1 2 3 4 5 6 7 8	
9	Supplementary Information for
10 11	Transcranial Direct Current Stimulation Suggests a Causal Role of the
12	Medial Prefrontal Cortex in Learning Social Hierarchy
13 14 15 16 17	Chen Qu ^{1*} , Yulong Huang ^{1,2*} , Rémi Philippe ^{3,4*} , Shenggang Cai ^{5,6} , Edmund Derrington ^{3,4} , Frédéric Moisan ⁷ , Mengke Shi ¹ , and Jean-Claude Dreher ^{3,4}
17	
18 19	¹ Center for Studies of Psychological Application, South China Normal University, Guangzhou, China ² Department of Experimental Psychology, Ghent University, Ghent, Belgium
20	³ Laboratory of Neuroeconomics, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Lyon, France
21	⁴ Université Claude Bernard Lyon 1, Lyon, France
22	⁵ School of Economics and Management, South China Normal University, Guangzhou, China
23	⁶ Key Lab for Behavioral Economic Science & Technology, South China Normal University, Guangzhou,
24	China
25	⁷ GATE CNRS and EmLyon, Ecully, France
26 27 28 29	* These authors contributed equally
30 31 32	Corresponding: Jean-Claude Dreher Email: <u>dreher@isc.cnrs.fr</u>
33	
34	This Supplementary Information includes:
35	Supplementary Note 1
36	Supplementary Figure 1
37 38 39 40 41 42	Supplementary Table 1 to 6

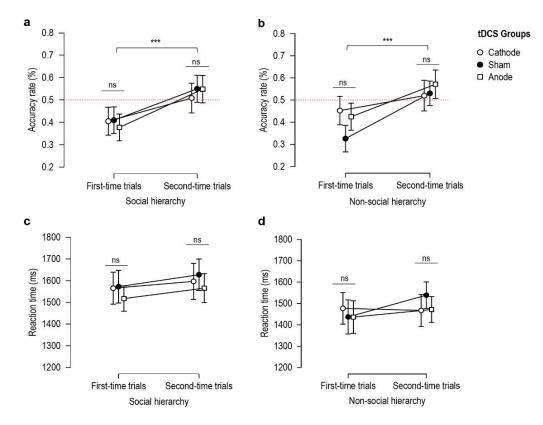
43 Supplementary Note 1

44 45

46

Supplementary analysis of the first block learning effect.

47 To justify that the brain stimulation effect was not due to the initial learning value differences within 48 the group, we performed an additional analysis of the first block of the training phase. Note that 49 within each training block participant repeated the learning of adjacent items twice. Thus, the 50 average accuracy of the first block already included the learning effect through trial and error. To 51 address the question of whether there is a different initial value between groups, we conducted two 52 analyses: 1) Repeated measure ANOVA with Hierarchy Type (Social, Non-social) x tDCS 53 (Cathode, Sham, Anode) x Familiarity (First-time trials, Second-time trials) on the first block 54 performance accuracy (%) and reaction time (ms); 2) One-sample Student t-test of performance 55 accuracy of each condition to test of the average accuracy is significantly greater than 0.5 chance 56 level.


57 As shown in Supplementary Fig.1 a-b, the results of accuracy showed only a significant main 58 effect of familiarity between the first-time and second-time trials ($F_{(1,125)} = 68.956$, p < 0.001, $\eta_p^2 =$ 59 0.356; First-time trials: M = 0.398, SD = 0.196; Second-time trials: M = 0.538, SD = 0.204), 60 indicating the participants in all the groups performed better in the second-time trials compared to 61 the first time, and thus there was a learning effect within the first block. However, there was no 62 significant three-way interaction ($F_{(2,125)} = 1.014$, p = 0.366, $\eta_p^2 = 0.016$) or two-way interaction 63 between either hierarchy type and tDCS groups ($F_{(2,125)} = 1.014$, p = 0.366, $\eta_p^2 = 0.016$), or Familiarity and tDCS groups ($F_{(2,125)} = 2.606$, p = 0.078, $\eta_p^2 = 0.040$). These results indicate that for 64 65 first-time and second-time trials, we did not observe differences between groups but only a general 66 increased accuracy for the second-time trials within the first block. This provides evidence that 67 there was no significant difference in the initial level of performance between the groups.

68 The analysis of reaction time showed similar results (see Supplementary Fig.1 c-d), i.e., within 69 groups participants responded significantly slower during second-time trials compared to the first-70 time ($F_{(1,125)} = 68.956$, p < 0.05, $\eta_p^2 = 0.046$; First-time trials: M = 1501.073, SD = 356.07; Second-71 time trials: M = 1545.291, SD = 337.691). They also responded faster in the non-social condition 72 compared to the social hierarchy training ($F_{(1,125)} = 15.978$, p < 0.001, $\eta_p^2 = 0.113$; Non-social: M =73 1471.743, SD = 348.474; Social: M = 1574.621, SD = 339.199). However, there was no significant three-way interaction ($F_{(2,125)} = 0.589$, p = 0.556, $\eta_p^2 = 0.009$) or two-way interaction in either 74 hierarchy type and tDCS groups ($F_{(2,125)} = 0.089$, p = 0.915, $\eta_p^2 = 0.001$), or Familiarity and tDCS 75 76 groups ($F_{(2,125)} = 1.223$, p = 0.298, $\eta_p^2 = 0.019$). These results further confirm that at the beginning 77 of the task, there was no group difference but only a general learning effect such that on the second-78 time trials, after the feedback from first-time trials, participants spent more time making a judgment 79 and, compared to the non-social hierarchy, they took more time to make these judgments in the social condition. Finally, a second one-sample student t-test (>0.5 chance level, see Supplementary Table 1) showed that only the Anode groups had significantly higher chance levels of accuracy on the second-time trials of the non-social hierarchy training. The other groups (cathode and sham) and all groups for the social condition were not significantly better than the chance level, indicating that participants were still at the initial phase of learning the hierarchies.

85

86 Supplementary Figure 1: First block learning effect of the Training phase.

87

a Performance accuracy (%) of first block trials on Social Training Phase in different tDCS groups. b
 Performance accuracy (%) of first block trials on Non-social Training Phase in different tDCS groups. c
 Reaction time (ms) of first block trials on Social Training Phase in different tDCS groups. d Reaction time (ms)
 of first block trials on Non-social Training Phase in different tDCS groups. d Reaction time (ms)
 of first block trials on Non-social Training Phase in different tDCS groups. The y-axis indicates the raw
 performance data. (N=128: Cathode=42, Sham=44, Anode=42; * indicates p < 0.05, ** indicates p < 0.001, ns indicates non-significant). Error bars indicate Confidence Intervals 95% CI.

- 95
- 96 97
- 5,
- 98
- 99
- 100

Supplementary Table 1

								95% CI for	r Cohen's d
Hierarchy type	Familiarity	tDCS	Mean	SD	t	р	Cohen's d	Lower	Upper
Non-social	First-time	Anode	0.425	0.195	-2.286	0.986	-0.357	-0.62	∞
		Cathode	0.452	0.231	-1.338	0.906	-0.209	-0.467	∞
		Sham	0.326	0.183	-6.312	1	-0.952	-1.247	∞
	Second-time	Anode	0.571	0.202	2.293	0.014*	0.358	0.091	∞
		Cathode	0.52	0.233	0.666	0.255	0.104	-0.154	∞
		Sham	0.53	0.184	1.091	0.141	0.164	-0.086	∞
Social	First-time	Anode	0.377	0.188	-4.107	1	-0.641	-0.92	∞
		Cathode	0.405	0.188	-3.147	0.998	-0.492	-0.761	∞
		Sham	0.409	0.174	-3.464	0.999	-0.522	-0.784	∞
	Second-time	Anode	0.548	0.206	1.379	0.088	0.215	-0.046	∞
		Cathode	0.508	0.198	0.26	0.398	0.041	-0.217	x
		Sham	0.549	0.205	1.592	0.059	0.24	-0.013	x

Note. For the Student t-test, the alternative hypothesis specifies that the mean is greater than 0.5. *<0.05

112 Supplementary Table 2. Descriptive statistics of Demographic, Questionnaires, and Task-relevant

113 subjective rating

		Anodal (N=42)	Sham (N=44)	Cathodal (N=42)	
Ge	nder	Males=21 Females=21	Males=22 Females=23	Males=21 Females=21	
Age SDO Truth Degree tDCS uncomfortable rating		19.610±0.231 19.909±0.239		20.171±0.281	
		51.190±13.515	53.114±12.085	51.595±10.378	
		5.452±0.350 5.545±0.337		5.976±0.352	
		1.536±0.146	1.341±0.101	1.762±0.137	
	Training	Left=0.501±0.005 Right=0.499±0.005	Left=0.504±0.005 Right=0.496±0.005	Left=0.503±0.005 Right=0.497±0.005	
Choice Bias	Test	Left=0.502±0.003 Right=0.498±0.003	Left=0.508±0.003 Right=0.492±0.003	Left=0.499±0.003 Right=0.501±0.003	

114 Note: One-way ANOVA showed no significant differences of the above measurements among groups.

Supplementary Table 3. tDCS effect of block-to-block hierarchy learning in the performance % ofSocial condition

		Anode	vs Sham	Cathode vs Sham					
	Training		Test		Trainir	g	Test		
Block	b(SE)	Р	b(SE) P		b(SE)	Р	b(SE)	Р	
1	-0.053(0.026)	0.044*	-0.113(0.036)	0.002**	0.002(0.026)	0.925	0.037(0.036)	0.305	
2	-0.055(0.025)	0.028*	-0.103(0.035)	0.004**	0.009(0.025)	0.728	0.026(0.035)	0.451	
3	-0.055(0.024)	0.020*	-0.090(0.035)	0.009**	0.014(0.023)	0.554	0.016(0.033)	0.624	
4	-0.055(0.023)	0.016*	-0.076(0.033)	0.022*	0.018(0.022)	0.418	0.008(0.032)	0.803	
5	-0.053(0.022)	0.014*	-0.063(0.031)	0.045*	0.021(0.021)	0.320	0.001(0.030)	0.971	
6	-0.050(0.021)	0.015*	-0.051(0.029)	0.082	0.022(0.019)	0.254	-0.004(0.028)	0.882	
7	-0.046(0.019)	0.016*	-0.040(0.026)	0.133	0.023(0.018)	0.209	-0.008(0.025)	0.761	
8	-0.042(0.018)	0.019*	-0.030(0.023)	0.197	0.022(0.016)	0.180	-0.010(0.023)	0.662	
9	-0.038(0.017)	0.022*	-0.023(0.021)	0.268	0.021(0.015)	0.160	-0.011(0.021)	0.583	
10	-0.033(0.015)	0.027*	-0.017(0.018)	0.344	0.019(0.013)	0.146	-0.012(0.018)	0.520	
11	-0.029(0.014)	0.032*	-0.012(0.015)	0.420	0.017(0.012)	0.136	-0.011(0.016)	0.470	
12	-0.025(0.012)	0.038*	-0.009(0.013)	0.495	0.016(0.010)	0.129	-0.011(0.014)	0.429	

1 Significance: p < 0.05, p < 0.01, p < 0.001.

Supplementary Table 4. tDCS effect of block-to-block hierarchy learning in the reaction time of Socialcondition

		Anode	vs Sham	Cathode vs Sham					
	Training		Test		Training		Test		
Block	b(SE)	Р	b(SE)	Р	b(SE)	Р	b(SE)	Р	
1	-32.440(37.704)	0.390	35.783(41.108)	0.384	-27.055(37.704)	0.473	2.289(41.108)	0.956	
2	-22.860(37.052)	0.537	45.753(40.126)	0.254	-26.770(37.052)	0.470	3.080(40.126)	0.939	
3	-13.280(36.522)	0.716	55.723(39.323)	0.156	-26.485(36.522)	0.468	3.871(39.323)	0.922	
4	-3.7008(36.120)	0.918	65.693(38.710)	0.090	-26.200(36.120)	0.468	4.663(38.710)	0.904	
5	5.879(35.849)	0.870	75.663(38.296)	0.048*	-25.915(35.849)	0.470	5.454(38.296)	0.887	
6	15.459(35.713)	0.665	85.633(38.087)	0.025*	-25.630(35.713)	0.473	6.245(38.087)	0.870	
7	25.038(35.713)	0.483	95.604(38.087)	0.012*	-25.345(35.713)	0.478	7.037(38.087)	0.853	
8	34.618(35.849)	0.334	105.574(38.296)	0.006**	-25.060(35.849)	0.485	7.828(38.296)	0.838	
9	44.198(36.120)	0.221	115.544(38.710)	0.003**	-24.775(36.120)	0.493	8.619(38.710)	0.824	
10	53.777(36.522)	0.141	125.514(39.323)	0.001**	-24.491(36.522)	0.502	9.411(39.323)	0.811	
11	63.357(37.052)	0.087	135.484(40.126)	0.001**	-24.206(37.052)	0.514	10.202(40.126)	0.799	
12	72.937(37.704)	0.053	145.454(41.108)	<.0001 ***	-23.921(37.704)	0.526	10.993(41.108)	0.789	

8 Significance: '*p* < 0.05, ''*p* < 0.01, '''*p* < 0.001.

Supplementary Table 5. tDCS effect of block-to-block hierarchy learning in the % performance of Non-

Social condition

		Anode	vs Sham		Cathode vs Sham				
	Training		Test		Trainir	ng	Test		
Block	b(SE)	Р	b(SE)	Р	b(SE)	Р	b(SE)	Р	
1	0.007(0.026)	0.788	-0.053(0.036)	0.142	0.022(0.026)	0.403	-0.004(0.037)	0.907	
2	0.005(0.025)	0.828	-0.045(0.035)	0.197	0.010(0.025)	0.682	-0.017(0.036)	0.639	
3	0.004(0.024)	0.873	-0.037(0.034)	0.272	-0.001(0.024)	0.969	-0.027(0.034)	0.422	
4	0.002(0.023)	0.920	-0.029(0.032)	0.364	-0.011(0.023)	0.631	-0.036(0.033)	0.268	
5	0.001(0.022)	0.966	-0.022(0.031)	0.468	-0.019(0.022)	0.371	-0.043(0.031)	0.168	
6	0.000(0.021)	0.992	-0.016(0.029)	0.575	-0.026(0.021)	0.207	-0.048(0.030)	0.107	
7	-0.001(0.019)	0.955	-0.011(0.026)	0.680	-0.031(0.020)	0.115	-0.050(0.028)	0.071	
8	-0.002(0.018)	0.923	-0.007(0.024)	0.778	-0.034(0.018)	0.066	-0.052(0.026)	0.049*	
9	-0.002(0.016)	0.896	-0.004(0.022)	0.867	-0.035(0.017)	0.040*	-0.052(0.025)	0.035*	
10	-0.002(0.015)	0.873	-0.001(0.02)	0.947	-0.035(0.016)	0.026*	-0.051(0.023)	0.027*	
11	-0.002(0.013)	0.854	0.000(0.017)	0.983	-0.035(0.015)	0.018*	-0.049(0.021)	0.021*	
12	-0.002(0.012)	0.838	0.002(0.015)	0.921	-0.033(0.013)	0.013*	-0.046(0.020)	0.018*	

136 Significance: ${}^{*}p < 0.05$, ${}^{**}p < 0.01$, ${}^{***}p < 0.001$.

138 Supplementary Table 6. tDCS effect of block-to-block hierarchy learning in the reaction time of Non-

139 Social condition

	-	Anode	vs Sham	Cathode vs Sham					
	Training		Test		Training		Test		
Block	b(SE)	Р	b(SE)	Р	b(SE)	Р	b(SE)	Р	
1	-79.414(37.704)	0.035*	-87.487(41.108)	0.033*	-62.531(37.704)	0.097	-93.396(41.108)	0.023*	
2	-71.176(37.052)	0.055	-73.214(40.126)	0.068	-53.684(37.052)	0.147	-74.721(40.126)	0.063	
3	-62.937(36.522)	0.085	-58.940(39.323)	0.134	-44.837(36.522)	0.220	-56.046(39.323)	0.154	
4	-54.698(36.120)	0.130	-44.667(38.710)	0.249	-35.990(36.120)	0.319	-37.371(38.710)	0.334	
5	-46.460(35.849)	0.195	-30.394(38.296)	0.427	-27.143(35.849)	0.449	-18.695(38.296)	0.625	
6	-38.221(35.713)	0.285	-16.121(38.087)	0.672	-18.296(35.713)	0.608	-0.020(38.087)	1.000	
7	-29.982(35.713)	0.401	-1.847(38.087)	0.961	-9.449(35.713)	0.791	18.655(38.087)	0.624	
8	-21.744(35.849)	0.544	12.426(38.296)	0.746	-0.602(35.849)	0.987	37.330(38.296)	0.330	
9	-13.505(36.120)	0.708	26.699(38.710)	0.490	8.245(36.120)	0.819	56.005(38.71)	0.148	
10	-5.267(36.522)	0.885	40.972(39.323)	0.297	17.092(36.522)	0.640	74.680(39.323)	0.058	
11	2.972(37.052)	0.936	55.246(40.126)	0.169	25.938(37.052)	0.484	93.355(40.126)	0.020*	
12	11.211(37.704)	0.766	69.519(41.108)	0.091	34.785(37.704)	0.356	112.03(41.108)	0.006**	

140 Significance: p < 0.05, p < 0.01, p < 0.001.
141