank test, between the average correlation values of each electrode from different conditions, in the
Theta band (N=18)
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Supplementary Note 9: Alpha selection

Ridge regression has a single hyperparameter, alpha, which was tuned for each subject and feature

separately. The values that this parameter takes have direct implications on the adjustment of the

weights of the model, and therefore, on the predictions made by it. Very small alpha values would lead

to overfitting the model to the training data.9,10 Also, as the response from the EEG signal to the

continuous stimuli is analyzed through the mTRFs, minimizing the effects of individual participants and

spurious noise by smoothing the weights is very important, not only to have more interpretable and

comparable mTRFs, but also, to produce a model that generalizes better.9,10 On the other hand, with

very large values, the minimization of the Equation 1 would be dominated by the penalty to the weights,

instead of the fit to the data, and the predictive capacity of the model would irremediably worsen. For

this reason, it is necessary to find the value of alpha that has a balance between the maximization of the

correlation of the prediction, and the regularization of the adjusted weights.

|Y −X.w|2 + α|w|2 (1)

A search was made for parameters that maximize the performance of the model, that is, its predictive

capacity on new data sets. This would correspond to taking a value of the regularization parameter that

maximizes the correlation of the prediction on the validation set.11,12 In order to minimize the overfitting

effect, the value of the regularization parameter is slightly increased within a certain range, penalizing

the values of the weights, and forcing the model to give importance to the time instants with the greatest

impact on the EEG signal.

With these two criteria in mind, we automatically determine the alpha parameter in each case. From

the training set, 20% was used as a validation set, and a grid search was performed between 10−1 and

106 in 32 equally spaced steps on a logarithmic scale. The model was fitted and a prediction was made

over the validation set for each alpha value, thus obtaining a correlation value for each prediction.
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Supplementary Figure 12: A: Example of correlation values for each alpha value for one subject. The feature used
as input was the spectrogram, adjusted to the Theta band of the EEG. The alpha value corresponding to the maximum
correlation is shown in black dotted lines, and the interval corresponding to 1% of said correlation value is shown in green.
The chosen alpha value is marked with the red dotted line. B: Example of correlation values for each alpha value for one
subject. The feature used as input was the envelope, adjusted to the Theta band of the EEG. The alpha value corresponding
to the maximum correlation is shown in black dotted lines, and the interval corresponding to 1% of said correlation value
is shown in green. The chosen alpha value is marked with the red dotted line. The blue dots represent the mean value for
all the cross-validations. The black lines in each point represent +- one standard deviation

In the first place, the average correlation of all the folds and channels of each subject was saved,

obtained with each alpha parameter of the search, in order to choose the alpha that maximizes this value

(Figure 12 A). In each case, the alpha interval was determined where the correlation value was within

99% of the maximum, in order to give a degree of freedom to take a higher alpha. The selected value

is the largest alpha within the interval of maximum correlation, minimally sacrificing model prediction

correlation in order to minimize collinearity effects. Furthermore, the proposed method serves to avoid

cases like the one observed in Figure 12 B, where the maximum correlation is found with the smallest value

of alpha. In that case, the difference in correlation with the following values is minimal, so a significantly

higher alpha value can be taken, preserving the performance of the model in terms of prediction capacity,

and penalizing the weights.
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Supplementary Note 10: Permutations test

The input matrix for the model consisted of (Nsamples) rows and (Ntimes × Nfeatures) columns. Each

sample corresponded to an interval where the participant had been uninterruptedly listening to their

partner speak for at least 0.6 seconds (condition E in our manuscript). Using overlapped sliding windows

with 1 time-point step, all the valid intervals within each session were extracted (for each condition

separately). Around 50,000 samples per participant for the E condition were obtained (Fig. 13 A, B). As

the EEG and audio sampling rates were both 128Hz, each interval (or sample) of 0.6 seconds contained

77 time-points (Ntimes = 77). In the case of the spectrogram, as there are 16 frequency bands, the

Ntimes ×Nfeatures correspond to a 77 x 16 = 1232 vector.

The permutations test was implemented by making 3000 random permutations of the input matrix.

This analysis was performed for each participant, electrode and fold. The permutations consisted only

in rearranging the samples, i.e. assigning the EEG interval to a different audio interval. Thus, these

random permutations conserved the correlation structure between subsequent time-points (Fig. 13 C.).

The evaluation set kept its samples and time ordering, as in the original data (Fig. 13 B.).

Supplementary Figure 13: Schema of the definition of samples, valid samples, and permuted samples.
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