ChemistryOpen

Supporting Information

A Fast HPLC/UV Method for Determination of Ketoprofen in Cellular Media

Oleksandra Vozniuk, Zdeněk Kejík, Kateřina Veselá, Markéta Skaličková, Petr Novotný, Róbert Hromádka, Jan Hajduch, Pavel Martásek, and Milan Jakubek*

Context:

Figure S1. Overlay of ketoprofen calibration curve chromatograms measured in used media. **Table S1.** Comparison of different methods for the determination of ketoprofen.

Table S2. Detailed table of data for evaluation of the precision of the developed method.

 Table S3. Comparison of the composition of used media.

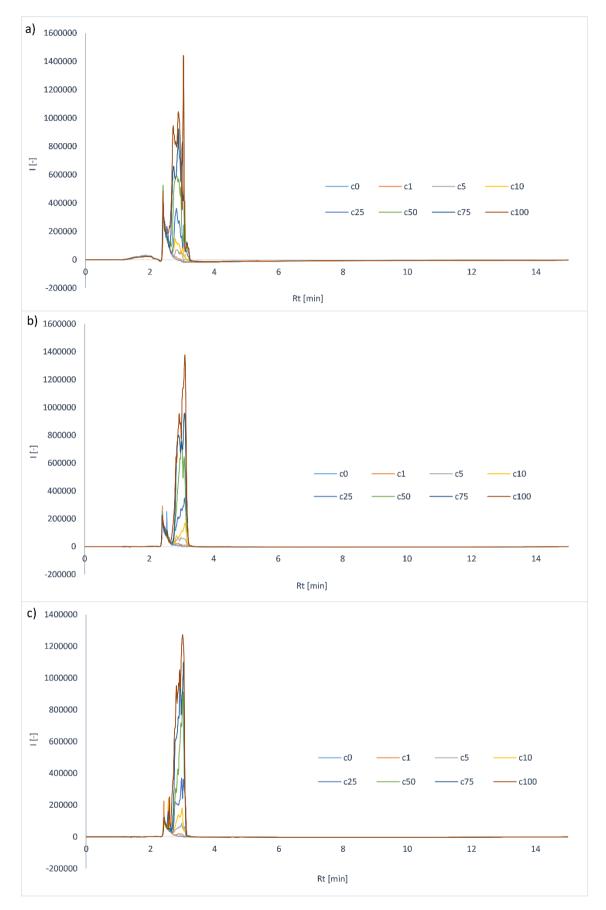


Figure S1. Overlay of ketoprofen calibration curve chromatograms measured in (a) DMEM, (b) EMEM, (c) RPMI

Table S1. Comparison of different methods for the determination of k	ketoprofen
--	------------

Name of the	Sample preparation	Conduction of the	Application
method	100	experiment	This method is mitslife
Gas chromatography [1]	100 μL of 2-(4- benzoylphenyl)butanoic acid (internal standard), 0.4 mL of 0.2 M tetrabutylammonium hydroxide solution and 3 mL of 1.1 M iodomethane solution in CH ₂ Cl ₂ were added to 400 μL of plasma containing ketoprofen. The mixture was stirred for 70 min to allow methylation to occur. Subsequently, the organic layer was evaporated and the dry residue was dissolved in	filled with 3% OV-17. The temperature of the injector was set to 250 °C, in the thermostat to 225 °C. Nitrogen was	This method is suitable for the determination of ketoprofen in plasma down to 0.5 µM, but requires time- consuming extractive methylation of ketoprofen and the internal standard.
Capillary electrophoresis [2]	1 mL of toluene. 200 μL of acetonitrile containing 10 mg/L isobutylmethylxanthine (internal standard) was added to 100 μL of serum containing ketoprofen. After mixing and centrifugation, the supernatant was collected for further analysis.	The fused silica capillary was filled with a separation buffer: 0.25 M boric acid and 2 M sodium hydroxide (pH 8.9), with addition of acetonitrile and β - cyclodextrin. The device was set at 12 kV, 30 °C, the sample was injected hydrodynamically (99 s with a pressure of 3447.4 Pa). The current in the beginning of the analysis was 35 μ A and was increased to 65 μ A after the exclusion of acetonitrile, the analysis lasted 12 min. The spectrophotometric absorption UV detector was set at 254 nm.	A simple and rapid method for the determination of ketoprofen in the linear range of 1 to 10 mg/L. The LOD was 0.6 mg/L and LOQ was 1 mg/L. This method is cheaper than HPLC analysis, but it is less sensitive and more affected by the matrix.

High	Plasma containing	The separation was	This method illustrated
performance	ketoprofen was mixed	carried out isocratically	linearity from 0.2441 to
liquid	with acetonitrile in a	on a Discovery HS C18	125 μ g/mL, with LOD
chromatography	ratio of 1:1 in order to	column, 5 μ m (25 cm \times	$= 0.122 \ \mu g/mL$ and
[3]	separate the protein.	4.6 mm). The mobile	$LOQ = 0.2441 \ \mu g/mL.$
	This mixture was	phase was a mixture of	It is an easy, quick and
	vortexed for 10 min,	methanol: water (70:30	cost effective method
	centrifuged at 3000 rpm	v/v) with pH = 3.3	that can be used in
	for 10 min. Supernatant	(adjusted with	pharmacokinetic studies
	was then filtered and	phosphoric acid).	of ketoprofen.
	then used to produce the	Sample injection was	
	desired concentrations	20 µl, flow rate was	
	of standard solutions.	1 mL/min. The diode	
		array detector was set at	
		260 nm.	
Developed	Stock solutions of	Separation was	Developed method
method	ketoprofen in media	performed gradient on	demonstrated linearity
	extracted three times	Shim-pack GIST C18	in the range 3 - 100
	with diethyl ether in a	column (5 µm,	μg/mL. LOD was
	ratio of 1:1. The	Shimadzu) with	determined as 1.20
	obtained organic phase	acetonitrile and miliQ	µg/mL and LOQ was
	was evaporated, the dry	water acidified by 0.1%	determined as 2.43
	residue was redissolved	(v/v) formic acid as the	µg/mL. It is suited for
	in 3 mL of mobile	mobile phase at flow	routine determination of
	phase, then 1 mL of this	rate of 1 mL/min.	ketoprofen
	solution was taken for	Injection volume was	concentration in
	analysis by HPLC	50 µL, the analysis	cultivation media.
		lasted 15 min. The	
		diada amarı dataatan maa	
		diode array detector was	
		set at 254 nm.	

	EMEM DMEM		RPMI			
N⁰	Retention time (min)	Peak area (mV.s)	Retention time (min)	Peak area (mV.s)	Retention time (min)	Peak area (mV.s)
1	3.118	9833278	3.108	7110719	3.033	3.118
2	3.117	9872987	3.095	7257837	3.033	3.117
3	3.118	9889423	3.098	7265494	3.033	3.117
	Mean (mV.s)	9865229.33	Mean (mV.s)	7211350	Mean (mV.s)	11492191
	SD (mV.s)	28865	SD (mV.s)	87233	SD (mV.s)	10493
	RSD (%)	0.29	RSD (%)	1.21	RSD (%)	0.09

Compounds	Conce	entration (n	ng/L)
Compounds	EMEM	DMEM	RPM
Glycine	0	30	10
L-Arginine	0	0	200
L-Arginine hydrochloride	126	84	0
L-Asparagine	0	0	50
L-Aspartic acid	0	0	20
L-Cystine-2HCl	31	63	65
L-Glutamic acid	0	0	20
L-Glutamine	292	0	300
L-Histidine	0	0	15
L-Histidine hydrochloride-H ₂ O	42	42	0
L-Hydroxyproline	0	0	20
L-Isoleucine	52	105	50
L-Leucine	52	105	50
L-Lysine hydrochloride	73	146	40
L-Methionine	15	30	15
L-Phenylalanine	32	66	15
L-Proline	0	0	20
L-Serine	0	42	30
L-Threonine	48	95	20
L-Tryptophan	10	16	5
L-Tyrosine disodium salt dihydrate	52	104	29
L-Valine	46	94	20
Biotin	0	0	0.2
Choline chloride	1	4	3
D-Calcium pantothenate	1	4	0.25
Folic acid	1	4	1
i-Inositol	2	7.2	35
Niacinamide	1	4	1
Para-aminobenzoic acid	0	0	1
Pyridoxal hydrochloride	1	0	0
Pyridoxine hydrochloride	0	4	1
Riboflavin	0.1	0.4	0.2
Thiamine hydrochloride	1	4	1
Vitamin B12	0	0	0.005
Calcium chloride (CaCl ₂) (anhyd.)	200	200	0
Calcium nitrate (Ca(NO ₃) ₂ -4H ₂ O)	0	0	100
Ferric nitrate (Fe(NO ₃) ₃ -9H ₂ O)	0	0.1	0
Magnesium sulfate (MgSO ₄) (anhyd.)	97.67	97.67	48.84
Potassium chloride (KCl)	400	400	400
Sodium bicarbonate (NaHCO ₃)	2200	3700	2000
Sodium chloride (NaCl)	6800	6400	6000
Sodium phosphate dibasic (Na ₂ HPO ₄) (anhyd.)	0	0	800

Table S3. Comparison of the composition of used media

Sodium phosphate monobasic (NaH ₂ PO ₄ - H ₂ O)	140	125	
D-Glucose (dextrose)	1000	1000	2000
Glutathione (reduced)	0	0	1
Phenol red	10	10	0
Sodium pyruvate	0	110	0

References:

- 1. P. Stenberg, T. E. Jönsson, B. Nilsson, F. Wollheim, *J. Chromatogr.* 1979, **177**, 145-148.
- 2. M. Friedberg, Z. K. Shihabi, J. Chromatogr. B Biomed. Appl. 1997, 695, 193-198.
- 3. F. Zafar, M. H. Shoaib, A. Naz, R. I. Yousuf, H. Ali, Am. J. Anal. Chem. 2013, 5, 6.