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1 Study design

1.1 MPA impacts on fish populations (mechanisms)

The IUCN defines protected areas (PAs) as “a clearly defined geographical space, recognized, dedicated
and managed, through legal or other effective means, to achieve the long-term conservation of nature
with associated ecosystem services and cultural values” (1). Marine protected areas (MPAs) refer to “any
area of intertidal or subtidal terrain, together with its overlying water and associated flora, fauna,
historical and cultural features, which has been reserved by law or other effective means to protect part
or all of the enclosed environment (2).” MPAs can lead to increased fish biomass by imposing restrictions
that reduce extractive and destructive activities (primarily fishing) within the MPA boundaries, thus the
magnitude and rate of fish population recovery (i.e., MPA impact) is highly dependent on the level of
restrictions, the adequacy and appropriateness of management to facilitate sustainable use, and the pre-
existing context (e.g., historic exploitation rates, species life history, habitat quality) (3-8).

1.2 Factors affecting MPA placement (selection criteria)

MPAs are not randomly placed in the ocean; many MPAs are situated in areas with low benefits from
exploitation (9) or to protect areas with high biodiversity or tourism value (10, 11). In these cases, MPA
fish populations would be expectedly higher than those in non-MPA locations regardless of protection, as
non-MPA locations might have higher historical exploitation rates or lower habitat quality (e.g., lower fish
abundance from low reef complexity (12)) than MPA locations. This may also be the case for MPA types,
where protected areas that prohibit all extraction (no-take) are systematically placed in different locations
than other protected area types (e.g., multiple-use MPAs) (13). Such differences were observed in
terrestrial PAs, with more strict PAs located in areas where land conversion was less likely (14). Given that
MPAs that prohibit all fishing (i.e., no-take MPAs) and MPAs that allow some fishing (multiple-use MPAs)
incur different opportunity and social costs for extractive uses, we hypothesize that choice of MPA type
can also be influenced by these opportunity costs and the associated fishing history. For example, no-take
MPAs may be established (intentionally or unintentionally) in areas in better ecological condition (15)
(e.g., higher coral cover in Florida Keys no-take zones (11)) or areas with fewer human stressors (e.g.,
areas less accessible or desirable for fishing). If so, no-take MPAs that are placed in relatively undisturbed
areas where fish stocks are less threatened and in better condition may have greater standing biomass
but a smaller impact compared to multiple-use MPAs placed in more heavily used areas (13).

1.3 Factors affecting outcomes

In addition to biases in no-take and multiple-use MPA/zone placement, any spatial comparison is likely
affected by time-invariant and time-varying socio-environmental factors that differ between the treated
and control locations. Social (e.g., traditional/cultural uses) (16), political (e.g., regulatory framework),
economic (e.g., capital invested in marine resource activities) (17), and environmental (e.g., habitat types,
ocean conditions, pollution levels) (18-20) conditions and trends can differ between sites, and account
for much of the differences in fish populations between protected and unprotected sites (21, 22).

An ideal study design for evaluating MPA impacts uses comparable no-take, multiple-use, and non-MPA
sites where long-term monitoring data on fish populations and socio-environmental conditions are
collected for a significant duration before and after establishment (10, 22). However, such datasets are
scarce or potentially non-existent, given the paucity of baseline and long-term MPA monitoring data for
specific sites much less across regional or global scales (23, 24). It also requires considerable foresight and
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resources to collect data at control sites which account for biases in MPA placement (10, 21). In the
absence of such data and recognizing its limitations (Section 6), we used our previously assembled global
dataset of over 15,000 no-take, multiple-use, and non-MPA sites within and around over 287 MPAs in 43
countries and territories to estimate the relative impacts of MPAs that prohibit (no-take) and restrict
(multiple-use) fishing. We also compiled detailed data on the social, environmental, management, and
regulatory conditions at each study site, using matching and regression analyses to account for
confounding factors that affect MPA placement and fish biomass outcomes (21, 25). We use MPAs as our
unit of analysis or, in the case of MPAs with multiple-use and no-take zones, the zone type within the
MPA.

A detailed methods plan for the initial iteration of this study was posted and publicly shared on the Open
Science Framework platform in 2019 (26).

2 Step 1: Data compilation
Fig. S1 describes the analysis steps 1-3, and the corresponding sensitivity and diagnostic tests.

2.1 Fish biomass outcomes

We built on a global synthesized dataset of fish populations from Gill et al (6), with the full dataset
comprising species or family level observations from 15,978 underwater visual census surveys conducted
in and around 287 MPAs in 58 countries (see Gill et al (6) for data sources and description). Each survey
site represents a single survey from a specific location at a particular period in time. We averaged transect
level observations to get total biomass (grams) to units per 100m? for each site, based on the survey area
and methodology, as the number of transects at each site varied by survey methodology. If no fish biomass
data were provided by the data providers, we calculated fish biomass using the individual body lengths
and allometric length-weight data obtained either from the data provider or from FishBase (27).

We used total biomass of all fish >10cm at each survey site (g/100m?) as an indicator of conservation
outcomes given its sensitivity to recovery from fishing, and its strong relationship to other conservation
objectives such as species diversity (23, 28, 29). We only considered fish >10 cm to avoid recruitment
effects, high variability associated with observing small cryptic species, and to focus the analysis on
fishable species (30, 31). To reduce the effect of outliers, we use the natural log of the ratio of fish biomass
of matched treatment and control sites as an indicator of MPA performance (i.e., treatment effects).

Given that not every site had fish >10cm (resulting in total biomass of 0 for that site; 997 survey sites), we
followed Thiault et al (32) and Cresswell et al (24) by adding a small constant to biomass for all sites to
avoid calculating log ratios with zero values (10). This constant represents the smallest total biomass value
observed in the dataset (1.09 g/100m?2). To ensure that the choice of constant did not affect the results,
we ran sensitivity tests with constants of different magnitudes (0.1 -10x constant). Such substantial
changes in magnitude of the constant only marginally changed the estimated site-level average treatment
effect (Fig. S6).

2.1.1 Unclear or ambiguous observations and sites

We removed species-level records with biomass values >200,000 g/100m?. These were predominantly
observations of large schools of mobile pelagic fish (e.g., Scombrids, Sphyraenids) or large transient
species (e.g., Manta birostris) as it would be difficult to attribute these observations to protection at that
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site, particularly for small MPAs. We tested for the effect of schooling species by re-estimating the
treatment effects after removing observations of fish with > 250 individuals. Removing these observations
did not result in a significant change in the average estimated site-level treatment effects (Fig. S6). While
our approach seeks to incorporate as much available data as possible, future studies could explore the
sensitivity of results to wholly excluding species known to school.

Of the 15,978 survey sites in the dataset, we removed surveys where we were unable to calculate biomass
due to missing data (n=65 sites). Habitat is an important confounder when assessing protection effects
(19, 32-34), therefore, we removed survey sites without habitat data (n= 36 survey sites) and those
conducted in rare habitats (e.g., pinnacles, ridges, back reefs; n=13 survey sites) given that these sites
were unlikely to have an appropriate match. We also excluded sites where protection-level was unclear
(n=158) or unclear how MPA protection might affect fin-fish (e.g., most whale sanctuaries). To reduce the
likelihood of spillover affecting the results, we removed all survey sites within 1 km of the MPA boundary
(n=1,116 sites). Finally, to allow a lag time for fish response to protection, we removed sites in MPAs less
than 3 years old (n = 850 sites). The final dataset used in the analysis included 14,044 sites (89.9% of
original dataset) from within 335 zones in 216 MPAs (Fig. 1a) *.

2.2 MPA regulations

In this study, we defined no-take as areas that do not allow any forms of fishing (subsistence, commercial,
recreational) at any period of time. To identify the fishing regulations at each survey site, we compiled
spatial and regulatory information on MPA and MPA zone boundaries. We extracted spatial and attribute
data for these MPAs from the spatial datasets described in the “MPA spatial data” section. To identify
fishing regulations, we compiled over one thousand documents and maps that described the activities
permitted or prohibited in each zone of each MPA. Here we extracted information on zone names, area,
and regulations, with a focus on fishing regulations to determine whether sites were located within a no-
take or a multiple-use zone. We ranked each document or map based on 1) credibility of the source and
2) publication date. Here we prioritized resources from state or other management agencies (e.g., MPA
gazettement document, local or national fishing regulations) or scientific publications and documents
created within three years from the time when the fish surveys were conducted given the dynamic nature
of MPA regulations. To further ensure reliability, we attempted to source at least two highly credible and
relevant sources for each MPA, cross-validating information with other independent sources (e.g., World
Database of Protected Areas (WDPA)), and reached out to local or regional experts for MPAs where we
did not have high confidence in the provided information. While low confidence data does not mean that
the information is incorrect (e.g., only one non-government source found, regulations not within three
years of fish survey), as a sensitivity test, we re-estimated treatment effects after removing sites where
we had low confidence in the fishing regulations (n=2,318 or 15.8% of final dataset) and this did not result
in a significant change the average site-level treatment effects (Fig. S6).

MPA spatial data: We compiled spatial and regulatory information on MPA and MPA zone boundaries to
identify the fishing regulations at each survey site, using MPA and regulatory data close in time to when
surveys were conducted (see section above). We extracted spatial and attribute data for these MPAs from
a larger spatial dataset of over 17,000 MPA and zone boundary shapefiles compiled by the authors and

! The sum of number of disqualified sites is larger than total number of sites removed as some sites were excluded
for multiple reasons.
4
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other research partners (see Acknowledgements). For this larger dataset, we first used the boundary files
for MPAs from the November 2017 version of the World Database of Protected Areas (35), and validated
or filled missing data using other national, regional, and global datasets. These datasets provided polygon
information for MPAs in the Caribbean ((36), (37), (38)), Australia (39), United States mainland and
overseas territories (37), and other locations around the world (e.g., MPA Atlas (40)). We focused on
nationally designated marine and coastal MPAs and excluded large sanctuaries that spanned national
waters or seas (e.g., Southern Ocean Whale Sanctuary), as: 1) most were established after the fish surveys
were conducted; 2) given that regulations usually focused on non-fish species, their effect on fish
populations were likely to be minimal or uniform across MPA and non-MPA survey sites. The final dataset
comprised 17,122 MPA and zone boundary polygons.

We also used our compiled documents (see MPA regulations section) and other online sources to acquire
spatial information on zone boundaries for our study MPAs (n=287 MPAs) that were not available in the
above datasets. We used Google Earth and ESRI ArcGIS to georeference MPA zoning maps from the most
credible and relevant sources available and create polygons for each MPA zone. We then imported the
resulting 809 polygons into R and added the relevant regulation data for each zone. We plotted and
compared each digitized zone polygon to sourced maps to ensure that they retained the correct spatial
information after processing. This resulted in an additional 1,031 polygons containing zone and (outer)
MPA boundaries for our study MPAs.

2.3 MPA management and governance

We used a dataset compiled by Gill et al (6) that describes the adequacy and appropriateness of
management within 433 MPAs in 70 countries. These indicators, drawn from surveys completed by MPA
management staff and/or other stakeholders, provide insight on the effectiveness (i.e., adequacy of
management activities and capacities) and equity (i.e., fairness or justness of management) of
management processes. Although these types of assessments are vulnerable to strategic biases (e.g.,
when conducted by a single MPA manager who may want to demonstrate high or low performance), other
studies have shown that these data are effective at representing realities on the ground (41).

Assessment data took the form of ordinal responses to each question along with descriptive text
responses. Gill et al (6) sourced and compiled these data from three management assessment tools: the
Management Effectiveness Tracking Tool (METT) (42), the World Bank MPA Score Card (43), and the NOAA
Coral Reef Conservation Program’s (CRCP) MPA Management Assessment Checklist (44, 45), rescaling the
ordinal response data to ensure construct validity across assessments (Table S4). In addition to the
rescaled scores, following Gill et al (6), we developed binary thresholds for effective management for each
indicator based on the scoring criteria and alignment with social theory (46—48). See Gill et al (6) for more
information on data sourcing and processing and Table S4 for descriptions of response categories and
thresholds.

3 Step 2: Site-level bias-adjusted treatment effects

3.1 Estimating fish biomass impacts

Estimating the relative effectiveness of these two policies requires considering several policy (treatment)
scenarios. For example, to assess no-take MPA impacts, we will need to compare no-take fish biomass
outcomes with outcomes if instead they were unprotected (here denoted by NT:0), as well as with
outcomes if these same sites were inside a MU MPA instead (NT:MU | NT). Similar to Ferraro et al (13) and

5
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Rasolofoson et al (49), we estimate relative impacts between no-take and multiple-use MPAs by
comparing each MPA type to two counterfactual outcomes: no MPA and the alternative MPA type,
resulting in four treatment effects (Table S6).

Here we define treatment as no-take or multiple-use MPA establishment. We also define MPA impacts as
the expected difference in total fish biomass (Y) observed in treated (Y; |T; = 1) and counterfactual units
(Yo |T; = 1) in treated locations (i.e. average treatment effect on the treated (ATT)), conditional on
observed conditions X (Equation (1)) (50). See Table S6 for the treatment and counterfactual group for
each comparison. The ATT for survey site i is:

ATT; = E(Yyy, — YolTi = 1, X)) (1)
where Y; is total fish biomass at site i, T; is treatment (0-control; 1- treated) and X; are covariates.

3.2 Matching

We estimated the average treatment effect on the treated (ATT) for each comparison (Table S6) using
statistical matching and regression adjustments. Here we identify comparable untreated sites to pair with
treated sites based on the covariates (confounding factors: X) that affect both treatment and outcomes
(25, 50) (Table S7). The assumption is, conditional on these observed factors, that treated and matched
control units are interchangeable, and will on average have the same outcomes in the absence of
treatment, making them an appropriate counterfactual (51, 52).

3.2.1 Matching covariates

Table S7 describes the covariates we used to match treated and control sites. We used exact matching for
habitat type, country, ecoregion, and data source, ensuring that no treated site is paired with a control
site from a different ecosystem, political or regulatory system, or sampled using a different methodology.
This controlled for unobserved factors associated with these covariates (e.g., national fisheries policies,
oceanographic conditions unique to particular ecoregions, etc.). For the remaining (continuous)
covariates, we used nearest-neighbor matching based on Mahalanobis distances to identify control units
for each treatment group, as this matching approach provided greater covariate balance with fewer
dropped observations than other attempted approaches (see Section 5.1 for more details).

We used the Matching package v4.10-2 (53) in the R statistical software v4.2.0 (R Core Team, 2019) to
match two control sites to each treated site (2:1 matching), reducing potential biases introduced from
extreme observations when matching to a single control site (i.e., 1:1 matching). To improve match quality
with the limited number of control sites, we matched with replacement, and permitted ties between
matches (i.e., >1 control site with the same multivariate distance from a treatment site) where the weights
of tied matches summed to one (53, 54). Given that human population density, distance to population
center, and shore distance have been shown to strongly affect fish biomass outcomes and likely to affect
MPA placement (due to their association with extractive uses such as fishing; (55, 56)), we applied calipers
during the matching process to ensure that matched treatment and control sites did not differ in these
covariates beyond one standard deviation. See Table S7 for more details on covariates and calipers.

3.3 Post-matching bias adjustment

Post-matching balance statistics suggest that matching significantly reduced the differences between
treatment and control sites (Fig. S7 and Table S8), with the standardized mean differences of each
covariate well below the recommended level of 0.25 or 25% (57). Nonetheless, some bias in treatment

6
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effects can remain due to residual differences in covariates between treated and control sites (58). We
therefore used random forest models to identify and remove the post-matching differences in outcomes
that can be explained by differences in the social and environmental conditions (i.e., covariates) between
treated and control sites (59). Random forest models estimate the predicted values based on higher order
interactions and non-parametric recursive partitioning over the n-dimensional covariate space (60). We
chose random forests over linear approaches given their ability to predict in cases where there are
heterogeneous, unscaled predictors with various non-linear functional forms and potential higher order
interactions (61-64) making them better suited to model relationships within complex social-ecological
systems.

We carried out three major steps in this approach. First, we used the regression_forest function in the grf
package v2.1.0 (65) to model the relationships between the covariates and biomass outcomes in
untreated (non-MPA) locations (to avoid influence of treatment effect), and used this model to predict
fish biomass outcomes for all (treated and control) sites. Second, for each match set (i.e., comparisons in
Table S6), we then calculated the difference between predicted biomass between treated and matched
control units (,121 X)) — ﬁO(XL-)). This estimates the difference in outcomes that can be explained by the
observed covariates. Lastly, we removed this predicted difference from our treatment effects to get the
bias-adjusted values (Equation (2)). For the random forest models, we included a cluster level factor to
account for similarity between sites of the same MPA or zone, and generated 10,000 trees in each forest
to ensure stability. Given the sensitivity of random forest models to the choice of tuning parameters, we
used the “tune.parameters’” argument which uses cross-validation to identify the most appropriate
parameters based on the data (100 tuning trees) (65). We also used “out of bag” prediction to improve
accuracy (66).

ATTbias—adjuste i~ E(Yil = YplT; = 1in) - (ﬁl(Xi) - ﬁo(Xi)) (2)

4 Step 3: MPA-level treatment effects

We used Bayesian linear hierarchical models to estimate the MPA-level average treatment effects for each
estimand (Table S6). In each model, we used the site-level bias-adjusted treatment effects
(ATTpigs—aajust ,i; Equation (2)) as the response variable. We used hierarchical models as they give
inference on the mean treatment effect based on population of MPAs and not just on our sample (67)
while allowing us to account for correlations induced by sampling multiple sites per MPA and re-use of
control sites in the matching process. This also helped to account for the uneven distribution of sites per
MPA which varied greatly (n=1 to 1,619 sites per MPA). For all models (Equations (5)-(8)), we report the
model intercept a which represents the MPA-average treatment effect, and the probabilities of a positive
absolute (NT:0, MU:0) or relative (NT:MU|NT, NT:MU | MU) impacts (Table S9). We also report percent
biomass differences using the exponent of the model intercept a (Equation (3).

percent biomass difference = (exp(a) x 100) — 100 (3)

We fitted the Bayesian models using JAGS software v4.3.0 (68) and R package Rjags v4-13 (69). To ensure
model stability, we ran 50,000 iterations for two chains, with sufficient burn in (10,000 iterations) and
then thinned (every 10 iteration) to reduce auto-correlation.
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Our model evaluation efforts identified features in the data that required extensions of the standard linear
mixed model formulation. First, both the random effects estimates and models’ residuals had more
extreme upper and lower quantiles than allowed for by normal distributions. We found that t-distributions
provided a better fit and therefore adjusted the model to include t-distributed random effects and error
terms to make the model more robust against outliers. In our most general model, we assumed response
Y; followed a Student t-distribution with location m;, scale o; and d; degrees of freedom:

Y; ~ t(m;, 03,d;) (4)

We considered four different models for the location that include different types of random effects:

m; = o+ Ympayi + (8conyyi + Sconiyi)/2 (5)

or
m; = &+ ympayi + (8con,yi + Sconiyi)/2 + (Ocon mpay,i + Ocon mpagy,i)/2 (6)

or
mi=a+p;+ ymp i + (SCONil,i + 8C0Niz,i)/2 (7)

or

m; = a+ Bi + ympa,i + (Scow;yi T 8conyyi)/2 + (Ocon mpayi + Ocon mpag,i)/2  (8)
The scale was modeled as
log(o;) = a; + aylog(N;). (9)

o represents the MPA treatment effect of interest. § is the binary fixed effect term for the population
center distance, capacity, and regulations models (Equations (7) and (8); see Table S3 and Table S4 for
distance, capacity, and regulations definitions and other details), MPA; is the index of the MPA for
observation i, CON;; and CON;, are the indices of the two controls matched to treated observation i and
N; is the number of samples drawn from observation i’s MPA (Equation (9)). The random effects y; and
8, were included to account for dependence between observations that share an MPA and control
respectively, and are modeled as y; ~ t(0,T4,d;) and &, ~ t(0,7,,d;). For the direct no-take to
multiple-use NT:MU comparisons, we also included a random intercept 6, for control sites from the same
MPA (Equations (6) and (8)). While other random effects structures were possible (e.g., random intercepts
for each MPA zone, country, or ecoregion, nested random effects, etc.), after running various iterations
of these models, Equations (5)-(8) represented the most parsimonious structure that best represented
the data.

We used uninformative prior distributions for the remaining parameters, d;, d, ~ Uniform(1,30), o ~
Normal(0,100000), a4, a,~ Normal(0,1), and T4, T, ~ Half-Cauchy(0,1.8). The Student t distributions are
used to allow for extremely large and small observations, and the log scale modeled in terms of MPA
sample size (Equation (9)) explains observed heteroskedasticity given that the error variance increased
with the number of sites per MPA.
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5 Sensitivity tests

5.1 Matching sensitivity tests

Match quality can vary greatly depending on multiple factors: covariate specification, number of matched
controls per treated unit, choice of calipers, and more (53, 54). To identify the best approach for our data,
we assessed the match quality of multiple specifications using post-matching balance statistics to identify
the specification that had better covariate balance (e.g., lower standardized mean difference and quantile-
quantile differences, etc.; Table S8) and fewer dropped “unmatched” treated observations. Tested
specifications included nearest-neighbor matching on 1) all covariates, 2) propensity scores, 3) propensity
scores and covariates strongly correlated with treatment and outcomes (i.e., human population density,
shore distance, market distance), and 4) propensity scores and all covariates. We also assessed the post-
matching statistics with two and three controls matched to each treated site, more and less strict caliper
widths on influential covariates (e.g., maximum shore distance difference of 0.5 or 1 SD), and
transformations on covariates with skewed distributions. Of the specifications attempted, nearest-
neighbor matching on all untransformed covariates with two control sites per treated unit achieved the
best covariate balance and fewest dropped observations. To account for potential interactions between
covariates, we also added a quadratic term for some covariates and estimated counterfactual conditions
using random forest models (which account for higher order interactions (61)) instead of matching. These
approaches did not improve match quality.

5.2 Unobserved bias

While matching reduces the biases between treated and control units based on observed covariates, MPA
placement could be determined by other unaccounted or unobserved factors. For example, if
implementors systematically place no-take or multiple-use MPAs in specific locations for reasons other
than those included in the list of covariates (Table S7), social-ecological conditions and thus fish biomass
outcomes may differ greatly between no-take, multiple-use, and unprotected sites even without
protection. However, given that these factors are mostly unknown, they are impossible to identify or
directly measure (25). Here we employed a confounding sensitivity test, adapted from Blackwell (70), to
ascertain the sensitivity of our results to unknown and unaccounted confounding factors that might
explain differences in MPA placement. This test has advantages over other sensitivity tests given that: 1)
it provides information on the magnitude and direction of the confounding needed to overturn inference
(e.g., assuming positive impacts when they are actually negative); and 2) it is independent of the number
and types of unknown confounders or estimation strategy (70). In this test, we examined the sensitivity
of our results to unknown confounding by examining how the magnitude and direction of each treatment
effect varies when exposed to varying amounts of hypothetical confounding. Here we created scenarios
where unknown factors (U) that affect MPA placement have half up to two (U = a = 0.5 — 2) times the
effect on fish biomass than all the observed covariates (e.g., shore distance, depth, etc.). We did this in
four steps. First, we calculated the bias in treatment effects explained by the observed covariates. We did
this by using regression forest models to predict fish biomass outcomes based on observed covariates for
treated (i, (X;)) and control (f,(X;)) units separately. We used regression forests to account for non-
linear functional forms and potential higher order interactions between variables. Here obs.ef fect;
(Equation (10)) represents the difference in fish biomass outcomes between control and treatment sites
that can be explained by the remaining post-matching differences in covariates.

obs.ef fect; = iy (X;) — fio(Xy). (10)
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Second, we computed a range of hypothetical confounding estimates based on the obs.ef fect;
(ax X obs.ef fect;; where 0.5 < @ < 2) and added these values to control outcomes (Equation (11)).
This simulated a potential confounding that increases or decreases counterfactual outcomes where
negative a values (i.e., biasing control outcomes downward) suggest that treated sites are placed in
locations that inherently have greater fish biomass than control locations.

Y? =Y, + (1 - T)a x obs.ef fect;P[T; = 1| X;] (11)
where T; = 1 in treated and 0 in control sites. See Figure S8 for sensitivity test results.

Third, we re-estimated the bias-adjusted ATT treatment effects using the confounded control outcomes
Yiq. As expected, our hypothetical results suggested that if such confounding factors exist, our estimates
of MPA impacts would decrease with increasing amounts of (positive) confounding, especially the
estimates of the absolute impacts of no-take MPAs (NT:0; Fig. S8). In other words, of all the estimands,
the estimate of no-take MPA impacts were most sensitive to selection bias (e.g., positive impacts
disappear if the effect of unknown factors on biomass outcomes are ~75% of the effect from observed
covariates). As mentioned before, whether such biases exist, or would have such a strong effect on
outcomes that were close to or beyond those of the observed covariates is unknown and unmeasurable.
This is unlikely, as such unknown placement biases would have to be systemic, with a consistently strong
effect on numerous MPAs globally. Furthermore, by using exact matching, we account for unobserved
biases introduced by social, political, and ecological factors (e.g., selecting control sites from the same
country only; Table S7), and the included observed covariates are some of the most well-known factors in
the literature to frequently affect MPA placement and fish biomass (e.g., neighboring human population
density (19, 28, 55, 56); Table S7).

6 Study limitations

We recognize that our sample does not represent a random selection of the global pool of MPAs given
that we relied on open-source data or those shared by data managers. As a result, our sample mostly
comprised data from tropical coral and temperate reef locations (Fig 1a). Limitations in management data
methodologies and availability also confined some of our analyses to specific locations (e.g., offshore
territories or countries receiving development funding) and thus inference (71, 72). As mentioned in
Section 1, the absence of baseline and trend data due to data limitations can result in confounded
estimates if all major observed and unobserved factors that contribute to site selection are not accounted
for. Also, while exact matching and calipers reduced numerous observed and unobserved biases, the
matching process also resulted in a considerable number of dropped observations (n=14-46% of
treatment sites depending on the estimand). For example, there were countries/regions where only MPA
sites were surveyed (e.g., Galapagos), and thus excluded from estimates of absolute impacts (NT:0 and
MU:0) as no appropriate non-MPA match could be found. We examined whether the above limitations
might have had a strong influence on our results (e.g., if post-matching subsamples were biased towards
specific social, environment, or geographic contexts or whether treatment effects varied significantly
between MPAs with and without management data). As expected, sub-sampling resulted in some
geographic and contextual differences. For example, MPAs used to assess relative impacts were larger,
younger, and further away from shore and population centers than those in the absolute impacts sample.
However, given that relative impacts analysis directly matches sites by MPA type (e.g., matching remote
no-take with remote multiple-use MPA sites) and not MPA and non-MPA sites, and that these covariates

10



386
387
388
389
390
391
392
393
394

have disparate effects on outcomes (4, 17, 73), how these covariate differences influences the results is
not clear. Additionally, differences in sample sizes (and thus variation) made it not possible to determine
if treatment effects differed between samples with or without management data. While sample selection
bias is an issue in all observational studies (74) and our dataset is one of the largest of its kind, we do not
claim that our results are representative of all MPAs, but for the MPAs in our sample. These MPAs are
located in regions with high biodiversity, subject to multiple local and global stressors and thus represent
high-priority areas for conservation (75—-77). Further, we applied modeling approaches appropriate for
unbalanced data (Section 4), accounting for confounding factors (Section 3), and for population-level
inference based on samples (i.e., random-effects models; (Section 4) (67)).
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1a. Calculate fish biomass
Compile survey data from multiple datasets
and calculate total fish biomass at each site

1b. Compile site data

Compile data on fishing regulations and
social, ecological, and environmental
conditions at each fish survey site to
account for their effect on MPA placement

and biomass outcomes -

1c. Subset data

Remove sites with missing data, fromrare
habitats, with ambiguousregulations,
recently-established MPAs, and non-MPA
sites close to MPA boundaries, etc.

« Site level biomass compilation (e.g., effect .
of schooling & transientlarge fish, choice of
biomass constantvalue) .

* MPA regulations (no-take vs. multi-use
classification; MPAs with limited .

information on regulations)

Fig. S1 | Major analytical steps and diagnostic tests used in this study. Step 4 (lower panels) show the sensitivity and model assumptions tests conducted in

association with each of the three steps.

2a. Statistical Matching

Matching no-take and multi-use sites to
non-MPA sites, and directly match no-take
and multi-use MPAs to account for
environmental, ecological, and social
factors that affect MPA placementand
biomass outcomes

2b. Estimate site-level bias-adjusted
treatment effects

Use randomforestmodels to remove any
remainingdifferencesin biomassthat can
be explained by differences in site
conditions

Counterfactual estimation procedure (e.g.,
matching vs. randomforests)

Distribution and transformation of matching
covariates

Matching specification (e.g., number of matched
controls for each treatment site, choice of calipers,
etc.) and quality (covariate balance, # dropped
observations)

Bias-adjustment methods (e.g., linear,random
forest)

Unobserved bias notaccounted for by covariates
(“pre-treatment” effect, selection bias)
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3a. Estimate MPA average impact

Use Bayesian hierarchical modelsto
estimate MPA-level effects from site-level
bias-adjusted treatmenteffects by including
random interceptterms for MPA and
control sites to account for correlation
amongstobservations

3b. Estimate effects of MPA location and
management

Add a fixed effect predictorin each model
to estimate the effects of location and
managementon MPA impacts

 Distributionalassumptions (normalvst
distribution, heteroskedascity)

* Model convergence and fit

* Random effects specification



Total fish biomass (log(g/100m2)) Chlorophyll-a (mg/m3) Depth (m) Human population (million) Latitude
Open :> ® Open 4 &0; =—o | Open C:> Open- TI=@ — Open 4 %} =
NT o P>se- . NT A lr\/%w———» e Cran— NT A (—/\-/—;_> - NT A F- — —_—— NT A %}"l—:\)
MU | >.._.. e MU - @W’L—-‘ = MU G‘; MU =i MU +x:
OTO 2?5 5:0 7?5 16.0 O:O 075 1:0 175 270 é 1'0 1‘5 2‘0 2 010 015 1{0 1t5 2{0 1’0 2‘0 3‘0
Longitude Market distance (km) Reef area within 15km (km2) Shore distance (km) Survey year
Open{ ———=i ° = | Open- DO/;—- Open {>& Open &% Open Cv—\<:\/|
Q
3 Treatment
E’ MU
A N | VK—:—% el — = | -
= NT
8 |Z| Open
=
MU 5 ¢—o—} @0 i MU-(I\/ﬁl;)\' Mu-|>_-<~£/ﬁ\——| MU-|%= MU'@
1‘00 0 1(|)0 (I) 260 4(‘]0 (I) 2‘5 5‘0 7‘5 010 275 510 775 200‘2.5 2065.0 2067.5 201‘0.0 2012.5
Minimum sea surface temp. (oC) Wave exposure (kW/m) MPA age (yrs) MPA area (km2)
Open{ =——————x <> Open I\o%
I/ NT - [ e NT V-><>—-— —_————
NT :i;:—-—\/-> NT [-> -
,\ MUA | MU A il —E0—0—9————0—0—
IR —————— 1] MU |/_’>;_,A = -
1‘5 2‘0 2‘5 (I) 2‘5 5‘0 7‘5 1(I)0 1‘0 2‘0 3‘0 4‘0 5‘0 010 275 5:0 7?5
638 val
639 Fig. S2 | Covariate distribution by treatment group: MU: multiple-use, NT: no-take, and Open: non-MPA sites (n= 14,044 sites). Box represents the lower
640 (25%) and upper (75%) quantile. Mean (red dot), median (vertical line in box), and 1.5 times the interquartile range (horizontal line) also shown. For
641 visualization purposes, plots exclude observations below the 5" and above the 95" percentiles. See Table S3 variable descriptions.

21



Chlorophyll-a (mg/m3) | Depth (m) | Human population (million) | Latitude |
104
o °
5 °
®.0
O L T T T
60 80 80
Market distance (km) ithi Shore distance (km)
8
104 3%
E A
57 e! ©
1
1
1
I 500 1000 1500 2000 0 100 200 300 100 200 300
o
° Survey year | Minimum sea surface temp. (oC) Wave exposure (kW/m) | |
) r T
ie] - 1
8 1
10 o ' !
1
; l | !
1
1
! ! ! , o
§ |
1
04 ogooooooooooc » .
2000 2005 201 0 2015 0 10 20 30 0 10000 20000 30000 10C
MPA area (km2) |
1
1
901 1
1
1
604 1
1
1
3041
ﬁu LI |
o 3

0 200 400 600

Fig. S3 | Relationship between fish biomass (log) and matching covariates (n= 14,044 sites). Included are smoothed LOESS lines (grey line) along with the
standard error regions (shaded grey area). Dashed vertical blue lines represent the 95 percentile. See Table S3 variable descriptions.
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Fig. S4 | Absolute and relative no-take and multiple-use MPA impacts. Effect sizes of the expected difference in
total fish biomass in percent differences, comparing biomass in no-take (left, red) and multiple-use (second left, blue)
MPA sites to unprotected sites, no-take to counterfactual multiple-use MPA sites in no-take locations (second right,
dark-red), and multiple-use to counterfactual no-take MPA sites in multiple-use locations (right, dark-blue) (Table
S6). Greater values in the relative impact estimates (second right and right) represent larger expected biomass
increases from converting to no-take restrictions. Thick and thin lines show the 80% and 95% credible intervals,
respectively, around the median effect size (white dot). Probability of positive effects are shown above the estimates
and number of MPAs (and number of sites, in parentheses) are shown below estimates. Percent differences were
calculated using modelled response ratios (Table S9; Equation 3). NT:MU|MU model estimates (right; dark blue)
generated as MU-NT but converted to NT-MU by multiplying by -1 for easier interpretation.
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Fig. S5 | Relative no-take:multiple-use MPA impacts versus management effectiveness of multiple-use MPAs
within high pressure locations (<100 km from population center). Effect sizes represent the expected difference in
total fish biomass from converting existing multiple-use to no-take MPAs where greater values represent larger
expected biomass increases from converting to no-take restrictions (n=19 MPAs). Management effectiveness values
(x-axis) represent multiple-use MPAs where fewer (less effective) or more (more effective) than half of ten
management effectiveness indicators exceed the indicator thresholds for adequate and appropriate management.
Management effectiveness indicators were staff capacity, sustainable-use regulations, budget -capacity,
management plan implementation, monitoring activities, enforcement capacity, inclusive decision making,
devolution of management authority, level of legislative support, and MPA boundary delineation. See Gill et al (6)
and Table S4 for more details on indicators and indicator thresholds.
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Fig. S6 | Fish biomass compilation sensitivity tests. Plot shows (unmodelled) MPA average logged biomass ratios
based on original data (red); Adjusted biomass constant: changing the magnitude of the constant biomass value (i.e.,
minimum fish biomass observed in dataset) added to each site’s total biomass to avoid calculating log ratios with
zero values (0.1 and 10 times minimum fish biomass value; light and dark blue respectively); No schooling fish
(green): removing all records with schools of fish (i.e., >100 individuals per 100m?); Limited regulations information
(orange): removing sites where two sources of regulations information could not be obtained; Relaxed NT
assignment (grey): relaxing stringent requirement that no-take sites (as designated by the data provider) be re-
categorized as multiple-use if some low-level fishing allowed. See Table S6 for comparison descriptions.
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Fig. S7 | Standardized mean difference between treated and control values before (green) and after (red) matching
for each matching covariate and each of the four comparisons. Blue and orange vertical dashed lines represent a
standardized mean difference of 5% and 20% respectively. See Tables S3 and S7 for covariate descriptions and Table
S6 for comparison descriptions.
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Fig. S8 | Sensitivity of MPA treatment effects to increasing and decreasing amounts of hypothetical confounding
(alpha) on counterfactual control outcomes. Alpha values represent multiples of the difference in fish biomass
outcomes between control and treatment sites that can be explained by the remaining post-matching differences in
covariates. Here alpha values were added to the observed counterfactual biomass. Vertical axes represent the
(unmodelled) MPA average treatment effects (i.e., average bias-adjusted logged biomass ratios) and the horizontal
dashed blue lines show the estimates without hypothetical confounding (i.e., alpha = 0). Negative alpha values
suggest that treated sites are placed in locations that inherently have greater fish biomass than control locations
and visa versa. See Table S6 for comparison descriptions.
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Fig. S9 | Dlagnostlc plots for Bayesian linear models of MPA-IeveI impacts on ﬁsh biomass (log response ratios) for models W|thout fixed effect covariate
predictors. Plots (from left to right) include density and trace plots for each model parameter; caterpillar plots of MPA, matched control (Ctrl) site, and matched
control site MPA random effects (RE); predicted vs. observed and residual vs. predicted scatter plots; sample mean (red vertical line) vs. posterior distribution
plots; and auto-correlation plots for each model parameter (rows) and chain (columns). The four rows represent the results for the NT:0, MU:0, NT:MU|NT, and
NT:MU | MU models respectively (Table S6).
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Flg S10 | Dlagnostlc plots for Bayesian Imear models of MPA-IeveI impacts on ﬁsh biomass (log response ratios) by populatlon center dlstance Plots (from
left to right) include density and trace plots for each model parameter; caterpillar plots of MPA, matched control (Ctrl) site, and matched control site MPA random
effects (RE); predicted vs. observed and residual vs. predicted scatter plots; sample mean (red vertical line) vs. posterior distribution plots; and auto-correlation
plots for each model parameter (rows) and chain (columns). The four rows represent the results for the NT:0, MU:0, NT:MU|NT, and NT:MU|MU models
respectively (Table S6).
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Fig. S11 | Diagnostic plots for Bayesian linear models of MPA-level impacts on fish biomass (log response ratios) by staff capacity. Plots (from left to right)
include density and trace plots for each model parameter; caterpillar plots of MPA, matched control (Ctrl) site, and matched control site MPA random effects
(RE); predicted vs. observed and residual vs. predicted scatter plots; sample mean (red vertical line) vs. posterior distribution plots; and auto-correlation plots
for each model parameter (rows) and chain (columns). The four rows represent the results for the NT:0, MU:0, NT:MU |NT, and NT:MU|MU models respectively
(Table S6).
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Fig. S12 | Diagnostic plots for Bayesian linear models of MPA-level impacts on fish biomass (log response ratios) by resource-use regulations. Plots (from left
to right) include density and trace plots for each model parameter; caterpillar plots of MPA, matched control (Ctrl) site, and matched control site MPA random
effects (RE); predicted vs. observed and residual vs. predicted scatter plots; sample mean (red vertical line) vs. posterior distribution plots; and auto-correlation
plots for each model parameter (rows) and chain (columns). The four rows represent the results for the NT:0, MU:0, NT:MU|NT, and NT:MU | MU models
respectively (Table S6).
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Table S1 | Sources and description of MPA management assessment and fish population data. Adapted

from Gill et al (6).

Dataset/ Geographic Date Number Data Type Data Source
Management Coverage/Habitat Range of
Assessment Tool Assessm
ents/
Survey
Sites

Management
assessment tool
Management Global; mostly 2000- 533* Likert-scaled Global Database for
Effectiveness developing countries 2014 management Protected Area
Tracking Tool (METT) assessments Management

Effectiveness;

Conservation

International
World Bank MPA Global; mostly in 2011- 166* Likert-scaled Conservation
Scorecard developing countries 2015 management International; WWF Birds

assessments Head Seascape project
NOAA Coral Reef US Caribbean and 2011 51* Likert-scaled NOAA CRCP; Caribbean
Conservation Pacific as well as management MPA Management
Program (CRCP) MPA other Caribbean assessments Capacity Assessment
Management MPAs
Assessment Checklist
(NOAA CRCP MPA
Checklist) &
Caribbean MPA
Capacity Assessment
Tool t
Fish population data
Atlantic Gulf Rapid Wider Caribbean; 1997- 1,394 Underwater WWW.agrra.org
Reef Assessment coral reefs 2012 Visual Census
(AGRRA)** (UVC) surveys
(ecologically and
commercially
important
species)
NOAA National Coral US Caribbean and 2000- 8,534 UVC surveys NOAA NCRMP
Reef Monitoring Pacific (Hawaii, 2014
Program (NOAA Guam, Tutuila); coral
NCRMP)*** reefs and associated
ecosystems

Reef Life Surveys Global; rocky and 2006- 5,760 UVC surveys Reef Life Surveys
(RLS) coral reefs 2013
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Dataset/ Geographic Date Number Data Type Data Source
Management Coverage/Habitat Range of
Assessment Tool Assessm
ents/
Survey
Sites
Wildlife Conservation  East Africa coral reefs ~ 2007- 103* UVC surveys Wildlife Conservation
Society (WCS) (Madagascar and 2015 (fishable Society
Mozambique) biomass: >10
cm excluding
non-target
species)
WWEF Bird’s Head Indonesia coral reefs ~ 2011- 200 UVC surveys World Wildlife Fund
Seascape Ecological 2014 (major fish
Impact Evaluation families)

program

*MPA level survey data. **AGRRA data are derived from multiple data providers, including data provided by the Healthy
Reef Initiative, Living Oceans Foundation, Bahamas National Trust, Perry Institute for Marine Science, and the Kerzner
Foundation. ***NOAA NCRMP comprised data from the online NCRMP dataset as well as data made available from the
NOAA Pacific Islands Fisheries Science Center, Coral Reef Ecosystem Program (CREP). Survey sites refer to spatially
explicit sampling events. * The Caribbean MPA Capacity Assessment Tool was commissioned and conducted by the
NOAA CRCP, the Gulf and Caribbean Fisheries Institute (GCFI), and the UNEP-CEP Caribbean Marine Protected Area
Management Network and Forum.
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Table S2 | Data sources for MPA and zone spatial data.

Spatial dataset

Data

Release Date

World Database of Protected Areas

NOAA MPA Inventory
Collaborative Australian Protected
Areas Database (CAPAD) Australia
The Nature Conservancy (TNC)
Caribbean MPAs

Healthy Reef Initiative

MPA Atlas

Digitized polygons

MPA and zone boundary polygons (or buffered points where
no polygon data were available; n=140)

MPA boundary polygons
MPA and zone boundary polygons

MPA and zone boundary polygons
MPA and zone boundary polygons

MPA and zone boundary polygons
MPA and zone boundary polygons

Nov 2017

2014
2016

2014

2014

2015
Dependent on
source
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Table S3 | Description and sources of variables used in study. Adapted from Gill et al (6). Variable types
include the response variable (fish biomass), covariates used in the matching procedures, and management
and contextual predictors. Data types were continuous (Cont), ordinal (Ord) or binary (Bin). Spatial scale
refers to the scale applied in the matching or analysis. See Table S1 for more details on the management
and ecological data sources, Table S4 for management indicator scoring levels, and Table S5 for summary

statistics.

Variable Data Spatial Variable Description Data Source
Type Scale
Response variable
Fish biomass Cont  Site Total fish biomass (g/100m?2) of all recorded Underwater visual census
species >10cm (see Section 2 in methods for datasets (Table S1)
exceptions), Calculated from transect/site level
data.
Matching covariates
MPA age Cont Site MPA age at the time of fish survey (years) Calculated from MPA
establishment data from
official government/NGO
sources and/or WDPA (35)
(October 2015 release)
MPA size Cont  MPA MPA size (km?2) Based on data from official
government/NGO sources
and/or WDPA (October 2015
release); Some values
calculated from spatial data
Latitude/ Cont Site Location of fish survey site Fish survey data
longitude
Country Cat Site Location of fish survey site Fish survey data; EEZ
Maritime Boundaries (78)
Habitat Cat Site Marine habitat at fish survey site (e.g., coral Fish survey data; benthic
reefs, rocky reefs, seagrass, mangroves) at the NOAA habitat maps (79);
highest resolution available (e.g., fringing vs WCMC Global Distribution of
patch coral reefs) Coral Reefs (80)
Minimum Cont  Site Minimum sea surface temperature (2002-2009; Bio-ORACLE (81)
sea surface °C)
temperature
Chlorophyll-  Cont  Site Proxy for primary productivity at study site Bio-ORACLE (81)
a (Chlorophyll-a (2002-2009; mg/m3))
Depth Cont Site Depth at survey site (m) Fish survey data; NOAA
bathymetric raster maps
(82-84)
Exposure Cont Site Wave energy at fish survey site (kW/m) Calculated using wind/wave
data from WAVEWATCH llI
(WW3) (85) and fetch using
the 'waver' R package (86)
Marine Cat Site Marine biogeographic region WWF Marine Ecosystems of
ecoregions the World GIS layer (87)
Distance to Cont Site Distance to nearest coastline (km) Calculated using the high
shoreline resolution shoreline layer
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from the Global Self-
consistent, Hierarchical,
High-resolution Geography
(GSHHG) dataset (88)



Variable Data Spatial Variable Description Data Source
Type Scale

Human Cont Site Coastal population within 100 km radius of fish Calculated using the

population survey site (# individuals) Socioeconomic Data and

density Application Centre (SEDAC)
Gridded Population Of The
World dataset (89)

Distance to Cont; Site Distance to capital or population center, used as  Calculated using the World

population Bin a proxy for distance to markets (km) and fishing Cities base map layer

center pressure. Converted to binary to separate sites provided by ESRI (Version

near (<100 km) vs far (>100 km) from population
centers in Bayesian models

10.1)(90)

Management variables

Staff
capacity

Sustainable-

use
regulations

Ord

Ord

MPA

MPA

Adequacy of (on-site) staff capacity/numbers to
carry out critical management activities
(including designated community members)
Appropriate regulations to control
use/unsustainable activities are defined and in
place

MPA Management
assessment datasets (Table
S1)

MPA Management
assessment datasets (Table
S1)
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Table S4 | Indicators, thresholds, scores, and descriptions from the three management assessments used in this study. Adapted from Gill et al (6). Blue dotted
line indicates the threshold levels for each indicator. See Gill et al (6) for more details. Original scores were adjusted to permit alignment between indicator

values across assessments.

Management Threshold Adjusted Indicator Score Descriptions
Indicator (dashed blue line) Score
Management World Bank MPA NOAA CRCP MPA Checklist (44) & Caribbean MPA
Effectiveness Scorecard (and variants)  Capacity Assessment Tool (45)
Tracking Tool (42) (43)
Staff capacity and/or  Adequate staff 1 There are no staff There are no staff No management personnel assigned to site and/or little
presence capacity/presence or no formalized community oversight
2 Staff numbers are Staff numbers are Some management personnel assigned to site or some
inadequate or inadequate for critical formalized community oversight
below optimum management activities
Staff numbers are below
optimum level for critical
management activities
"3 staffnumbersare  Staffnumbersare  Full-time site manager and programmatic personnel
adequate adequate for the assigned to site or local community-based management
management needs of leader in place that has been formally designated and
the site accepted and is able to dedicate sufficient time to the
management of the site
Appropriateness of Appropriate MPA 1 There are no Site has been legally established or is under equivalent
regulations regulations in place regulations or customary tenure or other form of community-based
controlling use controlling use regulations with protection status, but there are few or no official or
major weaknesses community-based rules and regulations in place
supporting the MPA and its management plan
" 2 Regulatonswith " Laws or customary instruments for the establishment of -
some weaknesses the MPA are in place, and official or community-based
or gaps rules or regulations governing some specific activities
within the MPA are also in place
3 Regulations provide Clearly defined laws or customary instruments and

an excellent basis
for management

official or community-based rules and regulations
governing all specific activities included in the objectives
of the site management plan are in place
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Table S5. | Summary statistics for outcome, MPA attribute, contextual, and management variables. SD: standard

deviation; SE: standard error.

Variable n (MPAs) Mean SD SE Median Min Max
Outcome variable

Total fish biomass (log(g/100m?2)) 217 8.04 1.25 0.08 8.30 1.38 10.26
MPA attribute and contextual variables

Chlorophyll-a (mg/m3) 217 0.83 1.47 0.10 0.36 0.04 10.71
Depth (m) 217 8.31 3.83 0.26 7.87 0.55 27.99
Human population (million) 217 0.65 1.05 0.07 0.15 0.00 4.86
Latitude 217 21.81 10.86 0.74 19.66 0.18 55.90
Longitude 217 -10.02 116.23 7.89 -71.11 -178.17 177.13
Market distance (km) 217 123.72 171.70 11.66 64.82 1.05 1151.22
Reef area within 15km (km2) 217 35.35 41.74 2.83 28.00 0.00 266.01
Shore distance (km) 217 3.11 18.89 1.28 0.39 0.00 200.81
Survey year 217 2007.75 4.44 0.30 2009.77 1998.00 2014.00
Minimum sea surface temp. (°C) 217 22.97 5.78 0.39 25.85 -1.18 29.58
Wave exposure (kW/m)* 217 185.22 2343.35 159.08 8.05 0.00 34532.05
MPA age (yrs) 217 18.57 14.34 0.98 14.56 3.00 95.00
MPA area (km?) 217 6.20 49.68 3.37 0.04 0.00 687.99
Management variables

Adequate staff capacity 217 0.19 0.40 0.05 0.00 0.00 1.00
Sustainable use regulations 217 0.76 0.43 0.06 1.00 0.00 1.00

* Extreme outliers present, likely due to an error from wind time series from the Mediterranean (not used in the analysis); median
wave exposure value is more representative. Statistics for the MPA attribute and contextual variables represent the mean values

from all survey sites inside the MPA.
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Table S6 | Comparisons examined in the study, with descriptions of the estimands and treatment and
counterfactual groups used to estimate the absolute and relative impacts of no-take and multiple-use MPAs

(Adapted from Rasolofoson et al (49)).

Comparison Abbreviation Estimand Treatment Counterfactual
Absolute No-take MPA NT:0 expected difference between biomass No-take No MPA
impacts to no MPA in in protected no-take MPA/zones MPA

no-take MPA compared to the same sites if they

locations were not protected

E(Ynr = YolTar = 1)

Multiple-use MU:0 expected difference between biomass Multiple- No MPA

MPA to no in multiple-use MPA/zones compared use MPA

MPA in to the same sites if they were not

multiple-use protected

MPA locations

E(Ynr — YolTuw = 1)

Relative No-take MPA NT:MU|NT expected difference between biomass No-take Multiple-use
impacts to multiple- in no-take MPA/zones compared to MPA MPA

use MPA in the same sites if they were multiple-

no-take MPA use MPA sites instead

locations

E(Ynr — YuulTar = 1)

No-take MPA NT:MU|MU expected difference between biomass Multiple- No-take MPA

to multiple- in multiple-use MPA/zones compared use MPA

use MPA in to the same sites if they were no-take

multiple-use MPA sites instead

MPA

locations* E(YNT - YMUlTMU - 1)

*Model estimates generated as MU-NT but converted to NT-MU by multiplying by -1 for easier interpretation
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Table S7 | Covariates used in the matching process to identify appropriate control fish survey sites to pair with
treated sites based on their influence on site selection and fish biomass outcomes. Calipers were used for
covariates known to strongly affect fish biomass outcomes. Adapted from Gill et al (6). See Table S8 for post-

matching statistics.

Matching Covariates

Rationale

Restrictions in Treatment-
Control Matched Pairs
(calipers)

Exact matching variables

Sampling protocol

Habitat type

Country

Marine ecoregions

Control for differences in sampling methodologies (24).

Control for habitat selection bias in MPA placement (91) and
natural variation in fish communities by habitat (8, 19, 24, 33,
92-94).

Control for variation in national policies and/or resource use
patterns between countries (95).

Control for large-scale biogeographic variation (87).

Same methodology only

Similar habitat type only

Same country only

Same ecoregion only

Nearest neighbor matching variables

Minimum sea surface
temperature (2002-
2009; °C)

Chlorophyll-a (2002-
2009; mg/m3)

Depth (m)

Wave exposure
(kw/m)

Distance to shoreline
(km)

Coastal population
(individuals within
100km?)

Distance to provincial
capital (market) (km)

Reef area within 15

km (km?2)

Sample date (years)

Latitude/ longitude

Temperature affects fish community structure. Low
temperatures can act as spatial boundaries for warm water
fish species (96), which make up the majority of the sample.

Control for variations in available primary productivity which
could affect community composition (73, 97).

Control for natural variation in community composition by
depth (98).

Wave energy explains some of the variation in marine
community composition (19, 99, 100). Adverse sea conditions
can also be a deterrent for small fishing vessels resulting in
lower fishing pressure (101, 102).

All else equal, fishing intensity is usually negatively correlated
with shore distance (103, 104). Also accounts for other land-
based human stressors (e.g., pollution, destructive nearshore
activities) from neighboring coastal populations.

Control for human impacts (e.g. pollution, destructive
nearshore activities) from neighboring coastal populations (55,
105).

Distance to capital used as a proxy for distance to major
markets, which is commonly negatively correlated with fishing
intensity (55, 56, 106).

Neighboring reefs that can act as sources for larvae and other
forms of connectivity amongst meta-populations (107).

Control for unobserved temporal variation caused by factors
such as exogenous shocks (e.g., storm events, algal blooms)
and other changes between survey periods (32).

Control for unobserved spatial variation caused by time-
invariant factors (e.g., differences in local social-ecological
conditions) or localized shocks (e.g., storm history) that may
vary between sites. Also reduces latitudinal effects (i.e.,
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Minimize mean difference

Minimize mean difference

Minimize mean difference

Minimize mean difference

Minimize mean difference
(maximum difference of 1
standard deviation)

Minimize mean difference
(maximum difference of 1
standard deviation)

Minimize mean difference
(maximum difference of 1
standard deviation)

Minimize mean difference

Minimize mean difference
(maximum difference of 4
years)

Minimize mean difference
(maximum difference of
2.5° |atitude)



Matching Covariates  Rationale Restrictions in Treatment-
Control Matched Pairs

(calipers)
varying environmental conditions with increasing distance
from equator).
MPA age* Control for the effects of MPA age on fish biomass (e.g., older Minimize mean difference
MPAs allow for greater population recovery) (4, 23, 108). (maximum difference of 1

standard deviation)

MPA area* Control for the effects of MPA size on biomass (e.g., larger Minimize mean difference
MPAs protect a greater portion of fish species ranges) (4, 108).

* Covariates used for estimating relative impacts (i.e., directly matching NT and MU MPA sites: NT:MU|NT; NT:MU|MU; Table
S6).
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Table S8 | Covariate balance statistics for the unmatched (before) and matched (after) fish survey site data. Table
shows treatment and control means, standardized mean differences, raw mean (Mean eQQ diff.) and maximum
(max eQQ diff.) differences from empirical quantile-quantile plots between the groups for each comparison (Table
S6) and each covariate (Tables S3 and S7).

Comparison Treatment Control Standardized Raw eQQ diff Raw eQQ diff
Mean Mean Mean Difference (Mean) (Max)
Before After Before  After Before  After Before  After Before After

Wave exposure (kW/m)

NT:0 26.16 20.17 19.49 16.26 15.97 13.58 8.83 5.23 341 166
MU:0 34.22 31.23 19.49 21.68 2.33 1.33 14.71 24.9 33874 33874
NT:MU|NT 26.16 24.36 34.22 14.18 -19.29 28.53 17.96 10.66 34215 41
NT:MU|MU 34.22 24.03 26.16 21.52 1.27 4.06 17.96 9.01 34215 384
Survey year*

NT:0 2008 2007 2007 2007 8.68 2.41 0.39 0.47 3 3
MU:0 2007 2007 2007 2007 -2.84 2.81 0.49 0.15 2 1
NT:MU|NT 2008 2007 2007 2007 11.41 -0.67 0.45 0.15 2 1
NT:MU|MU 2007 2008 2008 2008 -11.76 -3.6 0.45 0.13 2 1
Shore distance (km)*

NT:0 2.96 0.65 4.35 0.58 -6.48 8.1 1.45 0.18 106.60 3.54
MU:0 14.64 1 4.35 0.94 21.33 3.9 11.66 0.15 184.24 8.91
NT:MU|NT 2.97 1.04 14.64 1.01 -54.68 0.49 12.26 0.42 188.06 21.51
NT:MU|MU 14.64 1.09 2.97 0.92 24.19 4.34 12.26 0.27 188.06 20.98
Reef area within 15km (km2)

NT:0 29.79 27.88 33.38 29.43 -9.56 -5.52 6.48 3.2 62.25 55.50
MU:0 39.72 42.96 33.38 41.02 21.25 6.85 10.92 3.05 93.75 43.50
NT:MU|NT 29.78 31.99 39.72 35.24 -26.43 -9.14 14.42 9.17 116.00 105.50
NT:MU|MU 39.72 38.41 29.78 33.26 33.31 15.75 14.42 7.63 116.00 76.25
MPA area (km?)

NT:MU|NT 22.72 24.19 10.14 24.24 11.45 -0.04 12.71 0.06 626.80 1.25
NT:MU|MU 10.14 15.75 22.72 15.78 -17.49 -0.03 12.71 0.06 626.80 26.11
MPA age (yrs)*

NT:MU|NT 26.62 27.43 22.05 28.43 26.1 -5.61 6.35 2.35 42.00 9.00
NT:MU|MU 22.05 21.55 26.62 21.77 -25.76 -0.98 6.35 1.92 42.00 10.00
Minimum sea surface temp. (°C)

NT:0 22.39 22.53 22.38 22.51 0.27 0.35 0.81 0.21 10.52 2.14
MU:0 24 24.48 22.38 24.43 39.79 1.4 1.74 0.15 8.01 1.07
NT:MU|NT 22.4 22.94 24 22.98 -30.43 -0.85 1.7 0.22 7.28 2.29
NT:MU|MU 24 23.17 22.4 23.18 39.43 -0.39 1.7 0.09 7.28 0.85
Market distance (km)*

NT:0 162.18 97.7 106.74 97.6 27.79 0.11 64.12 1432 967.21 132.64
MU:0 99.21 63.4 106.74 65.68 -4.85 -2.55 18.78 8.18 947.05 130.92
NT:MU|NT 162.2 149.07 99.21 129.62 31.58 10.57 63.17 22.04 405.44 88.55
NT:MU|MU 99.21 114.06 162.2 127.97 -40.56 -7.41 63.17 15.79 405.44 101.92
Longitude

NT:0 7.46 -1.9 -20.52 -1.95 24 0.04 28.48 0.18 190.77 3.28
MU:0 -25.38 -28.12 -20.52 -28.07 -4.92 -0.05 31.26 0.19 198.60 1.68
NT:MU|NT 7.43 1.84 -25.38 1.84 28.14 0 35.28 0.15 211.86 1.37
NT:MU|MU -25.38 4.86 7.43 4.88 -33.24 -0.02 35.28 0.08 211.86 1.57
Latitude*

NT:0 -3.14 -0.6 0.84 -0.53 -16.27 -0.26 4.65 0.26 30.97 2.28
MU:0 7.4 7.25 0.84 7.34 30.47 -0.41 7.41 0.19 36.22 1.57
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Comparison Treatment Control Standardized Raw eQQ diff Raw eQQ diff

Mean Mean Mean Difference (Mean) (Max)

Before After Before  After Before  After Before After Before After
NT:MU|NT -3.15 -0.72 7.4 -0.54 -43.04 -0.75 10.54 0.34 47.86 1.73
NT:MU|MU 7.4 -0.36 -3.15 -0.49 49.05 0.57 10.54 0.22 47.86 1.51
Human population (million)*
NT:0 0.35 0.38 0.65 0.36 -37.91 2.12 0.3 0.03 2.35 0.51
MU:0 0.72 0.76 0.65 0.84 8.94 -10.3 0.32 0.12 2.02 0.89
NT:MU|NT 0.35 0.22 0.72 0.21 -47.6 0.76 0.48 0.02 1.49 0.30
NT:MU|MU 0.72 0.29 0.35 0.29 44.02 0.99 0.48 0.01 1.49 0.30
Depth (m)
NT:0 8.22 8.15 9.02 8.46 -16.1 -6.18 0.95 0.4 45.88 10.30
MU:0 11.07 10.76 9.02 10.84 25.21 -1.08 2.14 0.68 30.54 9.46
NT:MU|NT 8.22 8.21 11.07 8.26 -57.27 -0.96 3.03 0.27 15.35 11.20
NT:MU|MU 11.07 10.24 8.22 8.21 35.04 30.4 3.03 2.06 15.35 15.35
Chlorophyll-a (mg/m3)
NT:0 0.81 0.85 0.78 0.67 1.59 11.75 0.16 0.22 3.72 4.60
MU:0 0.61 0.6 0.78 0.5 -21.18 11.24 0.27 0.14 6.87 4.99
NT:MU|NT 0.81 0.78 0.61 0.71 13.66 4.36 0.25 0.08 5.11 5.03
NT:MU|MU 0.61 0.56 0.81 0.56 -24 0.7 0.25 0.05 5.11 2.84
Exposure dummy variable**
NT:0 0.02 0.02 0.01 0.02 4.27 0.11 0.01 0 1 1
MU:0 0.01 0.01 0.01 0.01 -4.91 2.66 0 0 1 1
NT:MU|NT 0.02 0.02 0.01 0.02 7.48 191 0.01 0 1 1
NT:MU|MU 0.01 0.01 0.02 0.01 -11.45 2.21 0.01 0 1 1
Depth dummy variable**
NT:0 0 0 0.01 0 -5.53 0 0 0 1 0
MU:0 0 0 0.01 0 -3.48 0 0 0 1 0
NT:MU|NT 0 0 0 0 -1.59 -1.03 0 0 1 1
NT:MU|MU 0 0 0 0 1.41 0.68 0 0 1 1

*Calipers used in matching procedure (see Table S7). **Dummy variable used to indicate where mean values were used to fill
missing data (<1% of data). Lower post-matching differences indicate good matching performance for that covariate (25). See
Table S3 and S7 for covariate descriptions and caliper restrictions.
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Table S9 | Summary of posterior statistics for Bayesian models estimating MPA impacts. Intercept (alpha) represents the MPA treatment effect of interest;
betais the binary fixed effect term for the population center distance (alpha:far >100km, alpha+beta:near <100km), capacity (alpha:inadequate;
alpha+beta:adequate), and regulations (alpha:weak; alpha+beta:strong) models. Mean, SD (standard deviation) and distribution percentiles are also shown.
Percent biomass differences were calculated using the log biomass ratios and Equation 3. NT:MU|MU model estimates generated as MU-NT but converted to
NT-MU by multiplying by -1 for easier interpretation. P(positive): probability of a positive effect. See Table S6 for comparison descriptions.

Predictor Variable Comparison Log Biomass Ratio % Biomass Difference
Mean SD 25% 10% 50% 90% 97.5% 2.5% 10% 50% 90% 97.5% P(positive)

No alpha MU:0 0.12 0.07 -001 0.04 0.12 020 0.25 -0.76 3.85 12.58 2246  28.67 0.97
predictor NT:0 046 010 0.26 033 046 059 0.66 2940 39.17 58.21 80.80 93.91 1.00
NT:MU|MU  0.08 0.08 -0.07 -0.02 0.08 0.18 0.23 -7.12 -2.13 8.25 19.65 26.40 0.84
NT:MU|NT 0.17 0.08 001 0.06 0.17 0.28 0.33 1.11 6.66 18.36 31.79 39.58 0.98
Near alpha MU:0 037 011 0.16 0.22 036 051 0.59 17.61 25.06 43.95 65.86  80.27 1.00
population  alpha+beta 0.04 0.07 -0.10 -0.05 0.04 0.13 0.18 -9.65 -5.07 3.97 14.03 19.89 0.71
center alpha NT:0 0.56 015 0.27 037 056 0.75 0.86 30.81 45.38 75.38 111.28 13531 1.00
alpha+beta 041 012 018 0.25 041 056 0.64 19.54 29.03 50.22 74.66  89.04 1.00
alpha NT:MU|MU 0.01 0.11 -0.19 -0.12 0.02 0.15 0.22 -17.67 -11.51 1.79 16.00 24.35 0.56
alpha+beta 0.15 0.10 -0.05 0.02 0.15 0.28 0.36 -4.93 1.59 15.66 3251 42091 0.92
alpha NT:MU|NT 0.09 0.09 -0.09 -0.03 0.09 021 027 -9.05 -3.11 9.16 23.26 3161 0.83
alpha+beta 026 0.10 0.06 0.13 0.26 0.39 046 6.22 13.94 30.19 48.03 58.82 0.99
Adequate alpha MU:0 -0.06 0.12 -0.29 -0.20 -0.06 0.09 0.18 -2493 -18.46 -5.71 9.17 19.56 0.29
staff alpha+beta 0.66 047 -030 -0.02 0.71 123 148 -26.27 -1.84 103.79 243.82 340.84 0.89
capacity alpha NT:0 0.25 0.23 -021 -0.05 0.25 055 0.72 -18.89 -4.82 27.94  72.77 104.86 0.86
alpha+beta 0.58 042 -020 0.05 0.57 113 145 -18.33 514 77.54 209.17 325.54 0.92
alpha NT:MU|MU  0.78 032 0.15 038 0.79 1.17 1.40 16.20 46.71 120.81 222.22 303.66 0.99
alpha+beta -0.32 031 -095 -0.72 -0.32 0.07 0.30 -61.24 -51.14 -27.44 6.93 34.41 0.14
alpha NT:MU|NT 0.01 035 -068 -044 0.01 045 0.71 -49.24 -35.45 1.08 56.74  103.96 0.51
alpha+beta 036 037 -035 -0.09 035 083 115 -29.39 -8.21 4193 129.72 214.52 0.85
Sustainable alpha MU:0 -0.12 0.17 -049 -033 -0.11 0.09 0.22 -38.59 -28.17 -10.73 8.91 25.01 0.22
use alpha+beta 0.09 019 -0.25 -0.14 0.09 0.34 048 -22.23  -1331 8.94 40.71 61.79 0.68
regulations alpha NT:0 0.12 050 -0.84 -0.50 0.11 0.73 1.09 -56.72 -39.17 1179 107.54 196.49 0.59
alpha+beta 041 024 -003 0.12 041 072 0.90 -2.74 1297 50.62 10496 146.38 0.97
alpha NT:MU|MU 1.07 047 014 051 106 164 201 14.81 66.03 189.73 416.66 646.12 0.98
alpha+beta 0.01 0.28 -0.52 -0.33 0.00 036 0.61 -40.59 -27.91 0.00 43.45 83.39 0.50
alpha NT:MU|NT 0.09 090 -153 -091 0.01 121 219 -78.43 -59.83 1.12 235.29 795.95 0.51
alpha+beta 0.22 032 -043 -017 0.23 0.62 0.86 -35.17 -15.41 25.39 8596 135.99 0.77
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Table S10 | Diagnostic statistics for parameters in the Bayesian models without fixed effect predictors. Intercept (alpha) represents the MPA treatment effect
of interest. SD: standard deviation; df: degrees of freedom. See Table S6 for comparison descriptions.

Log Biomass Ratio Raftery & Lewis Geweke Z Scores
Predictor Variable Comparison Mean SD #Sites  # MPAs Rhat Effective Sample Size  Total Iterations ~ Min # Iterations ~ Chain1  Chain 2

No predictor alpha MU:0 0.12 0.07 4626 114 1 1656 4000 3746 -0.79 0.29
Control SD 0.74 0.08 4626 114 1 2923 4000 3746 0.36 -0.36
dfl 2.03 0.12 4626 114 1 6544 4000 3746 -1.04 -0.47
df2 1.76 0.19 4626 114 1 3623 4000 3746 0.61 0.59
MPA SD 0.23 0.05 4626 114 1 3520 4000 3746 0.42 -1.31
alpha NT:0 0.46 0.1 3101 89 1 1294 4000 3746 -0.33 1.35
Control SD 0.99 0.1 3101 89 1.01 2869 4000 3746 -2.18 0.94
dfl 2.48 0.16 3101 89 1 7105 4000 3746 1.03 -1.81
df2 2.39 0.36 3101 89 1 3633 4000 3746 -2.71 1.04
MPA SD 0.41 0.08 3101 89 1 3726 4000 3746 0.14 1.42
alpha NT:MU|MU 0.08 0.08 3261 79 1 1856 4000 3746 1.02 0.27
Control SD 0.78 0.08 3261 79 1 2120 4000 3746 -0.74 -0.93
Ctrl MPA SD 0.08 0.06 3261 79 1 466 4000 3746 0.58 -2.11
dfl 291 0.22 3261 79 1 7255 4000 3746 -0.07 -0.69
df2 1.93 0.23 3261 79 1 2791 4000 3746 -0.7 -0.65
MPA SD 0.25 0.05 3261 79 1 4363 4000 3746 0.07 1.19
alpha NT:MU|NT 0.17 0.08 3419 78 1 1685 4000 3746 -0.72 -1.06
Control SD 0.92 0.09 3419 78 1 2466 4000 3746 -0.02 0.62
Ctrl MPA SD 0.06 0.05 3419 78 1 332 4000 3746 -0.39 -2.25
dfl 2.58 0.16 3419 78 1 8616 4000 3746 -0.13 -2.22
df2 2.25 0.31 3419 78 1 3021 4000 3746 -0.54 1.14
MPA SD 0.28 0.07 3419 78 1 3014 4000 3746 -0.93 0.07
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Table S11 | Diagnostic statistics for parameters in the Bayesian models with a binary predictor (beta) to identify sites in MPAs near (alpha.beta) or far from
(alpha) population centers. Intercept (alpha) represents the MPA treatment effect of interest. SD: standard deviation; df: degrees of freedom. alpha.beta
parameters are the sum of the intercept (alpha) and predictor (beta) coefficients. See Table S6 for comparison descriptions.

Log Biomass Ratio Raftery & Lewis  Geweke Z Scores
Predictor Variable Comparison Mean SD #Sites #MPAs Rhat Effective Sample Size Total Iterations  Min # Iterations chain1  Chain 2
Near population center alpha MU:0 0.37 0.11 742 41 1 580 4000 3746 -0.04 -1.44
alpha.beta 0.04 0.07 3884 76
beta -0.33 0.12 3884 76 1 590 4000 3746 0.16 1.35
Control SD 0.74 0.08 4626 117 1 2787 4000 3746 -0.85 -0.19
df1 2.03 0.12 4626 117 1 6170 4000 3746 2.67 -2.69
df2 1.76 0.19 4626 117 1 3512 4000 3746 -0.49 -0.03
MPA SD 0.22 0.05 4626 117 1 3522 4000 3746 -0.87 -0.15
alpha NT:0 0.56 0.15 846 35 1.01 634 4000 3746 -1.1 0.09
alpha.beta 0.41 0.12 2255 56
beta -0.15 0.17 2255 56 1 694 4000 3746 -0.39 -0.12
Control SD 0.99 0.1 3101 91 1 2987 4000 3746 -1.91 -2.5
df1 2.48 0.16 3101 91 1 7020 4000 3746 -0.62 -0.81
df2 2.37 0.35 3101 91 1 3687 4000 3746 -1.76 -0.73
MPA SD 0.4 0.08 3101 91 1 3600 4000 3746 -1.12 33
alpha NT:MU|MU 0.01 0.11 971 33 1.01 1008 4000 3746 -0.54 -0.27
alpha.beta 0.15 0.1 2290 49
beta 0.13 0.13 2290 49 1 1004 4000 3746 1.27 0.41
Control SD 0.79 0.09 3261 82 1 2029 4000 3746 0.08 -0.78
Ctrl MPA SD 0.09 0.06 3261 82 1.01 409 4000 3746 0.16 -0.63
df1 2.89 0.22 3261 82 1 7389 4000 3746 -0.15 0.03
df2 1.96 0.24 3261 82 1 2729 4000 3746 0.8 -1.56
MPA SD 0.26 0.06 3261 82 1 3630 4000 3746 0.5 -0.55
alpha NT:MU|NT 0.09 0.09 1300 40 1.01 1273 4000 3746 1.24 -1.95
alpha.beta 0.26 0.1 2119 44
beta 0.17 0.11 2119 44 1 1649 4000 3746 -1.33 0.94
Control SD 0.92 0.09 3419 84 1 2255 4000 3746 -0.04 -0.44
Ctrl MPA SD 0.06 0.05 3419 84 1.08 426 4000 3746 -0.13 -0.9
df1 2.57 0.16 3419 84 1 8246 4000 3746 0.41 1.37
df2 2.25 0.3 3419 84 1 2855 4000 3746 -0.22 -0.45
MPA SD 0.27 0.07 3419 84 1 2871 4000 3746 0.66 0.75
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Table S12 | Diagnostic statistics for parameters in the Bayesian models with a binary predictor (beta) to identify sites in MPA with (alpha.beta) or without
(alpha) adequate staff capacity. Intercept (alpha) represents the MPA treatment effect of interest. SD: standard deviation; df: degrees of freedom. alpha.beta
parameters are the sum of the intercept (alpha) and predictor (beta) coefficients. See Table S6 for comparison descriptions.

Log Biomass Ratio Raftery & Lewis = Geweke Z Scores
Predictor Variable Comparison Mean SD #Sites #MPAs Rhat Effective Sample Size Total Iterations  Min # Iterations Chain1 Chain 2
Adequate staff capacity alpha MU:0 -0.06 0.12 1896 20 1.01 1006 4000 3746 0.54 -0.6
alpha.beta 0.66 0.47 525 6
beta 0.72 0.48 525 6 1.01 280 4000 3746 -1.69 1.83
Control SD 0.86 0.13 2421 26 1 3113 4000 3746 2.35 1.3
df1 1.15 0.07 2421 26 1 4700 4000 3746 -0.73 0.34
df2 1.39 0.19 2421 26 1 3853 4000 3746 3.03 0.82
MPA SD 0.14 0.09 2421 26 1 1867 4000 3746 1.99 0.31
alpha NT:0 0.25 0.23 138 15 1 1370 4000 3746 0.84 0.22
alpha.beta 0.58 0.42 201
beta 0.34 0.47 201 7 1 1095 4000 3746 -1.72 -0.73
Control SD 1.26 0.31 339 22 1 1210 4000 3746 -0.14 -0.43
df1 4.99 3.95 339 22 1 2030 4000 3746 -1.32 0.61
df2 10.02 7.92 339 22 1 1949 4000 3746 -0.2 0.04
MPA SD 0.45 0.2 339 22 1 1733 4000 3746 0.03 2.5
alpha NT:MU MU 0.78 0.32 544 13 1.03 406 4000 3746 1.34 0.32
alpha.beta -0.32 0.31 505 6
beta -1.11 0.41 505 6 1.02 581 4000 3746 -1.45 -0.73
Control SD 1.47 0.33 1049 19 1 790 4000 3746 1.89 1.1
Ctrl MPA SD 0.21 0.18 1049 19 1 668 4000 3746 -0.26 -0.9
df1 2.49 0.35 1049 19 1 5902 4000 3746 -0.22 -0.61
df2 2.34 0.78 1049 19 1 779 4000 3746 0.28 0.81
MPA SD 0.28 0.17 1049 19 1 1305 4000 3746 -1.59 -2.8
alpha NT:MU|NT 0.01 0.35 133 1 961 4000 3746 -1.34 0.48
alpha.beta 0.36 0.37 203
beta 0.35 0.48 203 8 1 1088 4000 3746 1.79 -0.74
Control SD 1.29 0.42 336 17 1 793 4000 3746 1.1 0.57
Ctrl MPA SD 0.25 0.22 336 17 1 769 4000 3746 1.67 0.48
df1 5.61 4.14 336 17 1 1976 4000 3746 1.43 0.95
df2 6.37 6.72 336 17 1.01 722 4000 3746 -0.13 0.55
MPA SD 0.37 0.22 336 17 1 1370 4000 3746 1.13 -0.1
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Table S13 | Diagnostic statistics for parameters in the Bayesian models with a binary predictor (beta) to identify sites in MPA with (alpha.beta) or without
(alpha) strong sustainable use regulations. Intercept (alpha) represents the MPA treatment effect of interest. SD: standard deviation; df: degrees of freedom.
alpha.beta parameters are the sum of the intercept (alpha) and predictor (beta) coefficients. See Table S6 for comparison descriptions.

Log Biomass Ratio

Raftery & Lewis

Geweke Z Scores

Predictor Variable Comparison Mean SD #Sites #MPAs Rhat Effective Sample Size Total Iterations  Min # Iterations Chain1 Chain 2

Sustainable use regulations  alpha MU:0 -0.12 0.17 1788 7 1 406 4000 3746 0.08 -2.21
alpha.beta 0.09 0.19 629 18
beta 0.21 0.26 629 18 1 542 4000 3746 -0.14 1.27
Control SD 0.88 0.13 2417 25 1 3098 4000 3746 1.87 2.27
df1 1.14 0.07 2417 25 1 4866 4000 3746 -1.12 -1.35
df2 1.42 0.2 2417 25 1 3221 4000 3746 1.97 2.16
MPA SD 0.18 0.1 2417 25 1 1523 4000 3746 1.99 1.61
alpha NT:0 0.12 0.5 9 4 1.02 285 4000 3746 -0.46 -0.65
alpha.beta 0.41 0.24 325 17
beta 0.3 0.55 325 17 1.03 281 4000 3746 0.33 0.93
Control SD 1.13 0.3 334 21 1 1295 4000 3746 -0.12 0.7
df1 5.5 4,51 334 21 1.01 2036 4000 3746 -0.83 1.1
df2 8.9 7.45 334 21 1 1834 4000 3746 -0.28 1.37
MPA SD 0.48 0.19 334 21 1 1965 4000 3746 -0.54 0.9
alpha NT:MU MU 1.07 0.47 470 4 1.08 208 4000 3746 -0.86 -0.07
alpha.beta 0.01 0.28 575 14
beta -1.06 0.54 575 14 1.11 205 4000 3746 1.1 -0.22
Control SD 1.41 0.31 1045 18 1.01 1062 4000 3746 -1.35 0.17
Ctrl MPA SD 0.19 0.17 1045 18 1 642 4000 3746 -0.29 -1.57
df1 25 0.36 1045 18 1 5710 4000 3746 -0.72 -0.09
df2 2.22 0.65 1045 18 1 1113 4000 3746 -1.82 -0.08
MPA SD 0.35 0.18 1045 18 1 1225 4000 3746 -0.43 -0.08
alpha NT:MU|NT 0.09 0.9 7 2 1.05 164 4000 3746 0.59 -1.39
alpha.beta 0.22 0.32 324 14
beta 0.13 0.95 324 14 1.04 171 4000 3746 -0.48 1.42
Control SD 1.42 0.45 331 16 1.03 755 4000 3746 1.66 -0.45
Ctrl MPA SD 0.28 0.25 331 16 1.01 750 4000 3746 1.2 -0.86
df1 6.01 4.69 331 16 1 2493 4000 3746 0.23 0.56
df2 7.64 7.43 331 16 1.02 865 4000 3746 1.22 -0.02
MPA SD 0.47 0.25 331 16 1.01 1473 4000 3746 1.48 -1.06
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