
A Dataset Construction

To train CellSAM, we combined ten separate datasets spanning a variety of modalities: TissueNet27, DeepBacs59,

BriFiSeg60, Cellpose24,25, Omnipose61,62, YeastNet63, YeaZ64, the 2018 Kaggle Data Science Bowl (DSB)65, a collection

of H&E datasets66–72, and an internally collected dataset of phase microscopy images across eight mammalian cell lines

(Phase400). The LIVECell58 dataset was held out for zero-shot/few-shot testings. Our collective dataset included images

across multiple imaging modalities (brightfield, phase contrast, fluorescence, and mass cytometry), imaging targets (his-

tology sections, yeast, cell culture, bacteria, nuclei), length scales, and morphologies. During preprocessing, we reduced

bright spots by linearly re-scaling the raw pixel intensities such that the 99.9 percentiles corresponded to 1.0. We then

normalized each image with Contrast Limited Adaptive Histogram Equalization (CLAHE)89 with a kernel size of 128

pixels. We treated nuclear and whole-cell channels as green and blue channels in an RGB image, respectively, and the

red channel was always blank. We moved the green channel to blue for nuclear-only datasets (i.e., BriFiSeg and DSB) to

keep the blue channel always non-empty.

If available, we used pre-determined train/val/test splits for each dataset; otherwise, we introduced 80-10-10% data

splits. For datasets with multiple fields of view of the same object set, we required all FOVs to belong to the same split.

We deferred all duplicated samples to the train split for published datasets with a pre-existing data leak (detected by

pixel-wise hashing). Our assembled dataset used a fixed image size of 512 by 512 pixels. Images shorter than 512 pixels on

either axis were zero-padded up to 512. For images with more than 512 pixels on either axis, we tiled them to 512 by 512

pixels with a 25% overlap and filled the empty regions with zeros. Any cropped images without valid annotations were

removed. We followed a widely used annotation scheme for labeling our masks, with zero representing the background and

unique positive integers representing di↵erent objects. While this format precludes accurate segmentation of overlapping

objects, labels of this kind were not present in the dataset we compiled. We filtered out invalid cell labels if the label

contained disjoint regions or if the label had only a 1-pixel height or width. The cropped images with filtered annotations

were used for training, validation, and testing. We conducted some additional processing for LIVECell58. We converted

annotations from the COCO format to the same labeling format we used on the other datasets for consistency. We used

Cellpose’s25 pre-processing function livecell ann to masks() to remove overlapping regions. In addition, we noticed

inconsistencies in ground truth labels as previously observed by the Cellpose team (see Fig 1.c in25). We thus manually

inspected the LIVECell test split to divide the annotation quality into three classes - good, medium, and poor. We

randomly selected images in the good split of the validation set for the CellSAM few-shot learning task.

B CellSAM Architecture.

We adapted Anchor DETR57 for the object detector for CellSAM (CellFinder). This choice was motivated by Anchor

DETR being non-maximum suppression (NMS)90 free. NMS suppresses bounding boxes with a high amount of overlap

to remove duplicate detections. While this works well for natural images, cellular images often have tightly clustered

objects, and NMS-based methods such as the R-CNN family75,76 can su↵er from a low recall in this setting. We replaced

19



the Anchor DETR’s ResNet91 backbone with the vision transformer (ViT)42 from the SAM model48; specifically, we

used the base-sized ViT (ViT-B).

As the maximum number of cells per image is generally no more than 1000, we increased the number of queries q to

3500, 3.5 times the maximum number of cells, based on Fig. 12 in DETR92, which provided an estimate of the number

of queries needed for a DETR method to detect all objects. We used one pattern p for the Anchor generation as most

objects in cellular detection are usually of similar scale.

Training CellFinder We used a base learning rate of 10�4 for the Anchor DETR head and 10�5 for the SAM-ViT

backbone. We used weight decay of 10�4 and clip norm of 0.1. We used AdamW93 with a step-wise learning rate scheduler

that drops the learning rate by 10% after 70% of the epochs. We trained CellFinder for 500 epochs (1000 for smaller

datasets) with a batch size of 2 across 16 GPUs.

Finetuning CellSAM After we trained CellFinder with the SAM-ViT backbone, the SAM-ViT output features were

no longer aligned with the rest of the model (i.e., the prompt encoder and mask decoder). To close this distribution

gap, we froze the SAM-ViT (such that it continues to function well with CellFinder) and trained the neck of the SAM

model. The neck is a 2D-convolutional neural network that embeds the ViT features (e.g., 768 for SAM-ViT-B) to a 256-

dimensional embedding that is then used as the primary feature vector for the rest of the model (prompt embedding and

mask decoder). We trained this neck using ground-truth bounding boxes as inputs and segmentation masks of individual

cells as targets. We used a learning rate of 10�4 and weight decay of 10�4 for this training. We also used AdamW93 for

this training and did not clip the gradient.

B.1 Inference

At inference, we followed the following workflow. First, the input was passed through the Anchor DETR fine-tuned

ViT-B. This resulted in an embedding dimension of 768. This embedding was then passed as an input to two parts of

CellSAM, 1) the trained Anchor DETR module (CellFinder) and 2) the fine-tuned neck, which is a 2D convolutional

network reducing the embedding dimensionality further to 256. The bounding box outputs of CellFinder were then sent

into the prompt encoder, resulting in the prompt embedding. The prompt embeddings and neck embedding were then

passed to the mask decoder, which outputs pixel-wise probabilities for the cell and another IoU-based confidence value

for the prediction as a whole. This results in a tensor of shape N ⇥W ⇥H, where N corresponds to the number of cells

predicted. This tensor was processed with a sigmoid and a threshold operation, resulting in binarized images. Depending

on the metric used, we either used this tensor directly with the N scores (specifically for computation of the COCO

AP @ 0.5 IoU), or we computed the argmax over the cell dimension N to generate a tensor W ⇥ H, where each pixel

corresponded to a unique integer label for each cell.

Thresholding. Given CellSAM’s model architecture, we had three di↵erent thresholds at inference time. First, we had

a threshold on the bounding boxes generated by CellFinder, which we set to 0.4 across all datasets. After the boxes

were passed through the Mask Decoder, we had an overall mask score outputted by the IoU prediction head of the Mask

Decoder, which we set to 0.5. Lastly, we thresholded the mask decoder output after applying the sigmoid function to

each pixel, which we set at 0.5.

20



CellSAM Postprocessing. We used the same postprocessing steps that are used by SAM48. This consisted of hole

filling and island removal for each predicted cell.

B.1.1 Model Implementation and Training

CellSAM was implemented in Pytorch94. For CellFinder we modified the o�cial Anchor DETR repo1. For CellSAM, we

modified the o�cial Segment Anything repo2. We used Pytorch Lightning95 to scale the training. Prototyping was done

using NVIDIA’s RTX 4090. We used machines with either NVIDIA A6000s or A100s (40GB and 80GB versions) for the

experiments in the paper.

C Benchmarking

We benchmarked the performance of CellSAM models against Cellpose24,25 trained on our compiled datasets.

C.1 Cellpose Model Training.

We followed the hyper-parameters described in the original paper25 to train specialist and generalist Cellpose models

from scratch. We used the SGD optimizer with a weight decay of 10�4 and a batch size of eight. We trained each model

for 300 epochs with a base learning rate of 0.1. We used the default learning rate scheduler in Cellpose 2.2.3. The learning

rate increased linearly from 0 to 0.1 over the first ten epochs, then decreased by a factor of two every ten epochs after

the 200th epoch. We trained each model on a single NVIDIA A6000 GPU. In total, we trained ten specialist models and

one generalist model.

C.2 Metrics

We used the Metrics package in the DeepCell library27,32, which is a set of tools for object-level evaluation of cell

segmentations. Predictions that match the ground truth labels (determined by a mask IoU � 0.6) are true positives (TP),

predictions with no matching ground truth labels are false positives (FP), and ground truth labels without a valid match

are false negatives. We computed the recall, precision, and F1 scores using the following formulas:

• Recall: recall = TP
TP+FN .

• Precision: precision = TP
TP+FP .

• F1: F1 = 2⇥precision⇥recall
precision+recall .

Details of the implementation of these metrics are described in prior work32.

We also used the COCO evaluation metrics74 during CellFinder’s development. The COCO metrics are a widely used

benchmark for assessing the object-level quality of object detection and instance segmentation methods. These metrics

report Average Precision (AP), the area under the Precision-Recall curve for a given object class. In our case, we only

had a single object class: cells. The AP is computed for di↵erent IoU thresholds, ranging from 0.5 to 0.95, with a step

size of 0.05. We report the mean AP across all IoU thresholds, denoted as mAP, as well as the AP at IoU=0.5, denoted

1https://github.com/megvii-research/AnchorDETR
2https://github.com/facebookresearch/segment-anything

21

https://github.com/megvii-research/AnchorDETR
https://github.com/facebookresearch/segment-anything


as AP50, to quantify CellFinder’s performance. Because the object density is much higher in cellular images than in

natural images, we modified the limit for the maximum number of detections from 100 to 10,000. We also fed the actual

confidence score per binary prediction of the CellSAM model to the COCO evaluator. For the Cellpose models, we used

a fixed confidence score of 1.0.

22



Fig. S1: Per dataset performance comparing zero-shot point prompting, zero-shot box prompting, and
fine-tuned box prompting across a suite of metrics from the DeepCell package, and additionally, we included the AP50
from the COCO metrics. We showed the error rate (1-metric) on these bar plots. We demonstrated CellSAM-specificand
CellSAM-generalsuperior performance across multiple datasets and multiple evaluation metrics.

23



Fig. S2: Per dataset performance across a suite of metrics from the DeepCell package, and additionally, we included
the AP50 from the COCO metrics. We showed the error rate (1-metric) on these bar plots. We demonstrated CellSAM-
specificand CellSAM-generalsuperior performance across multiple datasets and evaluation metrics.

Fig. S3: Zero-shot (ZS) and fine-tuned mask generation error (1- F1 score) for SAM when using point and bounding
box prompts. All prompting in this figure was done with ground truth prompts. The best performance was achieved with
bounding box prompts and fine-tuning.

24



a) b)

Fig. S4: a) Zero-shot performance of CellSAM-general and Cellpose-general on the LIVECell dataset. Here, we showed
greater than 3x segmentation performance on an unseen dataset (from 0.13 to 0.40 in F1). b) CellSAM-general per-
formance stratified by cell line. We analyzed both zero-shot and few-shot performance. We saw that few-shot improves
CellSAM-general on LIVECell for some cell lines.

25






F1: 0.77 

F1: 0.57 

F1: 0.57 

F1: 0.48 

26



F1: 0.03 

F1: 0.93 

F1: 0.49 

F1: 0.92 

Fig. S5: Representative qualitative results of CellSAM-general 10-shot performance on the LIVECell dataset, one panel
for each cell line.

27


