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Supplementary Note 1: The determination of effective thermal conductivity along with 

the change of twisted angles 

Firstly, as shown in Fig. S1, the background temperature should be a straight line along 

the y-axis if the effective thermal conductivity tensor eff

1  of the twisted stripes in a circular 

region is equivalent to the background thermal conductivity 
b . Thus, in order to measure the 

effective thermal conductivity of the central twisted stripe region more accurately as we vary 

the value of 
b  to match the eff

1 , we introduce the total variance 2  of temperature changes 

along the line (x = 5cm) in the background region and let it to be far smaller than 0.01. The 

average temperature of all the points is denoted by vT  and the temperature value of the nth 

point is described by 
iT . Therefore, the vT  and 2  can be derived as follows: 
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Fig. S1 Schematic diagram of the determination method of effective thermal conductivity. 

a 2D Schematic of the corresponding structure via this method. b 3D view of this structure. 

 

Supplementary Note 2: Derivations of twisted thermotics theory in diffusive systems 

As we all know, a crucial feature of the heat conduction equation is its form invariance 

under any coordinate transformation1. The heat conduction equation is shown as follows: 

2T
c T

t
 


= 


                                                       (S3) 
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where T is temperature, ρ is the density, c is the specific heat capacity, and   is the thermal 

conductivity tensor. 

Under the coordinate transformation, the heat equation can be transformed into a similar 

form shown below: 

2T
c T

t
    

= 


                                                      (S4) 

Now we can solve the equation to acquire the   . Firstly, for physicists, by expressing the 

above equation in a curvilinear coordinate system ( ix  and jx , i = 1, . . ., n or j = 1, . . ., n) 

corresponding to a transformation, we have 

ij i kj

iki j j

T
c T T

t x x x
  

   
= + 

   
                                        (S5) 

where i

ik  is the Christoffel symbol satisfying the following equation: 

1 1
det( )

2 det( )

i il

ik ilk k
g g J

x x J

 
 = =

 
                                      (S6) 

where g is the metric tensor, and J is the Jacobian matrix corresponding to the transformation. 

To rewrite the above equation in the physical Cartesian coordinate system, we perform the 

variable changes from ix  and jx  to the Cartesian coordinate ix  and jx  and acquire 

1det ( )

det( ) det( )

ij
T

i j

c T J T J J
c T

J t t x J x

 


−

 

    
= =  

    
                            (S7) 

where JT and det( )J are the transverse and the determinant of the Jacobian matrix J, 

respectively. We can see that the desired c    and thermal conductivity    are as follows: 

det( )

TJ J

J


  =                                                           (S8) 

det( )

c
c

J


   =                                                          (S9) 

For heat diffusion, we are mainly focused on the steady-state temperature field T that obeys 

Fourier’s law1 

2 0T =                                                           (S10) 

Therefore, for the steady-state temperature fields, the potential thermal coupling 

mechanism might lie in the change of thermal conductivity tensor  
 with respect to the 
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original thermal conductivity tensor   after the coordinate transformation. Now considering 

each stripe layer (upper or lower) with different thermal conductivities 
I  and 

II  which are 

composed of two kinds of stripe widths 
Iw  and 

IIw  (The subscripts 
I
 and 

II
 indicate the two 

kinds of stripe in either the upper or lower stripe layer, respectively), the anisotropic thermal 

conductivity tensors for both layers are then derived as follows2,3: 

( )I II I II

eff II I I II

upper

I I II II

I II

0
0

0
0

x

y

w w

w w

w w

w w

 

  


  

 + 
 

  + = =   + 
 

+ 

                           (S11) 

( )I II I II
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I I II II

I II
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  

 + 
 

  + = =   + 
 

+ 

                          (S12) 

Then, assuming that the original angles of the upper and lower layers compared with the 

positive direction of y axis are both set as   and the direction of heat flux about the positive 

direction of x axis is 0 = , the modified thermal conductivity based on its form invariance 

under coordinate transformation is then: 

( )

( )

2 2eff

1 upper 1eff

upper 2 2
1

cos ( ) sin ( ) cos( )sin( )

det( ) cos( )sin( ) sin ( ) cos ( )

T
x y x y

x y x y

J J

J


       


       

 + − +
 = =
 − + +
 

      (S13) 

where 
1J  is the Jacobian matrix of the coordinate transformation between the original vs. 

modified coordinate systems, 
1

TJ  and 
1det( )J  are the transpose and the determinant of the 

1J , 

respectively. Similarly, we can obtain the eff

lower

  of upper layer which is the equal to that of 

upper layer due to the two layers with the same original angle   represented by the superscript 


. The subscripts upper  and 

lower
 indicate upper and lower layers, respectively. 

According to the effective medium theory, the effective thermal conductivity tensor 
eff

can be achieved at the interface of the upper and lower layers after twisting the upper layer an 

angle 
1   and the lower layer an angle 

2   (The subscripts 
1
  and 

2
  indicate upper and lower 

layers, respectively), and we can obtain the corresponding equation in the Cartesian coordinate 

as follows: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2

1 2 1 2 1 1 2 2

eff

2 2 2 2

1 2 1 21 1 2 2

cos cos ( ) sin sin ( ) cos sin cos( )sin( )

2 2

sin sin ( ) cos cos ( )cos sin cos( )sin( )

2 2

x y x y

x yx y

                   


                  

    − + − + − + − − +  − − + − −     

=
   − + − + − + −− +  − − + − −      






 
 
 
 



          (S14) 

In addition, the effective thermal conductivity eff   in cylindrical coordinates can be 

expressed in the following equation: 

eff effeff eff

eff

eff effeff eff

xx xyrr r

yx yyr

x x x y

r r r

y y x y

r



 

   


  

  

      
         

= =                    
      

                       (S15) 

Considering the constant temperature gradient 
xT  along the negative direction of the y 

axis, the heat flux can be shown as follows: 

eff eff

eff eff

/

/

x xx xy

y yx yy

q T x

q T y

 

 

      
= −           

                                          (S16) 

Then, the heat flux bending angle 
1 2( , , )     in the twisted interface can be expressed as 

follows: 

( )

( ) ( ) ( )

( ) ( )

eff
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1 2 eff

1 1 2 21

2 2 2 2
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, , tan

cos sin cos( )sin( )
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cos cos ( ) sin sin ( )
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x y

x y


   



         

         

−

−

 
=   

 

 − +  − − + − −   =
    − + − + − + −    

        (S17) 

If 

2

2 2I I I
I I II I II II

II II II

u w w w w w w
  

  

     
= + + +     
     

  and 
2 I

I II

II

( )v w w




 
= +  

 
 , then we can 

simplify the heat flux bending angle 
1 2( , , )     shown below: 

( )
( ) ( )

( ) ( )
1 1 2 21

1 2 2 2 2 2

1 2 1 2

( ) cos sin cos( )sin( )
, , tan

sin sin ( ) cos cos ( )

u v

u v

       
   

       

−
 −  − − + − −   =
    − + − + − + −    

       (S18) 

 

Supplementary Note 3: Theoretical reconfiguration of thermal magic angle 

Here, based on the twisted thermotics theory (detailed in Supplementary Note 2), we 

manipulate the line-type moiré patterns to adjust the effective thermal conductivity tensor and 

customize thermal coupling with respect to the angle. When twisting the moiré patterns, the 

theoretical description of the thermal conductivity tensor between the two stripe layers is 
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provided in Eq. (S14). 

Heat diffusion, distinct from photon dispersion and electron band structure, is intrinsically 

absent of a clearly defined magic angle, making it elusive to imagine a thermal analogue. By 

actively tuning the conductivity tensor within a twisted diffusion system, we seek to discover 

and design an analog thermal magic angle. 

 

Fig. S2 Theoretical result of effective thermal conductivity eff

xx (a.u. is short for arbitrary unit) 

along the x direction related to the twisted angle difference of two twisted stripe layers 

calculated by Eq. (S19), from which one could observe the thermal magic angle.  

 

Thus, based on the related literatures4,5, if the stripes with the same thermal conductivity 

are alternately arranged on two layers and the width of stripes should meet the required 

condition ( I IIw w ), as shown in Fig. S2, we can acquire a counterintuitive and different 

thermal conductivity eff

xx  along the uniaxial direction. Thus, the eff  can be expressed as 
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( )
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eff eff
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eff eff
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0
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( )
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 

 

           

 
=   
 
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 

+ + − −  = =
 +
  + 

=
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( ) ( ) ( ) ( ) ( )

1 1 2 2

1 22 2 2 2
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s sin cos( )sin( )

2
( )

sin sin ( ) cos cos ( )cos sin cos( )sin( )

2 2

x yx y

m

       

  
                  








  − − + − −    
  − 
     − + − + − + −− +  − − + − −        
 

   (S19) 

where d is the thickness of stripes in either upper or lower layer and ( )I I3 log w d = . The 

subscripts 
I
 and 

II
 indicate the two kinds of stripe in the upper and lower layers, respectively. 

The subscripts 
1
 and 

2
 indicate upper and lower layers, respectively. The subscripts 

x
 and y  

indicate the x direction and y direction, respectively. 

In fact, from the above Eq. (S19), if neglecting the influence of the structure parameters, 

we can find out the value of the anisotropic thermal conductivity tensor can be discontinuous 

at 
1 2 2m  = =  (m = 0,1, . . ., n) for not large enough stripes. The anisotropic thermal 

conductivity tensor should continuously change via twisted manipulations, and thus the 

influence of the structure parameters should be considered. Meanwhile, considering the 

practical applications for a twisted diffusion system, the zone with stripes cannot be infinitely 

large and the influence of the structure parameter should be further investigated. Moreover, 

from the simulation results of Fig. 2c in the main text, the influence of the structure parameters 

induces a gradient effect from a maximum value at the original angles to a minimum value after 

twisting a thermal magic angle. Thus, we need to find a theoretical relation between the 

minimum value and the thermal magic angle accurately. 
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Fig. S3 Schematics of the zigzag connection at two layers. a 3D Schematic of the stripes with 

a zigzag connection. Red stripes (I) possess a higher thermal conductivity and blue stripes (II) 

have a lower thermal conductivity. b 2D Schematic of the stripes with a zigzag connection. 

 

As shown in Fig. S3, when the direction of heat flux is along the positive direction of x 

axis, it is easy to find out that twisting the stripes to form a zigzag structure can maximumly 

reduce heat diffusion. Specifically, Fig. S3a provides a 3D schematic of the stripes with a zigzag 

connection while Fig. S3b describes the corresponding 2D schematic of the stripes with a zigzag 

connection. Thus, the current form of theoretical reconfiguration of the thermal magic angle is 

described as follows: 

I II
magic rec arcsin

w w

L


+ 
  

 
                                            (S20) 

where L is the length of two different stripes in a rectangular region. The subscript rec  indicates 

the rectangular region. The subscripts 
I
 and 

II
 indicate the two kinds of stripes in each layer, 

respectively. 

For simplicity, the width of blue stripes and red stripes in each layer (upper or lower) is 

set to be equal and thus w can be used to define the width of two kinds of stripes now. Then, 

for the stripes in a circular region, we can assume the blue stripes are changed to be the air with 

a lower thermal conductivity and the red stripes are maintained as illustrated in Fig. S4a. 
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However, we can easily observe that the lengths of the stripes in a circular region are not 

uniform. Thus, if we want to strictly obtain a more theoretical derivation, we need to transform 

the stripes in a circular region into effective stripes with a uniform length as shown in Fig. S4b. 

Therefore, we need to calculate the average length of the stripes as below: 

11

1 0
1

0

2 sin2 sin
4

N

n

n

R dR

L R
N

d





 




== = =
 



                               (S21) 

magic

magic 1
1

2 2 2
sin

4sin 2

w w w w
L

RL
R








=  = = =                           (S22) 

 

Fig. S4 Theoretical derivation of the thermal magic angle. a Schematic of the stripes in a 

circular region. b Schematic of the effective stripes. 

 

More interestingly, for the two-line moiré patterns, we can observe that there is a rhombus 

with four sides in a cell of the lattice as shown in Fig. S5 and it is formed with the following 

relation as follows: 

sin

p
d


=                                                           (S23) 
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Fig. S5 Schematics of a rhombus in a cell of the lattice for the two-line moiré patterns. 

 

Herein, in contrast to a rhombus in a cell of the lattice for two-line moiré patterns, we can 

observe the following mapping for the thermal magic angle under the zigzag condition: 

magic, 2 ,d L p w  → → →                                            (S24) 

Eventually, for the above stripes in a circular region, we can achieve the theoretical 

reconfiguration of the thermal magic angle as shown below: 

magic

1

arcsin( )
2

w

R


 =                                                   (S25) 

To construct a magic angle phenomenon in a twisted diffusion system, the zigzag 

connection in the two layers should be maintained and it is easy to observe that the least number 

of stripes in each layer is three. 

 

Supplementary Note 4: Extended theoretical principle in twisted metadevices related to 

the thermal magic angle phenomenon 

As we know, the heat conduction equation at steady states can be expressed as1: 

( ) 0T −  =                                                       (S26) 

Then, for the anisotropic thermal conductivity medium, the governing equation can be 

expanded in cylindrical coordinates as shown below: 

0rr

T T
r

r r r
 

 

      
+ =   

      
                                       (S27) 
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Fig. S6 Functional regions of the structure in a twisted diffusion system. (a) The 3D 

schematic of the functional regions in a twisted diffusion system. (b) The 2D schematic of the 

functional regions in a twisted diffusion system. 

Now, as shown in Fig. S6, there is just a twisted bilayer system. The subscripts 
1
, 

2
, 

3
and 

4
  except the radii (

1R  , 
2R  , and 

3R  ) and the thermal conductivities ( eff

1  , eff

2  , and 
3  ) 

indicate the four regions I, II, III and IV in this system, respectively. The effective thermal 

conductivities of the four regions I, II, III and IV are denoted by
b  , 

3  , eff

2  , and eff

1  , 

respectively. Meanwhile, the 3D model of this structure system and 2D functional regions in 

this structure system are illustrated in Fig. S6a and Fig. S6b, respectively. Then, we can obtain 

the general solutions of this system just as follows: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1 1 1 3

1

2 2 2 2 3

1

3 3 3 1 2

1

4 4 4 1

cos

cos

cos

cos

T A r B r r R

T A r B r R r R

T A r B r R r R

T A r B r r R









−

−

−

−

 = + 

 = +  


= +  


= + 

                                  (S28) 

where A and B with the subscripts 
1
 , 

2
 , 

3
 and 

4
  are the unknown parameters that can be 

determined by boundary conditions, respectively. 

Therefore, the boundary conditions at these regional interfaces can be described as: 
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3 3
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2 1,

;
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T T

T T
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T T

TT

r r

T T

T T
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 

 

 

= =

= =

= =

= =

= =

==

 =


 
=

 

 =


 

=
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 =

  
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                                            (S29) 

Combining these Eqs. (S28-29), the matching functions can be written as: 

( )
( )

( )
( )

( )
( )

( )
( )

eff eff eff eff2 eff 2
2 1, 2 1,2 2 2

2 2eff eff eff eff
2

1 3 12 1, 2 1,
b 3 2

2 eff eff eff eff2 eff
b 3 3 2 1, 2 1,2 2

2eff eff eff eff
1 32 1, 2 1,

1 1

1

xx xx

xx xx

xx xx

xx xx

R R

R RR

R R R

R

   

    

     

   

   + +
    + +  −

− −   +    
 =

− +  + +
  + − 

− −  

2

2

2

1

1
R

 
 −
  

             (S30) 

If eff

2 0 → , we can simplify the matching function Eq. (S30) as shown in the following 

equation: 

2 22

b 3 3 22
3 b2 2 2

b 3 3 3 2

1
R RR

R R R

 
 

 

+ +
 =  =

− + −
                                     (S31) 

Then, for the current case with the upper and lower layers in region IV, each layer (upper 

or lower) in the central region is composed of evenly spaced stripes with stripe width w, stripe 

thickness d and different thermal conductivities 
I   and 

II  . The anisotropic thermal 

conductivity tensors for two layers can be derived based on equations S11 and S12. 

The effective thermal conductivity tensor can be achieved at the interface of the upper and 

lower layers after twisting the upper layer an angle 
1  and the lower layer an angle 

2 , and we 

can obtain the expression of this equation in the Cartesian coordinate based on equations S19. 

Then, the heat flux bending angle 
1 1 2( , , )     can be expressed as follows: 

( )

( ) ( ) ( )

( ) ( )

eff

1,1

1 1 2 eff

1,

1 1 2 21

2 2 2 2

1 2 1 2

, , tan

cos sin cos( )sin( )
tan

cos cos ( ) sin sin ( )

yx

xx

x y

x y


   



         

         

−

−

 
=   

 

 − +  − − + − −   =
    − + − + − + −    

          (S32) 



13 
 

Assuming 

2

2I

II

1a w




 
= + 
 

 and 2 I

II

4b w



= , then we can simplify the heat flux bending 

angle 
1 1 2( , , )     shown below: 

( )
( ) ( )

( ) ( )
1 1 2 2

1 2 2 2 2 2

1 2 1

1

2

cos sin cos )sin )
, ,

sin sin ) cos

( ) ( (
tan

( os )(c

a b

a b


       
  

       

−
 −
 =
 

 − − + − −  

    +
− + − − +  

−

         (S33) 

Then, assuming that region III is composed of the aluminum alloy and air with two 

different volume ratios 
mf  and 

airf  with the corresponding thermal conductivities 
m  and 

air , 

the effective thermal conductivity eff

2  is then: 

eff

2 m m air airf f  = +                                                    (S34) 

For the twisted metadevice shown in Fig. S6, the temperature gradient 4T

x




 in the central 

stripe region can be written as follows: 

max min4

2 2 2eff

1,2 1 1

eff

3 2 2 2

4

1 1 1
xx

T TT

x LR R R

R R R





−
=

             
     + − + +      
                 

               (S35) 

More importantly, considering the influence of the stripe width w in the circular region IV 

as shown in Fig. S6, it is easy to find out that the formation of a zigzag structure in a circular 

region (Fig. S4) can maximumly reduce the heat diffusion via twisting a thermal magic angle 

magic 1arcsin( 2 )w R =  just as the above Eq. (S25), resulting in the function switching from 

cloaking to concentration. 
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Fig. S7 The corresponding coupled and decoupled phenomena with respect to the twist 

angle. a The coupling change with respect to the twist angle b, c, d The corresponding 

phenomena of decoupled stripe bilayer with respect to several special twist angles. The + ,  , 

and −  refer to enhancement, counteraction and almost unchangeableness of the corresponding 

coupling strength, respectively. 

 

Eventually, as shown in Fig. S7a, we have reconstructed a strong coupling at the original 

state with zero degrees via a dislocation arrangement of stripes at two layers, and it can couple 

the main diagonal item 
eff

1,xx , the off-diagonal items 
eff

1,xy  and 
eff

1, yx  in the anisotropic thermal 

conductivity tensor eff

1  through a symmetric twisted manipulation from zero degrees to the 

analog thermal magic angle. After surpassing the thermal magic angle, the coupling in the main 

diagonal item 
eff

1,xx  mainly vanishes due to the almost same change of the 
eff

1,xx  in only one stripe 

layer without coupling and the coupling in the off-diagonal items of the anisotropic thermal 

conductivity tensor eff

1   is still maintained due to the left or right heat flux rotation in one 

uncoupled stripe layer being cancelled out through a symmetric twisted manipulation. As a 

result, it is easy to observe a cloaking effect (Fig. 3b) at zero degrees in the coupled stripe 

bilayer while we can only acquire thermal concentration in two decoupled stripe layers (Fig. 
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S7b), indicating the existence of a strong coupling. When it comes to the thermal magic angle, 

the coupling in its off-diagonal items is still maintained at least, leading to a thermal 

concentration (Fig. 3c) without the left or right rotation effect (Fig. S7c and S7d). 

 

Supplementary Note 5: The photographs of experimental setups 

The photographs of these actual experimental setups for twisted thermal metadevice based 

on twisted thermotics are shown in Fig. S8. 

 

Fig. S8 The photograph of the experimental setup. a, c Photographs of the oblique view (a) 

and top view (c) of the experimental setup with zero degrees. b, d Photographs of the oblique 

view (b) and top view (d) of the experimental setup with the thermal magic angle. 

 

Supplementary Note 6: The evolutions of thermal magic angle phenomena in twisted 

diffusion systems from two layers to three layers 

To further investigate the influence of twisted layer number on the thermal magic angle 

phenomenon, a twisted trilayer diffusive system has been numerically carried out and the 
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evolutions of temperature distribution and gradient are shown in Fig. S9. 

 

Fig. S9 Temperature profiles of twisted diffusion systems with two and three layers for 

two different combinations of twisted angles. a, b, c, d Temperature distributions of thermal 

cloak-to-concentration via twisting a magic angle (
1 2  = − , 

1 2 3    = − +  and 
3 0 = ). 

e The evolutions of temperature gradient in twisted diffusion systems with two and three layers. 
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Supplementary Note 7: Demonstration of the thermal magic angle phenomenon under an 

elliptic boundary condition. 

Considering there exists an elliptical boundary with a shell of inner and outer boundaries 

1  and 
2 , we can obtain the heat conduction equation in the elliptic coordinate ( ),   as 

2 2
2

2 2 2

1
0

T T
T

  

  
 = + = 

  
                                            (S36) 

Then, according to some similar derivations in Supplementary Note 4 and other related 

reference6, when eff

2 0 → , the matching functions can be derived as 

( )

( )
3 2 2 1

b

3 2 2 1

coth tanh 0

0 tanh tanh

   


   

 − 
=  

− 
                     (S37) 

where 
b and 

3  are the thermal conductivity of background and region II, respectively. 

Then, based on the above derived matching function, we can realize the functional 

switching from cloaking to concentration under an elliptic boundary condition, which makes it 

possible to generalize our approach to non-uniform boundary conditions as shown in Fig. S10. 

We believe the cases in non-uniform boundary conditions and for more complicated geometries 

might exist more interesting phenomena and look forward to future works on these topics. 
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Fig. S10 Numerical demonstration of the thermal magic angle phenomenon under an 

elliptic boundary condition. a, b Temperature distributions of thermal cloak-to-concentration 

via twisting a magic angle. c, d Temperature distributions along the line (y = 0) in twisted 

diffusion systems under an elliptic boundary condition. 

 

Supplementary Note 8: Demonstration of the effect of the graphene coatings on thermal 

magic angle phenomenon in a twisted system. 

Since the introduction of the graphene layer with a thickness of dgra in the system, the 

interlayer coupling can be affected by the thermal resistance between the graphene and 

aluminum alloy. In the study of thermal transport in materials, the interlayer coupling of the 

effective thermal conductivity tensor plays a crucial role in understanding and controlling heat 

flux. By considering this new interlayer coupling, we can explore more complex thermal fields, 

enabling us to manipulate heat transfer with greater precision. Additionally, the introduction of 

graphene coatings in our twisted bilayer diffusive systems offers an exciting opportunity to 

expedite the formation of steady-state thermal coupling phenomena, as demonstrated in Fig. 

S11. 
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Fig. S11 Transient evolutions a (without graphene coatings) and b (with graphene 

coatings) of thermal cloak in our twisted diffusive systems at original twisted angles. 
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