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Supplementary Fig. 1: Qualitative analysis of hematoxylin and eosin (H&E)
BE-TransMIL model’s capability to generalize to out of distribution data.
a, Goblet cells can be seen in the true positive slide high attention tiles; low
attention tiles do not show any goblet cells. b, Slide attention heatmap of true
negative slide shows nearly uniform attention; high- and low-attention tiles do
not have any goblet cells.
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Supplementary Fig. 2: 224×224 tiles of a slide for different objective magni-
fications: top row shows the same field-of-view at different resolutions, bottom
row shows different fields-of-view at different magnifications for a given tile
size, with the blue box showing the corresponding region in the first row. a,
H&E tiles. b, trefoil factor 3 (TFF3) tiles.
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Supplementary Fig. 3: Grad-CAM saliency maps of the top 10 tiles (with
highest attention values) of a BE-positive slide (ResNet50, layer 4). a, H&E
BE-TransMIL model. b, TFF3 BE-TransMIL model.
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Supplementary Fig. 4: Registration of adjacent TFF3 and H&E slides.
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Encoder AUROC AUPR Accuracy Sensitivity Specificity

SwinT 0.905 ± 0.018 0.892 ± 0.022 0.836 ± 0.017 0.801 ± 0.045 0.856 ± 0.047
DenseNet121 0.919 ± 0.026 0.907 ± 0.031 0.855 ± 0.025 0.824 ± 0.080 0.874 ± 0.025
ResNet18 0.922 ± 0.011 0.906 ± 0.012 0.849 ± 0.019 0.833 ± 0.063 0.858 ± 0.058
ResNet50 0.931 ± 0.021 0.919 ± 0.031 0.876 ± 0.047 0.813 ± 0.060 0.915 ± 0.077

Supplementary Table 1: H&E BE-TransMIL 4-fold cross-validation per-
formance (0.5 probability threshold) on the discovery validation data splits
using different types of image encoders. ResNet50 encoder shows most favor-
able overall performance.

Encoder AUROC AUPR Accuracy Sensitivity Specificity

SwinT 0.967 ± 0.006 0.955 ± 0.007 0.918 ± 0.016 0.908 ± 0.014 0.925 ± 0.032
DenseNet121 0.965 ± 0.006 0.958 ± 0.008 0.914 ± 0.014 0.867 ± 0.050 0.943 ± 0.031
ResNet18 0.963 ± 0.002 0.946 ± 0.014 0.907 ± 0.023 0.890 ± 0.030 0.918 ± 0.055
ResNet50 0.967 ± 0.003 0.951 ± 0.014 0.922 ± 0.009 0.893 ± 0.039 0.939 ± 0.016

Supplementary Table 2: TFF3 BE-TransMIL 4-fold cross-validation per-
formance (0.5 probability threshold) on the discovery validation data splits
using different types of image encoders. ResNet50 encoder shows most favor-
able overall performance, better or consistent with DenseNet121 encoder.

Mag. AUROC AUPR Accuracy Sensitivity Specificity

5× 0.941 ± 0.003 0.918 ± 0.010 0.863 ± 0.0147 0.857 ± 0.048 0.867 ± 0.052
10× 0.960 ± 0.006 0.954 ± 0.005 0.911 ± 0.014 0.834 ± 0.033 0.958 ± 0.018
20× 0.953 ± 0.009 0.951 ± 0.007 0.911 ± 0.011 0.811 ± 0.059 0.972 ± 0.032

Supplementary Table 3: H&E BE-TransMIL (ResNet50) replication experi-
ments (mean and standard deviation over n=5 random initializations) at differ-
ent objective magnifications (‘Mag.’): performance (0.5 probability threshold)
on a 10% data split from the discovery developmental set. 10× objective
magnification shows most favorable overall performance. The variance across
initializations is consistently small.

Encoder AUROC AUPR Accuracy Sensitivity Specificity

SwinT-FT 0.905 ± 0.018 0.892 ± 0.022 0.836 ± 0.017 0.801 ± 0.045 0.856 ± 0.047
CTransPath-PT 0.865 ± 0.021 0.849 ± 0.001 0.8201 ± 0.018 0.718 ± 0.034 0.882 ± 0.003
CTransPath-FT 0.928 ± 0.018 0.916 ± 0.018 0.875 ± 0.012 0.781 ± 0.063 0.929 ± 0.042

Supplementary Table 4: H&E BE-TransMIL (SwinT) cross-validation per-
formance (0.5 probability threshold) on the discovery validation data splits
using a histopathology pretrained encoder CTransPath [7] compared to vanilla
SwinT pretrained on ImageNet. PT stands for pretrained where the encoder
is frozen and FT is with end-to-end fine-tuning including the encoder on
Cytosponge H&E slides.
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Failure type Total errors Shared errors H&E-only errors TFF3-only errors

False negatives 34 (100%) 19 (55.88%) 13 (38.23%) 2 (6.67%)
False positives 56 (100%) 13 (23.21%) 31 (55.35%) 12 (21.42%)

Supplementary Table 5: Failure quantities computed for H&E and TFF3
BE-TransMIL models. Percentages in parentheses are with respect to the total
number of errors for each failure type.
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Supplementary Fig. 5: Performance analysis of multiple ML-assisted
workflows. The sensitivity and specificity of each workflow with respect to
pathologist (cross at top-left corner) is presented alongside 95% confidence
intervals. ROC curves of the H&E and TFF3 models are also presented.
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Workflow Pathologist review TFF3 staining Obs. prevalence

Pathologist 100% 100% 8%
H&E only 0% 0% 0%
TFF3 only 0% 100% 0%
H&E AND TFF3 0% 37% [31–45%] 0%
H&E OR TFF3 0% 63% [55–69%] 0%
H&E AND Pathologist 37% [31–45%] 37% [31–45%] 19% [16–24%]
H&E OR Pathologist 63% [55–69%] 63% [55–69%] 1% [1–2%]
TFF3 AND Pathologist 31% [25–38%] 100% 24% [20–31%]
TFF3 OR Pathologist 69% [62–75%] 100% 1% [0–2%]
H&E AND (TFF3 OR Path.) 17% [12–23%] 37% [31–45%] 3% [1–7%]
H&E AND TFF3 AND Path. 20% [16–26%] 37% [31–45%] 33% [26–43%]
(H&E OR TFF3) AND Path. 48% [41–55%] 100% 17% [14–20%]
(H&E AND TFF3) OR Path. 80% [74–84%] 100% 2% [1–2%]
Consensus OR Pathologist 28% [21–35%] 100% 5% [2–8%]

Supplementary Table 6: Pathologists’ workload as a fraction of current
reviewed cases, TFF3 staining as a fraction of the current cases, and observed
(obs.) prevalence of Barrett’s esophagus (BE) for possible workflows using the
BE-TransMIL models, along with their 95% confidence intervals (CIs).
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Patient demographics

Supplementary Table 7: Patient demographics for discovery and external
evaluation datasets.

Patient demographics for discovery (DELTA) dataset
Age Median 66 years, IQR 58-74 years.
Sex Male: n=726 (57.7%)

Female: n=508 (40.3%)
Missing: n=25 (2%).

Ethnicity Not provided.
Patient demographics for external (BEST2) dataset
Age Median 63 years, IQR 52-70 years.
Sex Male: n=439 (60.5%)

Female: n=241 (33.2%)
Missing: n=45 (6.2%).

Ethnicity Not provided.

Summary of key study elements

In this section, we summarize the key study elements of our paper listed accord-
ing to recent reporting guidelines [9, 10] for applications of machine learning
(ML) in clinical research. We present the study setup (Supplementary Table 8),
model details (Supplementary Table 9), experimental details (Supplementary
Table 10) and reproducibility (Supplementary table 11).
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Supplementary Table 8: Study setup

Study design

Clinical question Can we detect BE from the routinely-stained H&E slides
using weakly-supervised deep learning methods?

Model task and
outputs

Binary classification of H&E whole-slide images into BE pos-
itive or negative. Slide attention heatmaps showing high and
low attended tiles by the model to make the predictions.

Intended use of
results/target
user

Predictions and model outputs (e.g., slide attention
heatmaps) can be made available to clinical supporters as
part of the Cytosponge-TFF3 test management, for instance,
to assist pathologists in semi-automated workflows (see
Results), enhance the scalability of the test, and improve
patient outcomes.

Study population and setting

Population Comprises of data from patients attending Barrett’s surveil-
lance or screening programs as enrolled in one of the two
studies, namely, DELTA and BEST2 (see Methods: Discov-
ery and external evaluation datasets).

Study setting DELTA implementation study and BEST2 clinical trials reg-
istered in the UK (see Methods: Discovery and external
evaluation datasets).

Data source Cyted Ltd, Cambridge, UK.

Cohort selection
(exclusion and
inclusion criteria)

All available slides from the DELTA study.
Licensed slides available to Cyted Ltd from the BEST2
study.

Data sources

Data types Whole-slide images in NDPI format (discovery dataset) and
SVS format (external dataset), converted into TIFF at objec-
tive magnification 10× (0.92 µm/pixel). Tiles generated of
size 224 × 224 pixels (≈ 200 × 200µm) from whole-slide
images of sizes of order of 1×108 pixels. Structured metadata
in TSV format.

Data collection
and processing

See Methods: Discovery and external evaluation datasets,
Data preprocessing.

Data structures RGB image (array of 3 channels), binary label for BE.

Data partitions See Table 1.
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Supplementary Table 9: Model details

Model architecture

ML method
and rationale

Weakly supervised multiple instance learning (MIL) method can
achieve a high diagnostic performance to detect BE from H&E
slides due to a strong alignment with the nature of the task:
a slide is labeled BE positive when goblet cells are detected
in a small area of the whole-slide image — this is a classi-
cal MIL task and resembles the assessment criteria of expert
histopathologists. We use a weakly supervised deep learning net-
work architecture inspired by Transformer-MIL proposed in [8].
The resulting model architecture is called BE-TransMIL. Bench-
marked encoders: ResNet18, ResNet50, DenseNet121, Swin-T
(see Methods: Model architecture).

Features Learnable features selected by the deep learning model. Inter-
pretability analysis highlights the following features with higher
attention values given by the model (see Results, Fig. 2, Fig.
3, Fig. 5). H&E slides: Mucin-containing goblet cells are visible
with a distinct cellular morphology in the high-attention tiles.
TFF3 slides: Goblet cells show positive staining of the brown
histochemical stain in the high-attention tiles.

Model training

Hardware,
software,
packages

- Azure ML infrastructure (https://azure.microsoft.com/) for
pre-processing TFF3 slides, training and evaluating deep learn-
ing models.
- HistoQC configv2.1 [5] for pre-processing H&E slides.
- MONAI 1.2.dev2310 [6] for data pre-processing and tiling-on-
the-fly.
- Eight NVIDIA V100 GPUs for training, one NVIDIA V100
GPU for inference.
- 40 CPU cores for tiling on-the-fly.
- Python 3.9 for code implementation.
- PyTorch 1.1.0 [3] and PyTorch-Lightening1.6.5 [4] for imple-
menting the deep learning models and model evaluation.
- Scikit-learn 1.2.2 [2], Scikit-image 0.19.3 [11] for data process-
ing and analysis.
- SimpleITK 2.1.1.2 [1] for registration of H&E and TFF3 slides.

Hyper-
parameters

BE-TransMIL models trained for binary classification task using
BCE loss, ADAM optimizer (β1 = 0.9, β2 = 0.99), batch size 8,
varying bag size (ResNet18: 2300, ResNet50: 1200, Swin-T: 1100,
DenseNet121: 700), hidden dimension of attention pooling layer
2048, 50 epochs, learning rate 3e-5, weight decay 0.1, random
seed 42. Hyperparameter tuning of models based on classifi-
cation accuracy, prioritized on specificity (in order to identify
negative cases with high confidence for screening populations).

Scalability
methods

activation checkpointing (training), encoding in chunks (whole
slide inference). See Methods: Model description for details.

https://azure.microsoft.com/
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Supplementary Table 10: Experimental details

Evaluation setup

Data labels (Gold
standard)

The BE positive or negative labels are manually extracted
from pathologists’ diagnostic reports. Pathologists visually
assessed each slide pair (H&E, TFF3) to make their BE
diagnosis.

Missingness Not applicable

Data split 80:20 split of discovery dataset into development (training,
validation) and test datasets (See Fig 1c). Four-fold cross
validation leading to 60:20:20 split over the entire discov-
ery dataset. Validation and test datasets were randomly
selected, stratified according to distributions of class labels
and patient pathway (surveillance or screening).

Evaluation mea-
sures (metrics)

AUROC, AUPR, Accuracy, Sensitivity, Specificity (at
threshold=0.5) for comparing and model selection, with pri-
ority to AUROC and AUPR as these are threshold-agnostic
metrics.
Accuracy, AUROC, AUPR, Sensitivity, Specificity at
selected operating point (corresponding to 0.85 validation
sensitivity for clinical utility) for reporting performance on
discovery and external test sets.
ROC curves with bootstrapping for 95% CI.

Model validation

Internal model
validation

Discovery dataset comprises of cases from the DELTA
implementation study.
For each fold in four-fold cross-validation, discovery training
set consists of 912 slides and validation set of 229 slides for
model selection and comparison.
Discovery test set consists of 229 slides for model evaluation.

External model
validation

External dataset comprises of slide images from the BEST2
case-control clinical trial. The external validation set consists
of 725 slides.

Interpretability
analysis

We analyze the attentions of the model qualitatively and
quantitatively, correlate the findings with TFF3 stain for
which goblet cells show positive staining, and analyze fail-
ure modes to ensure model outputs are interpretable (See
Results). The analysis includes 1) Visual assessment of slide
attention heatmaps and top/bottom attention tiles to ana-
lyze the visual features selected by the models to make a
decision. 2) GradCAM saliency maps to analyze fine-grained
attention in tiles. 3) Stain-attention correspondence analysis
to correlate the attentions with TFF3 stain ratio. 4) Failure
modes analysis to assess the failures of shared and individual
mistakes of H&E and TFF3 models.
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Supplementary Table 11: Transparency, reproducibility, code re-use

Data availability Data cannot be shared by corresponding author due to
license agreements of Cyted Ltd with partners. The study
protocols for DELTA and BEST2 are publicly available. All
data used was deidentified. The dataset is governed by data
usage policies specified by the data controller (University
of Cambridge, Cancer Research UK). We are committed to
complying with Cancer Research UK’s Data Sharing and
Preservation Policy. Whole-slide images used in this study
will be available for non-commercial research purposes upon
approval by a Data Access Committee according to institu-
tional requirements. Applications for data access should be
directed to rcf29@cam.ac.uk.

Code availability All the code associated with the paper is open-
sourced and available for public use1. The main reposi-
tory, BE-TransMIL, can be found at https://github.com/
microsoft/be-trans-mil. It provides code for data pro-
cessing and result analysis. It includes Microsoft Health
Intelligence Machine Learning toolbox (hi-ml) https://
github.com/microsoft/hi-ml as a submodule, which con-
tains code and library requirements for data preprocess-
ing, network architectures, and training and evaluation of
weakly supervised deep learning models for computational
pathology (https://github.com/microsoft/hi-ml/tree/main/
hi-ml-cpath#readme). Detailed instructions on using the hi-
ml software are provided at https://github.com/microsoft/
hi-ml/blob/main/docs/source/histopathology.md
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