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Supplementary Information 

 
Figure S1: Batch BO method performance.  We tested batch Bayesian Optimization (BO) methods by 
running 10,000 simulated protein engineering experiments with the cytochrome P450 data and evaluating 
how many sequence evaluations were needed to discover sequences within 90% of the maximum sequence 
(>61.9 °C). The Upper Confidence Bound (UCB) positive and Expected UCB methods show the best 
overall performance and perform better with smaller batch sizes. 

 

Figure S2: EvaGreen assay to test successful gene assembly and PCR amplification. We tested two 
positive control assemblies with DNA fragments to assemble full genes and a negative control assembly 
that only had one DNA fragment. The EvaGreen fluorescence clearly distinguishes between successful and 
unsuccessful gene assembly. Data are presented as mean ± 1 standard deviation of three measurements. 
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Figure S3: Enzyme reaction progress curves. An example of enzyme reaction progress curves for the six 
natural GH1s used to initialize the Bayesian optimization runs. Enzyme reactions were run at room 
temperature after a 10-minute incubation at the specified temperature. The decrease in activity is the result 
of irreversible enzyme inactivation from the temperature incubation.    

 
Figure S4: The contribution of individual gene fragments to enzyme thermostability and probability 
of being active. The unified landscape model was trained on all collected data across all agents and all runs. 
The fragment contributions are calculated as the mean of the property (thermostability or pactive) across all 
sequences subtracted from the mean over sequences that have that specific fragment.  
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Figure S5: Enzyme reaction kinetics. (a) Standard curve of the 4-Methylumbelliferone fluorescent 
reaction product showing a linear relationship up to 60 μM. (b) Enzyme kinetics for the six wild-type input 
sequences. Each measurement was performed in triplicate and the Michaelis-Menten equation was fit to 
the average over replicates to determine the kinetic constants. Wild-type Bgl3 has the greatest catalytic 
efficiency (kcat/Km) and was used as a reference point in Fig 5b.   

  



5 
 

Detailed description of SAMPLE code's functionality 

A pseudocode description of a single SAMPLE cycle is described below. 

 

1. For each filename included as an argument (one for each agent): 
o Read all data the agent has previously collected and categorize all possible 

sequences into the three distinct sets: 
 Unexplored sequences 
 Active observed sequences with T50 values 
 Inactive observed sequences with no T50 values 

o To select a batch of sequences for experimental testing, repeat the following 
procedure until the desired number of sequences have been selected (batch size = 
3 for this paper). If not working in batches, perform these steps only once. 
 Train a Gaussian process regressor (GPR) using only active observed 

sequences to predict T50 with uncertainty. 
 Train a Gaussian process classifier (GPC) using active and inactive 

observed sequences to predict the probability of being active. 
 Use both the GPR and GPC to predict the T50, uncertainty of T50, and 

probability of being active for all unobserved sequences. 
 Subtract the minimum predicted T50 from all T50 predictions (this is to 

ensure subsequent multiplication captures the full range of predictions) 
 For each sequence, calculate the eUCB score according to the formula ((u 

+ 2d) * p) where u is the T50, d is the standard deviation of that 
prediction, and p is the probability of being active. 

 Select the sequence with the greatest eUCB for testing. 
 If not done with the current batch, assume the T50 prediction for the 

chosen sequence is correct, update the model accordingly, and begin the 
sequence selection cycle again to identify the next sequence in the batch. 

2. Concatenate the list of each agent’s chosen sequences together to get one list to submit 
for testing. 

3. Record the chosen sequence list and submit a run to Strateos. 
4. Check Strateos’s list of runs every 60 seconds until five unique experiments (Golden gate 

assembly, PCR, EvaGreen assay, cell-free expression, and the enzyme thermostability 
assay) have been added to the queue. 

5. Read the Strateos output from the third (EvaGreen assay) of those five experiments to 
determine which sequences were successfully assembled. This is the EvaGreen 
checkpoint step. 

6. For those sequences that successfully assembled: 
o Fit raw slopes with fluorescence vs. time, one for each temperature tested. 
o Normalize raw slopes based on the fluorescein internal standard. 
o Fit a double logistic curve, plotting normalized slope vs. heating temperature. If 

fitting fails, label the sequence as retry and do not continue processing it. 



6 
 

o If the fitted curve is too small, label the sequence retry if observed for the first 
time or dead if already labeled retry. 

o If all filters have been passed, take the T50 from the curve fit and label the 
sequence with its T50 

7. Save all data from the run and begin the next. Repeat in this way until the desired number 
of cycles is completed. 

 




