Materials and Methods

RNA Sequencing Sample Collection, Library Preparation, and Analysis. WT and Adma1 were grown overnight in BHI media before being diluted to the equivalent of OD 0.1 in 10 mL and grown anaerobically for 4 h at 37°C. Four individual overnight and 10-mL culture biological replicates were prepared. Cultures were normalized, and an amount of culture equivalent to an OD₆₀₀ of 4.0 was pelleted for 90s at 8,000 rpm. Pellets were resuspended on ice in 1 mL TRIzol (Invitrogen) with 10 µL of 5 mg/mL glycogen. Samples were flash frozen and stored at -80°C until extraction. Prior to extraction, samples were thawed on ice, then pelleted, and supernatants were treated with chloroform. RNA was extracted from the aqueous phase using the RNeasy minikit Inc.), and RNA quality was checked bv agarose gel electrophoresis (Qiagen, and A₂₆₀/A₂₈₀ measurements. RNA was stored at -80°C with SUPERase-IN RNase inhibitor (Life Technologies) until library preparation.

RNA sequencing prep (RNA-Seq) was performed as previously describe ¹. Briefly, 400ng of total RNA from each sample was used for generating cDNA libraries following our RNAtag-Seq protocol. PCR amplified cDNA libraries were sequenced on an Illumina NextSeq500, obtaining a high-sequencing depth (over 7 million reads per sample). RNA-Seq data was analyzed using our *in-house* developed analysis pipeline *Aerobio*. Raw reads are demultiplexed by 5' and 3' indices, trimmed to 59 base pairs, and quality filtered (96% sequence quality>Q14). Filtered reads are mapped to the corresponding reference genomes using bowtie2 with the --very-sensitive option (-D 20 –R 3 –N 0 –L 20 –i S, 1, 0.50). Mapped reads are aggregated by feature Count and differential expression is calculated with DESeq2 ¹. In each pair-wise differential expression comparison, significant differential expression is filtered based on two criteria: |log2foldchange| > 1 and adjusted p-value (*padj*) <0.05. All differential expression (DE) comparisons are made between the WT and *Δdma1* mutants under the condition mentioned above. The reproducibility of the transcriptomic data was confirmed by an overall high Spearman correlation across biological replicates (R > 0.95). BioProject ID PRJNA994135.

Sample preparation for Proteomic analysis. WT, $\Delta das1$, $\Delta dma1$, and $\Delta das1-dma1$ were grown overnight anaerobically in 2mL of BHI media prior to being diluted into 50 mL and grown for 20 h. Whole cells, total membranes, and vesicles were collected from each strain. Four individual biological replicates of each fraction were performed for each strain. Samples were lyophilized in preparation for MS analysis.

Lyophilized protein samples were solubilized in 4% SDS, 100mM Tris pH 8.5 by boiling them for 10 min at 95 °C. The protein concentrations were assessed using a bicinchoninic acid protein assay (Thermo Fisher Scientific) and 100µg of each biological replicate prepared for digestion using Micro S-traps (Protifi, USA) according to the manufacturer's instructions. Briefly, samples were reduced with 10mM DTT for 10 mins at 95°C and then alkylated with 40mM IAA in the dark for 1 hour. Samples were acidified to 1.2% phosphoric acid and diluted with seven volumes of S-trap wash buffer (90% methanol, 100mM Tetraethylammonium bromide pH 7.1) before being loaded onto S-traps and washed 3 times with S-trap wash buffer. Samples were then incubated with Trypsin (1:100 protease:protein ratio, in 100mM Tetraethylammonium bromide pH 8.5) overnight at 37°C before being collected by centrifugation with washes of 100mM Tetraethylammonium bromide pH 8.5, followed by 0.2% formic acid / 50% acetonitrile. Samples were then dried down and further cleaned up using homemade C18 Stage 1,2 tips to ensure the removal of any particulate matter.

Reverse phase Liquid chromatography–mass spectrometry. C18 purified digests were re-suspended in Buffer A* (2% acetonitrile, 0.01% trifluoroacetic acid) and separated on a Ultimate 3000 UPLC (Thermo Fisher Scientific) with a two-column chromatography set up composed of a PepMap100 C18 20 mm x 75 µm trap and a PepMap C18 500 mm x 75 µm analytical column (Thermo Fisher Scientific). Digests were loaded on to the trap column at 5 µL/min for 6 minutes with Buffer A (0.1% formic acid, 2% DMSO) then infused into a Orbitrap 480[™] at 300 nl/minute via the analytical column. 95-minute runs were undertaken by altering the buffer composition from 2% Buffer B to 28% B over 70 minutes, then from 25% B to 40% B over 4 minutes, then from 40% B to 80% B over 3 minutes. The composition was held at 80% B for 2 minutes, and then dropped to 2% B over 1 minutes before being held at 2% B for another 10 minutes. The Orbitrap 480[™] Mass Spectrometer was operated in a data-dependent mode automatically switching between the acquisition of a single Orbitrap MS scan (300-1600 m/z, maximal injection time of 25 ms, an AGC set to a maximum of 300% and a resolution of 120k) every 3 seconds and Orbitrap MS/MS HCD scans of precursors (using a stepped NCE of 28,32,40%,

maximal injection time of 80 ms, an AGC set to a maximum of 300% and a resolution of 30k). Identification and LFQ analysis were accomplished using MaxQuant (v1.6.17.0)3. Data was searched against the *B. thetaiotaomicron* reference proteome (Uniprot: UP000001414) allowing for oxidation on Methionine. The LFQ and "Match Between Run" options were enabled to allow comparison between samples. Maxquant search results were processed using Perseus (version 1.6.0.7) 3 with missing values imputed based on the total observed protein intensities with a range of 0.3 σ and a downshift of 1.8 σ . Statistical analysis was undertaken in Perseus using two-tailed unpaired T-tests between groups.

Data availability. The mass spectrometry proteomics data has been deposited in the Proteome Xchange accession: PXD043360.

MS data analysis. Identification and LFQ analysis were accomplished using Max-Quant (v2.0.2.0) 8 using *Bacteroides thetaiotaomicron* VPI-5482 proteome (Uniprot: UP000001414) allowing for oxidation on Methionine. Prior to MaxQuant analysis dataset acquired on the Fusion Lumos were separated into individual FAIMS fractions using the FAIMS MzXML Generator9. The LFQ and "Match Between Run" options were enabled to allow comparison between samples. The resulting data files were processed using Perseus (v1.4.0.6)10 to filter proteins not observed in at least four biological replicates of a single group. ANOVA and Pearson correlation analyses were performed to compare groups. Predicted localization and topology analysis for proteins identified by MS were performed using UniProt11, PSORT12, SignalP13 and PULDB14.

LC-MS analysis of lipids from TM and OMVs.

WT, $\Delta dma1$, and its complemented strain were grown overnight anaerobically in 5mL of BHI media prior to being diluted into 140 mL and grown for 20 h. TMs and OMVs were collected from each strain. Four individual biological replicates of each fraction were performed for each strain. Total lipids were extracted according to Bligh and Dyer chloroform:methanol method². Briefly, 2 volumes of methanol, 1 volume of chloroform, and 0.8 volumes of Milli-Q water were added to 1 volume of PBS-resuspended sample in solvent-resistant glass tubes. Contents were mixed for 2 min by vortexing, and 1 volume of chloroform was added to the mixture. Samples were vortexed for another minute, then centrifugated for 5 min at 4,000 rpm. After centrifugation, the bottom phase (organic) was recovered using a glass Pasteur pipette and stored in solvent-sealed vials at -80° C until lipid analysis by LC-MS.

Untargeted LC/MS analyses were conducted on an Agilent 6550 A QTOF instrument with an Agilent 1290 highperformance liquid chromatograph (HPLC) with an autosampler, operated using Agilent MassHunter software (Santa Clara, CA, USA). Separation of the total lipid extracts was achieved using a Thermo Fisher (Waltham, MA, USA) BETASIL C₁₈ column (100 × 2.1 mm, 5 µm) at a flow rate of 300 µL/min at room temperature. The mobile phase contained 5 mM ammonium formate (pH 5.0) both in solvent A, acetonitrile:water (60:40, vol/vol), and solvent B, isopropanol:acetonitrile (90:10, vol/vol). A gradient elution was applied in the following manner: 68% A, 0 to 1.5 min; 68 to 55% A, 1.5 to 4 min; 55 to 48% A, 4 to 5 min; 48 to 42% A, 5 to 8 min; 42 to 34% A, 8 to 11 min; 34 to 30% A, 11 to 14 min; 30 to 25% A, 14 to 18 min; 25 to 3% A, 18 to 23 min; 3 to 0% A, 25 to 30 min; 0% A, 30 to 35 min; 68% A, 35 to 40 min. Both the positive-ion and negative-ion electrospray ionization (ESI) MS scans were acquired in the mass range of 200 to 2,000 Da at a rate of 2 scans/min. High-resolution (*R* = 100,000 at *m*/*z* 400) mass spectrometric analyses of the lipid extracts were also conducted on a Thermo LTQ Orbitrap Velos. Lipids were loop injected into the ESI ion source using a built-in syringe pump which was set to continuously deliver a flow of 20 µL/min methanol with 0.5% NH₄OH. The scanned mass spectra were recalibrated internally with a known mass, namely, 13:0/15:0 PE at *m*/*z* 634.4453. Linear ion trap (LIT) multistage MS (MSⁿ) spectra were obtained for structural identification as described previously ^{3–5}.

Negative staining and analysis by transmission electron microscopy. For quantitative analyses at the ultrastructural level, 200 mesh formvar/carbon-coated copper grids (Ted Pella Inc., Redding CA) were coated with 50μ g/ml poly-L-lysine (Sigma, St Louis, MO) for 10 min at 37°C. Excess fluid was removed, and grids were allowed to air dry. Poly-L-lysine coating allowed for even distribution of material across the grid. Bacterial OMVs were fixed with 1% glutaraldehyde (Ted Pella Inc.) and allowed to absorb onto freshly glow discharged poly-L-lysine-coated grids for 10 min. Grids were then washed in dH₂O and stained with 1% aqueous uranyl acetate

(Ted Pella Inc.) for 1 min. Excess liquid was gently wicked off and grids were allowed to air dry. Samples were viewed on a JEOL 1200EX transmission electron microscope (JEOL USA, Peabody, MA) equipped with an AMT 8-megapixel digital camera (Advanced Microscopy Techniques, Woburn, MA). Each OMV sample was processed in triplicate (3 grids). Ten random images were taken at a magnification of 25,000x from various areas of the grid with a total of 90 images for each sample, and the number of OMV in each image was quantified.

References

- 1. Zhu, Z. *et al.* Entropy of a bacterial stress response is a generalizable predictor for fitness and antibiotic sensitivity. *Nat. Commun.* 1–15 (2020) doi:10.1038/s41467-020-18134-z.
- 2. Bligh, E. G. & Dyer, W. J. A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION. *Can. J. Biochem. Physiol.* **37**, 911–917 (1959).
- 3. Hsu, F.-F. Complete structural characterization of ceramides as [M–H]– ions by multiple-stage linear ion trap mass spectrometry. *Lipidomics Funct. Lipid Biol.* **130**, 63–75 (2016).
- Hsu, F.-F., Turk, J., Zhang, K. & Beverley, S. M. Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. *J. Am. Soc. Mass Spectrom.* 18, 1591–1604 (2007).
- Hsu, F.-F. & Turk, J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization. *LIPIDOMICS Dev. Appl.* 877, 2673–2695 (2009).

Supplementary Text Table S1: Strain, Plasmids, and Oligonucleotides Strains used in this study

		-	
Name	Strain	Features	Reference/Source
Escherichia coli	s17-1λ <i>pir</i>	Conjugation donor strain to	Jeffrey I. Gordon
		introduce plasmids into <i>B</i> .	Laboratory
		thetaiotaomicron	
Escherichia coli	BL21	Expression and isolation of	Tracey Raivio
		heterologous proteins	Laboratory
Escherichia coli	BL21 pGSTag	Expresses GST under IPTG	This study
		inducible promoter	
Escherichia coli	BL21 pGSTag_Dma1(1:40)	Expresses the N-terminal 40	This study
		aa of Dma1 fused to the C-	
		terminus of GST	
Escherichia coli	BL21 pET32a-TRXtag	Expresses TRX under IPTG	This study
		inducible promoter	
Escherichia coli	BL21 pET32a-TRXtag_Das1	Expresses Das1 fused to the	This study
		C-terminus of TRX	
B. thetaiotaomicron	VPI-5482	Wild-type strain. Erm ^s	Jeffrey I. Gordon
			Laboratory
B. thetaiotaomicron	VPI-5482 pwwBoINL-Nluc	Expressing <i>B. ovatus</i>	This study
		inulinase fused to Nluc	
B. thetaiotaomicron	VPI-5482 ∆ <i>das1</i>	das1 (bt_4720) deletion	This study
		mutant	
B. thetaiotaomicron	VPI-5482 ∆dma1	dma1 (bt_4721) deletion	This study
		mutant	
B. thetaiotaomicron	VPI-5482 ∆das1-dma1	das1 (bt_4720)-dma1	This study
		(bt_4721) double deletion	-
		mutant	
B. thetaiotaomicron	VPI-5482 Δ <i>das</i> 2	das2 (bt_1559) deletion	This study
		mutant	
B. thetaiotaomicron	VPI-5482 Δ <i>dma2</i>	dma2 (bt_1558) deletion	This study
		mutant	-
B. thetaiotaomicron	VPI-5482 ∆das2-dma2	das2 (bt_1559)-dma2	This study
		(<i>bt_1558</i>) double deletion	-
		mutant	
B. thetaiotaomicron	VPI-5482 Δ <i>das1</i>	das1 (bt_4720) deletion	This study
		mutant, complemented	-
B. thetaiotaomicron	VPI-5482 Δdma1	dma1 (bt_4721) deletion	This study
	pwwDma1-His	mutant, complemented	-
B. thetaiotaomicron	VPI-5482 Δdas1-dma1 pwwDas1-	das1 (bt_4720)-dma1	This study
	Dma1	(<i>bt_4721</i>) double deletion	-
		mutant, complemented	
B. thetaiotaomicron	VPI-5482 Δdma1	dma1 (bt_4721) deletion	This study
	pwwFLAG-Dma1-His	mutant expressing	-
		pwwFLAG-Dma1-His	
Plasmids used in th	is study		
Name	Resistance	Features	Reference/Source
pSAM-Bt	Amp ^R Frm ^R	Vector base to perform	Goodman et al 2009
P = D (,,	transposon mutagenesis	200411411 01 411, 2000

	· · · ·			
pSAM-Bt_Tet	Amp ^R ,Tet ^R	pSAM-Bt backbone containing tetracycline resistance cassette	This work	
pSIE1	Amp ^R ,Erm ^R ,aTc ^S	P1T_DP-GH023_ss-bte1; P1T_DP-GH023_ss-bfe1; PBFP1E6 tetR	Bencivenga-Barry et al., 2020	
pSIE1_das1	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for B. thetaiotaomicron VPI- 5482 das1	This study	
pSIE1_dma1	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 dma1	This study	
pSIE1_das1-dma1	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 das1& dma1	This study	
pSIE1_das2	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 das2	This study	
pSIE1_dma2	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 dma2	This study	
pSIE1_das2-dma2	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 das2 & dma2	This study	
pSIE1_BT1287	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 BT_1287	This study	
pSIE1_nigD1	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 <i>NigD1</i> (BT_4005)	This study	
pSIE1_nigD2	Amp ^R ,Erm ^R ,aTc ^S	pSIE1 deletion construct for <i>B. thetaiotaomicron</i> VPI- 5482 <i>NigD2</i> (BT_4719)	This study	
pWW3452	Amp ^R ,Erm ^R	AmpR-ermG-RP4/R6K- [P_BfP1E6-RBSlp-LPGFP- tag-Term]-NBU2, AmpR ErmR	Whitaker et al., 2017	
pWW3867	Amp ^R ,Erm ^R	AmpR-ermG-RP4/R6K- [P_BT1311-RBSphageGFP- tag-Term]-NBU2, AmpR ErmR	Whitaker et al., 2017	
pwwBoINL-Nluc	Amp ^R ,Erm ^R	pWW3867containing Inulinase-Nluc fusion	/W3867containing This study Ilinase-Nluc fusion	
pwwNLuc	Amp ^R ,Erm ^R	pWW3867containing Nluc	This study	
pwwEV	Amp ^R ,Erm ^R	pWW3867 backbone	Whitaker et al., 2017	
pwwDas1-His	Amp ^R ,Erm ^R	pWW3867 containing Das1 with C-terminal 6xHis tag	This study	
pwwDma1-His	Amp ^R ,Erm ^R	pWW3867 containing Dma1 This study with C-terminal 10xHis tag		
pwwFLAG-Dma1-His	Amp ^R ,Erm ^R	pWW3867 containing Dma1 with an N-terminal 3xFlag tag and a C-terminal 10xHis tag	This study	
pwwDas1-Dma1-His	Amp ^R ,Erm ^R	pWW3867 containing Das1 and Dma1 with C-terminal His tags	This study	

pGSTag	Amp ^R	Expresses GST and is used to create GST fusion proteins	Ron et al. 1992
pET32a-TRXtag	pET32a-TRXtag Amp ^R Exp		Bennett et al. 2002
Oligonucleotides us	ed in this study		
Name	Sequence	Template	Description
F_Nluc	GTCTTCACACTCGAAGATTTC	pLenti6.2-Nanoluc-ccdB vector	For cloning into pWW3867
R_RpoD_Nluc(6His)	TCGAGCTAATCAGCTAGGATTTAG TGATGATGATGATGATGACCCGCC AGAATGCGTTC	pLenti6.2-Nanoluc-ccdB vector	For cloning into pWW3867
F_BoIN-RpoD	TCCAAATCTGTTTTTAAAGAATGAA GATAAATAAATTCTTAATAAGCGG	<i>B. ovatus</i> ATCC 8483 genomic DNA	For cloning into pWW3867
R_BolN(5F)Nluc	AAATCTTCGAGTGTGAAGACAGAT CCTCCTCCTCCTTTCTTAGCGCTT AGATAATG	<i>B. ovatus</i> ATCC 8483 genomic DNA	For cloning into pWW3867
F_pww-NLuc-His linear	GTCTTCACACTCGAAGATTTC	pLenti6.2-Nanoluc-ccdB vector	For cloning into pWW3867
R_pww-NLuc	TCGAGCTAATCAGCTAGGATTTAG TGATGATGATGATGATGACCCGCC AGAATGCG	pLenti6.2-Nanoluc-ccdB vector	For cloning into pWW3867
F_BT4720-Downstream	GCGGCCGCTCTAGAACTAGTCGC CTTCGTCGTTATG	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
R_BT4720-Downstream	TTTCTCTTCCATATCTCTACTTGCT TATACACGTGTTTACC	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
F_BT4720-Upstream	GTAAACACGTGTATAAGCAAGTAG AGATATGGAAGAGAAAGAATTATG	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
R_BT4720-Upstream	GATTAGCATTATGAGGATCCATTG CTGATCATTGGGTATG	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
F_BT4721_Up	GCGGCCGCTCTAGAACTAGTTGG TCAGGATCTCTTTATTTCTCTTAC CT	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
R_BT4721_Up	ATCTCTACCTATCCGTTATTCATTA TCCATTC	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
F_BT4721_Down	AATAACGGATAGGTAGAGATTAGA ACCCGGTGTTGCTTATTTCTTTGA TGATG	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
R_BT4721_Down	AAGATTAGCATTATGAGGATCCGG TGACGTATGTTTCAGTGTTC	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
R_BT4720/21- Downstream	ATATAGCTCAACTATATTGATTGCT TATACACGTGTTTACC	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
F_BT4721/20-Upstream	GTAAACACGTGTATAAGCAATCAA TATAGTTGAGCTATATATTTTAAAA GC	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
F_BT1558 Downsteam	GCGGCCGCTCTAGAACTAGTCAG GCACAGTGTCATAG	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1
R_BT1558 Downstream	CGCTGATGCCGGGATGACTGTCC TTATAAAAATGAAAAAAACACTTAT G	<i>B. thetaiotaomicron</i> VPI- 5482 genomic DNA	For cloning into pSIE1

F_BT1558 Upstream TTTTTTCATTTTTATAAGGACA		B. thetaiotaomicron VPI-	For cloning into pSIE1
D DT1559 Upstroom			Ear cloping into pSIE1
K_BT1556 Opsilealli	CTGCAGCTG		
F BT1559 Downstream	GCGGCCGCTCTAGAACTAGTGCT	B thetaiotaomicron VPI-	For cloning into pSIF1
	TTCAGCGGGATG	5482 genomic DNA	
R BT1559 Downstream	ACACCCTCTATGCCAAACAATGAA	B thetaiotaomicron VPI-	For cloning into pSIE1
	ATAACCGATCTGTTTCG	5482 genomic DNA	
F BT1559 Upstream	GAAACAGATCGGTTATTTCATTGT	B thetaiotaomicron VPI-	For cloning into nSIE1
	TTGGCATAGAGGG	5482 genomic DNA	
R BT1550 Upstream	GATTAGCATTATGAGGATCCTTGG	B thetaiotaomicron VPI-	For cloning into pSIE1
	ATACCCGCAAG	5482 genomic DNA	
	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	B thetaiotaomicron VPI	Ear cloning into pSIE1
1_011207_0wii	GTCATCCTTTACG	5482 genomic DNA	
R BT1287 Dwn		B thetaiotaomicron VPI-	For cloning into nSIE1
	TTAAAGTTTTCATACTTGTTAAAC	5482 genomic DNA	
E BT1287 Llp	GTATGAAAACTTTAACTAAAGGTG	B thetaiotaomicron VPI-	For cloning into nSIE1
1_011207_0p		5482 genomic DNA	
	CATTACCATTATCACCATCCACAC	R thataiataomicron V/PI	Ear cloping into pSIE1
К_ВТ1207_Ор	GCGAATGCG	5/82 genomic DNA	
		B thataiataomicron V/PI	Ear cloping into pSIE1
F_B14003_DWII	GAATCCTACGCTAC	5482 gonomic DNA	For cioning into pare r
		District a service and March 1997	For elemina inte nºIE1
R_B14005_DWN		B. Inetalotaomicron VPI-	For cioning into pSIE I
		5482 genomic DNA	
F_B14005_0p		B. thetalotaomicron VPI-	For cloning into pSIE1
		5482 genomic DNA	
			For classing into a QIE4
R_B14005_0p	GATTAGCATTATGAGGATCCACCT	B. Inetalotaomicron VPI-	For cloning into pSIE1
		5482 genomic DNA	For elemina inte nºIE1
F_B14/19_DWN	GLGGLLGLTLTAGAALTAGTGAA	B. Inetalotaomicron VPI-	For cloning into pSIE I
		5462 genomic DNA	For elemina inte nºIE1
R_B14719_DWI	ΤΑΑΤΑΑΑCΑΤΤΤΤΑΤΑGΤΑΤΑΤCTAG	5/82 genomic DNA	For cioning into pSiE1
	ΤΩΤΤΓΟΤΑΤΑΑΤΤΑΟΤΑΘΑΤΑΤΑΟΤΑ	B thetaiotaomicron \/Pl	For cloping into pSIE1
1_В14/19_Ор		5492 gonomia DNA	
		5462 genomic DNA	
P BT/710 Lip	CATTACCATTATCACCATCCTCTTT	B thetaiotaomicron \/Pl	For cloping into pSIE1
К_ВТ4713_ОР		5482 genomic DNA	
E RooD BT4720-His		B thetaiotaomicron VPL	Eor cloning into
		5482 genomic DNA	nW/W3867
R RhoD BT4720-His		B thetaiotaomicron VPI-	Eor cloping into
	TEATEATEATEATEATEACCTCCC	5/82 genomic DNA	n M/M/3867
	TTATTCATTATCCATTCTTTTAC	5462 genomic DNA	p****3667
E DWW/RDOD RT/721		R thataiataomicron V/PI	Eor cloning into
		5/82 genomic DNA	
		B thotaiotaomicron \/Pl	Eor cloping into
His	TGATGATGATGATGATGATGATGA		
1 113		5462 genomic DNA	p****5607
R RDOD BT/720/21	TTTCTCTTCCATATCTCTACCTACT	B thetaiotaomicron VDI	For cloning into
	CATCATCATCATCACCTCCCT	5/82 gonomic DNA	
1115	ΤΑΤΤΛΑΤΤΑΤΛΛΑΤΤΛΤΤΤΤΤΛΛ	JHOZ GENUINIC DIVA	μννν3007
E DAMA PROD PT4721/2		R thataiatacmicron \/D	Eor cloning into
		5/82 conomic DNA	
			Eor cloping into
	AIGGAIIAGAAGGAGGAIG	PVVV0402 DIVA	pWW3452

R_N-term_3x-	ATCCATAATTCTTTCTCTTCTCCAG	pWW3452 DNA	For cloning into
FLAG_BT4721	ATTTATCATCATCG		pWW3452
F_Phg_FLAG-BT4721-	ACGATGATGATAAATCTGGAGAAG	B. thetaiotaomicron VPI-	For cloning into
His	AGAAAGAATTATGGATG	5482 genomic DNA	pWW3452
R_pwwRpoD_BT4721-	TCGAGCTAATCAGCTAGGATCTAA	B. thetaiotaomicron VPI-	For cloning into
His	TGATGATGATGGTGATGATGATGA	5482 genomic DNA	pWW3452
	TGATGACCATAAGTAAGTCGGATA		
	CC		
F_pGSTag_lin	GCAGAACGTCGCGAA	pGSTag DNA	For cloning into pGSTag
R_pGSTag_lin	AGATCCACGCGGAAC	pGSTag DNA	For cloning into pGSTag
F_GST-BT4721_1-80aa	ATCTGGTTCCGCGTGGATCTATGG	B. thetaiotaomicron VPI-	For cloning into pGSTag
	AAGAGAAAGAATTATGG	5482 genomic DNA	
R_GST-BT4721_1-40aa	AGAATTTCGCGACGTTCTGCCTAC	B. thetaiotaomicron VPI-	For cloning into pGSTag
	CTCTCCACAGG	5482 genomic DNA	
F_pET32a-TRX_lin	CATCATCATCATCATCATTGAG	pET32a-TRXtag	For cloning into pET32a- TRXtag
R pET32a-TRX lin	CTTGTCGTCGTCGTC	pET32a-TRXtag	For cloning into pET32a-
			TRXtag
F_TRX-BT4720_His	GTACCGACGACGACGACAAGATG	B. thetaiotaomicron VPI-	For cloning into pET32a-
	GAAGAATTTGAGTTGTC	5482 genomic DNA	TRXtag
R_TRX-BT4720-His	CAATGATGATGATGATGATGTCCG	B. thetaiotaomicron VPI-	For cloning into pET32a-
	TTATTCATTATCCATTC	5482 genomic DNA	TRXtag

OMV Screen Candidates

Figure S1: Hyper- and hypovesiculating strains were identified during OMV screening. Nano-Glo assays were performed using filtered supernatants isolated from each potential candidate. Total luminescent output of each candidate was standardized by OD_{600} , then normalized to the wild-type. Candidates exhibiting a 1.5-fold increase in luminescence were considered hypervesiculating, while those displaying a 0.5-fold decrease were deemed hypovesiculating.

Figure S2: Example of validation for OMV screen candidates. Western blots were performed using (A) whole cells (WCs) to check the expression of the OMV reporter, and (B) TMs and OMVs were isolated to check partitioning of the OMV reporter. (C) Protein profiles of OMVs from each transposon mutant were analyzed by SDS-PAGE followed by Coomassie staining. <u>1</u>: WT, <u>2</u>: BD.D9, <u>3</u>: BD.E5, <u>4</u>: BE.C11, <u>5</u>: BF.A12, <u>6</u>: BF.G10, <u>7</u>: BF.D12. (D) Relative abundance of LPS content of transposon mutants were analyzed by SDS-PAGE followed by LPS silver staining. <u>1</u>: *E. coli* 0111:B4, <u>2</u>: WT, <u>3</u>: BD.E5, <u>4</u>: BE.C11, <u>5</u>: BF.G10, <u>7</u>: BF.D12

		Gene(s)	
Candidate	Insertion Site(s)	Interrupted	Gene Annotations
C.A7	935,471	BT_0753	Anti-sigma factor
C.A9	458,218; 1,402,418	BT_0372; BT_1115	Aldose 1-epimerase; Aldo/keto reductase
C.B9	4,377,534	BT_3397	Pyruvate ferredoxin oxidoreductase
G.A1	6,138,309	N/A	Insertion in INL-Nluc expression vector
			Insertion in intergene region between
N.D2	2,722,830	N/A	BT_2164-65
S.C3	3,456,177	BT_2786	30S ribosomal protein s15
	4,545,446;		SusC-like protein; DUF4847 domain-
V.E10	5,611,550	BT_3519; BT_4261	containing protein
V.F3	2,803,639	BT_2235	Hypothetical protein
W.H11	6,138,327	N/A	Insertion in INL-Nluc expression vector
X.H3	5,611,256	BT_4261	DUF4847 domain-containing protein
	4,410,790;		
AA.A11	4,545,446	BI_3422; BI_3519	alpha-2-macroglobulin; SusC-like protein
AK.D1	3,115,604	BT_2493	ROK family protein
AL.B5	3,115,511	BT_2493	ROK family protein
AL.G3	N/A	N/A	
AM.C1	3,116,101	BT_2493	ROK family protein
AT.E8	N/A	N/A	
AT.F1	4,820,482	BT_3709	Elongation Factor P
AT.F10	4,820,482	BT_3709	Elongation Factor P
			Outer membrane beta-barrel domain-
AX.G6	6,196,151	BT_4721	containing protein
BA.D10	4,820,482	BT_3709	Elongation Factor P
BB.E11	3,115,663	BT_2493	ROK family protein
			2-oxo acid dehydrogenase; N6-adenine-
BD.D9	374,098; 4,155,947	BT_0311; BT_3255	specific DNA methylase
BD.E5	4,304,745	BT_3341	SbsA Ig-like domain-containing protein
			Outer membrane beta-barrel domain-
BE.C11	6,196,148	BT_4721	containing protein
BF.A12	6,138,331	N/A	Insertion in INL-Nluc expression vector
			Outer membrane beta-barrel domain-
BF.D12	6,196,613	BI_4721	containing protein
	0 400 047		Outer membrane beta-barrel domain-
BF.G10	6,196,617	BI 4/21	containing protein

Table S2: List of candidate genes identified during OMV Screen.

Figure S3: Mutation of *dma1* does not significantly impact growth *in vitro*. Growth curves performed in BHI media for WT, $\Delta dma1$, and its corresponding complemented strain.

Figure S4: Hypervesiculation causes $\Delta dma1$ **to secrete significantly more membrane lipids.** Total lipids were isolated from (A) TM and (B) OMV fractions from WT, $\Delta dma1$, and $\Delta dma1_{Comp}$. Lipids were relativized to an 18:0-20:4 phosphoinositol internal standard (IS). Red squares denote sphingolipids, dihydroceramides (DHC), ethanolamine-phosphoceramides (EPC), inositolphosphoceramide (IPC). Blue squares are phospholipids, phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI). Yellow square represent amino lipids, glycylserine dipeptide lipids (GS), glycylserine phosphoryl diacylglycerol (GS-PA), N-(3-O-Acyl)acyl glycylserine phosphoryl dihydroceramide (GS-PDHC).

Figure S5: Protein composition of subcellular fractions is consistent between the WT and Δ *dma1.* Principal component analysis (PCA) of WC (stars), TM (squares), and OMV (circles) proteomes from *Bt* grown in BHI media. Four biological replicates were performed for each condition.

Figure S6: OMV cargo selection is not impacted by mutation of Dma1. Volcano plot representations of proteins enriched in the TM and OMV fractions. Integral membrane proteins are represented in blue, lipoproteins with LES motifs are indicated in red, lipoproteins lacking the LES motif are depicted in yellow, and soluble proteins are indicated in dark gray. (A) OMV cargo selection is maintained in $\Delta dma1$, indicating that these OMVs are not the result of cell lysis.

SusG

Figure S7: Partitioning of OMV cargo is maintained in *Adma1.* Western blots using anti-polyHis against different membrane and OMV enriched proteins (*Top*: BT_0587, *Bottom*: SusG (BT_3698)). These demonstrate that partitioning of proteins between the OM and OMVs is not aberrant in $\Delta dma1$.

Anti-sigma domain 1 130 Dma1 MEEKELMMN KLKEKLGDYS EPLPASGWEQ LEKELMPPVE RKIYPYRKWT VAAAAVILLA LGSSVSLYFL GTPAADEIRH AKTPALASVP DVLPDAQQPD MTGTTIEPVV RPVVKNRIAK AERNIPQPTA Reo MMKEDEKWIK AFKDKLEDYS EPMPASGWER LERELMPVTE KRIYPYRRWA VAAAAVVLV- LTTAVSLYFL NSPVADEIRY ATAPSLAVNP DVLPEPALPD VQVAVSEPV- KPVGTTSINP VSGYLAKNTD nsus .MeEdelwin alk#KLeDYS EP\$PASGWEr LERELMPptE rrIYPYRrWa VAAAAV!Ll. LgsaVSLYFL nsPaADEIRh AkaPaLAsnP DVLP#aaqPD mqgatiEPV. rPVgknrIak aerniaqnTa Consensus 131 Dma1 NIDEPVKKEE QPSELNAQTG DRKEKEEVEP VEETKAIRHK PADTEQP--R NKPRRPSSRD KLHIPAEKAS SQKG-TWSMG LSVGNSGGAS TELGSGIPS- -YMSRVSMVS VSNGLLSIPN DQQLVFEDGV Reo PVIVPEVSL VEKREAVTE EKRSEPQEA IA--AIEK ESATAQPPKR KEARRPSGKD KYQLPIGDSS AKRGGKNSMG VGIGNGGGLP TNGSKNFAPR PVIVPEVSU Consensus nidePekkee gekri#AqTe #rreee#qEa ia...AIrhK eaaTaQP..R neaRRPSgrD KigiPaedaS aqrG.kWSMG jgIGNgGGap T#ggeniap. .mmnRvd\$ms imNGalSIPa DQ#1|FE#GV 261 390 Dma1 PYLRQ-ANOV VDMEHHOPIS FGLSVRKSLA KGFSVETGLT YTLLSSDAKF ADSDOKTEOK LHYLGIPLKA NWNFLDKKLF TLYVSGGGMI EKCVYGKLGT EKETVKPLOF SVSGAVGAOF NATKRVGIYV Reo PYLKSNTTAV VDYEHHOPVS FGLSVRKSLP KGFSVETGLT YTLLSSDIKR QGDTKMQSQK LHYIGIPVRG NWNFLEKKYF TLYVSAGGMV EKCVYGKLAD DKVNVKPLQF SVAGAVGAQF NATDHVGLYV Consensus PYLrg.anaV VDmEHHQPIS FGLSVRKSLa KGFSVETGLT YTLLSSDaKr adddqkqeQK LHYiGIPIra NWNFL#KK1F TLYVSaGGM! EKCVYGKLad #KenVKPLQF SVaGAVGAQF NATdrVGiYV 391 425 Dma1 EPGVAYFFDD GSDVQTIRKE NPFNFNIQAG IRLTY EPGVSYFFDD GSKVQTIRKE RPCNFNLQAG LRFTY Reo EPGVaYFFDD GSdVQTIRKE rPcNFNiQAG iR1TY Consensus

Figure S8: Amino acid sequence alignment of Dma1 and *Bf***Reo.** Dma1 show 56% sequence identity with Reo. Amino acids highlighted in red represent high consensus levels (90%), while those in blue represent low consensus (50%). The predicted anti-sigma domain is shown in brackets. Alignment was done using MultAlin version 5.4.1.

Figure S9: Mutation of *das1* does not impact growth in the wild-type or $\Delta dma1$ background *in vitro*. Growth curves performed in BHI media for WT, $\Delta das1$, $\Delta das1$ -dma1 and their corresponding complemented strain.

Strains

- 1. WT
- 2. ∆dma1
- **3.** ∆dma1_{Comp} **4.** ∆das1
- 5. ∆das1_{Comp}

Figure S10: Mutants in Adas1 and Adma1 are not attenuated in aerobic stress. Aerobic exposure stress tests comparing WT, $\Delta das1$, $\Delta dma1$, and their corresponding complemented strains incubated in air for different times. Strains were cultured overnight, then diluted to the equivalent of OD₆₀₀=0.1 for the initial spot. Each subsequent spot is a ten-fold dilution of the previous one.

	Table S3: RNA Sec	uencing- ∆ <i>dma1</i>	Top 25 Most	Upregulated Genes
--	-------------------	------------------------	-------------	--------------------------

Gene (New	Gene (Old	Log₂FC	Padj	Proposed Function
Locus Tag)	Locus	_	_	
	Tag)			
BT_RS06495		9.879633157		DUF4840 domain-containing
	BT_1287		7.34E-26	protein
BT_RS20210	BT_4005	7.986054337	2.34E-150	NigD-like protein
BT_RS23775	BT_4719	7.743518851	1.26E-209	NigD-like protein
BT_RS16205	NO	5.229630823	3.24E-05	Smalltalk protein
BT_RS23780	BT 4720	5.034076276	0	Sigma-70 family RNA polymerase sigma factor
BT RS19750	01_1120	4 044393237	Ŭ	DLIE5034 domain-containing
B1_1010700	BT 3913	4.044030207	1 72E-210	protein
BT RS00870	BT 0177	3.767930416	6.95E-285	NigD-like protein
BT RS00875	BT 0178	3.662030315	0	YIP1 family protein
BT RS19755	BT 3914	3.590716188	3.32E-192	Hypothetical protein
BT RS11715	BT 2315	3.579969558	0.0040536	Hypothetical protein
BT RS24670	NO	3.287601612	0.02828646	Hypothetical protein
BT RS05220		3.178373436		endo-beta-N-
_				acetylglucosaminidase family
	BT_1038		2.30E-21	protein
BT_RS20385	BT_4039	3.177706063	1.72E-85	TonB-dependent receptor
BT_RS23805		2.955721786		RagB/SusD family nutrient uptake
	BT_4725		0.00240863	outer membrane protein
BT_RS05230		2.931638602		SusC/RagA family TonB-linked
	BT_1040		1.49E-67	outer membrane protein
BT_RS22810	BT_4523	2.926352615	7.39E-155	Type I restriction endonuclease EcoR124II
BT_RS14080		2.860410832		Class I SAM-dependent
	BT_2779		2.41E-68	methyltransferase
BT_RS10570	BT_2086	2.691908858	1.37E-157	Linear amide C-N hydrolase
BT_RS05210		2.653696133		DUF1735 domain-containing
	BT_1036		4.33E-42	protein
BT_RS22805	BT_4522	2.637320216	1.54E-52	Type I restriction endonuclease
BT_RS05225		2.5531964		SusD/RagB family nutrient-binding
	BT_1039		1.13E-38	outer membrane lipoprotein
BT_RS22645		2.541660806		DUF5025 domain-containing
	BT_4490		1.52E-17	protein
BT_RS05215		2.524779245		DUF1735 and LamG domain-
	BT_1037		1.45E-28	containing protein
BT_RS12945	BT_2560	2.50963332	8.48E-58	TonB-dependent receptor
BT_RS14845	NO	2.460763495	9.28E-08	Smalltalk protein

Table	55. KNA Seyu	encing- Duman	TOP 25 MOSt	Downlegulated Genes
Gene (New	Gene (Old	Log₂FC	Padj	Proposed Function
Locus Tag)	Locus Tag)			
BT_RS22800		-3.0243084		Tyrosine-type
	BT_4521		5.47E-67	recombinase/integrase
BT_RS15310	BT_3017	-2.497832498	0.01664662	Acid phosphatase
BT_RS21860	BT_4330	-2.326456539	5.53E-127	Nucleoside permease
BT_RS09755	BT_1926	-2.295427189	5.78E-30	OmpA/MotB domain protein
BT_RS18675		-2.184786525		Glycoside hydrolase family 13
	BT_3704		3.07E-33	protein
BT_RS04750		-2.127262731		Penicillin-binding protein 2B
	BT_0943		2.26E-53	(PBP-2B)
BT_RS13245	BT_2619	-2.123420723	1.05E-74	Histidine kinase
BT_RS21840		-2.112073399		ATP-binding cassette domain-
	BT_4326		4.79E-98	containing protein
BT_RS16435		-2.081737712		BACON domain-containing
	BT_3244		3.53E-50	protein
BT_RS04760	BT_0945	-2.078233418	3.80E-50	Hypothetical protein
BT_RS14350	BT_2830	-2.060239218	2.68E-70	HU family DNA-binding protein
BT_RS09760	BT_1927	-1.993238565	3.54E-41	Hypothetical protein
BT_RS16430		-1.909968855		DUF4302 domain-containing
	BT_3243		4.73E-51	protein
BT_RS13240		-1.881918801		Two-component system
	BT_2618		9.75E-09	response regulator
BT_RS20375	BT_4037	-1.872169035	1.38E-24	Hypothetical protein
BT_RS15060		-1.835815403		Class I SAM-dependent
	BT_2972		2.91E-23	methyltransferase
BT_RS10930		-1.822844005		Gfo/Idh/MocA family
	BT_2159		2.25E-148	oxidoreductase
BT_RS21835	BT_4325	-1.809901243	8.80E-74	ABC transporter permease
BT_RS08875		-1.805310189		Glycine betaine/L-proline ABC
	BT_1751		2.07E-07	transporter ATP-binding protein
BT_RS21845	BT_4327	-1.801115206	2.77E-108	DUF4836 family protein
BT_RS13230		-1.793091582		Group II intron reverse
	BT_2615		1.50E-07	transcriptase/maturase
BT_RS04755	BT_0944	-1.791690553	3.24E-11	Hypothetical protein
BT_RS13260	BT_2622	-1.780022703	5.06E-84	Alpha-glucuronidase
BT_RS21850		-1.774306654		16S rRNA (uracil(1498)-N(3))-
	BT_4328		1.52E-76	methyltransferase
BT_RS10860		-1.764647845		Adenosylcobalamin-dependent
				ribonucleoside-diphosphate
	BT 2145		2.52E-85	reductase

Table S3: RNA Sequencing- Δ*dma1* Top 25 Most Downregulated Genes

Protein ID	Gene	Fold Change	-Log(P-value)	Proposed Function
Q8A887	BT_1287	9.30394		DUF4840 domain-containing
	_		4.16088	protein
Q89YL2	BT_4719	6.68855	2.84572	NigD-like protein
Q8A0L6	BT_4005	5.17626	3.95591	NigD-like protein
Q89YS2	BT_4659	3.50177	2.6692	SusD homolog
Q8AB86	BT_0224	3.42438	1.96457	Lipocalin-like protein
Q8ABW9	BT_p548229	3.19438	5.8735	Fimbrillin family protein
Q8A2W6	BT_3189	3.012	1.91681	Unknown
Q8ABX1	BT_p548227	2.75674	1.99822	DUF3575 domain-containing protein
Q8A8Q1	BT_1116	2.7145	3.31	PPC domain-containing protein
Q89Z34	BT_4543	2.54599	3.24113	Putative type I restriction enzyme specificity protein
Q8A174	BT 3792	2.47739	1.88394	alpha-1,6-mannanase
Q8A0W2	BT_3909	2.1813	1.63533	Unknown
Q8A2T3	BT_3222	2.146	1.39245	DUF4848 domain-containing protein
Q8A2T2	BT_3223	2.05685	3.09966	OMP_b-brl domain-containing protein
Q8A6W1	BT_1765	1.85376	2.45838	Levanase (2,6-beta-D- fructofuranosidase)
Q8A3A2	BT_3052	1.82297	3.1166	AraC family transcriptional regulator
Q8A8I7	BT_1180	1.70579	1.8163	Glycoside transferase family 4
Q8A0E0	BT 4081	1.69799	1.36892	SusC homolog
Q8A113	BT 3858	1.64563	1.41392	Alpha-1,2-mannosidase
Q8A9K1	BT_0814	1.60821		BamA/TamA family outer
			1.70922	membrane protein
Q8AB18	BT_0294	1.60238	1.35371	Carboxypeptidase regulatory- like domain-containing protein
Q8A5R5	BT 2173	1.38299	1.42681	SusD homolog
Q8A151	BT_3816	1.33909	1.3211	Penicillin-binding protein 2 (PBP-2)
Q8AA46	BT_0619	1.27055	1.6609	Ion-translocating oxidoreductase complex subunit D, rnfD
Q8A109	BI_3862	1.18/18	1.70627	⊢ Endo-alpha-mannosidase

Table S4: Comparative Proteomics- $\Delta dma1$ Top 25 Most Upregulated Genes

Table S4: Comparative Proteomics- Δdma1 Top 25 Most Downregulated Genes

Protein ID	Gene	Fold Change	-Log(P-value)	Proposed Function
Q8A6F7	BT_1927	-5.75443	4.17785	Unknown
Q8ABI4	BT_0126	-3.70228	1.44507	Six-hairpin glycosidase
Q8A4Y4	BT_2463	-3.65105		RNA polymerase ECF-
			3.00365	type sigma factor
Q89ZQ0	BT_4326	-3.53782		ABC transporter ATP-
			2.86951	binding protein
Q89ZP7	BT_4329	-2.97173		BFN domain-containing
			2.49205	protein
Q8A8X2	BT_1045	-2.64843		Concanavalin A-like
			2.85322	lectin/glucanase
Q8A7D7	BT_1587	-2.61663		GCN5-related N-
			1.4901	acetyltransferase
Q8AAE0	BT_0525	-2.32145	1.32336	LruC domain-containing
				protein
Q8A826	BT_1348	-2.17801	2.67435	CDP-abequose synthase
Q89ZP8	BT_4328	-2.167		Ribosomal RNA small
				subunit methyltransferase
			3.63516	E
Q89ZP9	BT_4327	-2.12513	5.58384	DUF4836 family protein
				.
Q8A149	BT_3818	-1.95031	4 00000	Gliding motility lipoprotein
	DT 4077	4 000 4 4	1.38383	GIdH
Q89YQ4	BI_4677	-1.90211		Beta-lactamase-inhibitor-
			0.04555	like PepSY-like domain-
004500	DT 0070	4 00400	2.01555	containing protein
Q8A5G3	BI_2276	-1.88130	1.51383	AI-2E family transporter
094551	DT 2201	1 74464	2 10011	Hybrid Two component
QOADDT	DI_2391	-1.74404	3.10011	Hybrid Two-component
084607	BT 1057	_1 70/5/		DUF4465 domain-
QUAUCI	DI_1337	-1.70+04	1 4706	containing protein
0848X3	BT 1044	-1 68106	1.4700	Secreted
0,10,10	D1_1044	1.00100		endoglycosidase GH
			3 56162	family 18
084445	BT 2698	-1 65411	1 42781	
08AAL2	BT_0452	-1 63773	1 32215	SusC homolog
	BT 4691	1.00770	1.02210	Ribosomal RNA large
	B1_1001			subunit methyltransferase
Q89YP0		-1.59995	1.64528	E.rlmF
Q8A8X4	BT 1043	-1.59626	3.77015	SusD homolog
	BT 1926			OmpA/MotB domain
Q8A6F8		-1.5911	1.87538	protein
Q8A5H2	BT 2267	-1.56716	1.5167	Site-specific integrase
Q8A2R4	BT 3241	-1.50727	1.30956	SusD homolog

Start Position	End Position	Sequence	Posterior Error
			Probability
153	164	EKEEVEPVEETK	1.62E-05
187	195	DKLHIPAEK	0.0033255
189	195	LHIPAEK	0.038234
259	279	QANQVVDMEHHQPISFGLSVR	3.29E-14
285	302	GFSVETGLTYTLLSSDAK	1.01E-36
314	322	LHYLGIPLK	6.66E-06
323	330	ANWNFLDK	0.0044146
323	331	ANWNFLDKK	2.04E-05
356	377	ETVKPLQFSVSGAVGAQFNATK	1.58E-09
378	401	RVGIYVEPGVAYFFDDGSDVQTIR	4.09E-08
379	401	VGIYVEPGVAYFFDDGSDVQTIR	5.89E-08
402	415	KENPFNFNIQAGIR	6.49E-12
403	415	ENPFNFNIQAGIR	2.13E-09

Table S5: Tryptic peptides of Dma1 identified in the OMV fraction.

Α.

Figure S11: Schematic of gene synteny of *Bt* **Dma1-3.** Gene synteny for different Bacteroidota were compared to (A) Dma1 (BT_4721), (B) Dma2 (BT_1558), and (C) Dma3 (BT_2778) from Bt. Genes of the same color are conserved in different species, while those in grey differ.

<u>Strains</u>

- **1.** BT WT
- **2.** BT∆*dma2*
- 3. BT∆das2
- 4. BT∆dma2-das2
- 5. BT∆dma3

Figure S12: $\Delta dma2$ induces OMV biogenesis in a similar manner to $\Delta dma1$. Coomassie Blue stain comparing protein profiles between WT, $\Delta dma2$, $\Delta das2$, $\Delta dma2$ -das2, and $\Delta dma3$. This gel shows that mutation of dma2 induces vesiculation, and this phenotype is dependent on its cognate sigma factor, Das2. Samples were normalized by OD₆₀₀ values and run on 10% SDS-PAGE gel.