Supplementary Information

Supplementary figures and tables

Supplementary Fig. 1: Qualitative analysis of hematoxylin and eosin (H&E) BE-TransMIL model's capability to generalize to out of distribution data. **a**, Goblet cells can be seen in the true positive slide high attention tiles; low attention tiles do not show any goblet cells. **b**, Slide attention heatmap of true negative slide shows nearly uniform attention; high- and low-attention tiles do not have any goblet cells.

2

Supplementary Fig. 2: 224×224 tiles of a slide for different objective magnifications: top row shows the same field-of-view at different resolutions, bottom row shows different fields-of-view at different magnifications for a given tile size, with the blue box showing the corresponding region in the first row. **a**, H&E tiles. **b**, trefoil factor 3 (TFF3) tiles.

Supplementary Fig. 3: Grad-CAM saliency maps of the top 10 tiles (with highest attention values) of a BE-positive slide (ResNet50, layer 4). **a**, H&E BE-TransMIL model. **b**, TFF3 BE-TransMIL model.

Supplementary Fig. 4: Registration of adjacent TFF3 and H&E slides.

Encoder	AUROC	AUPR	Accuracy	Sensitivity	Specificity
SwinT DenseNet121 ResNet18 ResNet50	$\begin{array}{c} 0.905 \pm 0.018 \\ 0.919 \pm 0.026 \\ 0.922 \pm 0.011 \\ \textbf{0.931} \pm \textbf{0.021} \end{array}$	$\begin{array}{c} 0.892 \pm 0.022 \\ 0.907 \pm 0.031 \\ 0.906 \pm 0.012 \\ \textbf{0.919} \pm \textbf{0.031} \end{array}$	$\begin{array}{c} 0.836 \pm 0.017 \\ 0.855 \pm 0.025 \\ 0.849 \pm 0.019 \\ \textbf{0.876} \pm \textbf{0.047} \end{array}$	$\begin{array}{c} 0.801 \pm 0.045 \\ 0.824 \pm 0.080 \\ \textbf{0.833} \pm \textbf{0.063} \\ 0.813 \pm 0.060 \end{array}$	$\begin{array}{c} 0.856 \pm 0.047 \\ 0.874 \pm 0.025 \\ 0.858 \pm 0.058 \\ \textbf{0.915} \pm \textbf{0.077} \end{array}$

Supplementary Table 1: H&E BE-TransMIL 4-fold cross-validation performance (0.5 probability threshold) on the discovery validation data splits using different types of image encoders. ResNet50 encoder shows most favorable overall performance.

Encoder	AUROC	AUPR	Accuracy	Sensitivity	Specificity
SwinT DenseNet121	$\begin{array}{c} 0.967 \pm 0.006 \\ 0.965 \pm 0.006 \end{array}$	$\begin{array}{c} 0.955 \pm 0.007 \\ \textbf{0.958} \pm \textbf{0.008} \end{array}$	$\begin{array}{c} 0.918 \pm 0.016 \\ 0.914 \pm 0.014 \end{array}$	$\begin{array}{c} \textbf{0.908} \pm \textbf{0.014} \\ 0.867 \pm 0.050 \end{array}$	$\begin{array}{c} 0.925 \pm 0.032 \\ \textbf{0.943} \pm \textbf{0.031} \end{array}$
ResNet18 ResNet50	$\begin{array}{c} 0.963 \pm 0.002 \\ \textbf{0.967} \pm \textbf{0.003} \end{array}$	$\begin{array}{c} 0.946 \pm 0.014 \\ 0.951 \pm 0.014 \end{array}$	$\begin{array}{c} 0.907 \pm 0.023 \\ \textbf{0.922} \pm \textbf{0.009} \end{array}$	$\begin{array}{c} 0.890 \pm 0.030 \\ 0.893 \pm 0.039 \end{array}$	$\begin{array}{c} 0.918 \pm 0.055 \\ 0.939 \pm 0.016 \end{array}$

Supplementary Table 2: TFF3 BE-TransMIL 4-fold cross-validation performance (0.5 probability threshold) on the discovery validation data splits using different types of image encoders. ResNet50 encoder shows most favorable overall performance, better or consistent with DenseNet121 encoder.

Mag.	AUROC	AUPR	Accuracy	Sensitivity	Specificity
$5 \times 10 \times 20 \times$	$\begin{array}{c} 0.941 \pm 0.003 \\ \textbf{0.960} \pm \textbf{0.006} \\ 0.953 \pm 0.009 \end{array}$	$\begin{array}{c} 0.918 \pm 0.010 \\ \textbf{0.954} \pm \textbf{0.005} \\ 0.951 \pm 0.007 \end{array}$	$\begin{array}{c} 0.863 \pm 0.0147 \\ \textbf{0.911} \pm \textbf{0.014} \\ \textbf{0.911} \pm \textbf{0.011} \end{array}$	$\begin{array}{c} \textbf{0.857} \pm \textbf{0.048} \\ 0.834 \pm 0.033 \\ 0.811 \pm 0.059 \end{array}$	$\begin{array}{c} 0.867 \pm 0.052 \\ 0.958 \pm 0.018 \\ \textbf{0.972} \pm \textbf{0.032} \end{array}$

Supplementary Table 3: H&E BE-TransMIL (ResNet50) replication experiments (mean and standard deviation over n=5 random initializations) at different objective magnifications ('Mag.'): performance (0.5 probability threshold) on a 10% data split from the discovery developmental set. $10 \times$ objective magnification shows most favorable overall performance. The variance across initializations is consistently small.

Encoder	AUROC	AUPR	Accuracy	Sensitivity	Specificity
SwinT-FT CTransPath-PT	0.905 ± 0.018 0.865 ± 0.021	0.892 ± 0.022 0.849 ± 0.001	0.836 ± 0.017 0.8201 ± 0.018	0.801 ± 0.045 0.718 + 0.034	0.856 ± 0.047 0.882 ± 0.003
CTransPath-FT	0.928 ± 0.018	0.916 ± 0.018	0.875 ± 0.012	0.781 ± 0.063	0.929 ± 0.042

Supplementary Table 4: H&E BE-TransMIL (SwinT) cross-validation performance (0.5 probability threshold) on the discovery validation data splits using a histopathology pretrained encoder CTransPath [7] compared to vanilla SwinT pretrained on ImageNet. PT stands for pretrained where the encoder is frozen and FT is with end-to-end fine-tuning including the encoder on Cytosponge H&E slides.

Failure type	Total errors	Shared errors	H&E-only errors	TFF3-only errors
False negatives False positives	$34 (100\%) \\ 56 (100\%)$	$19 (55.88\%) \\ 13 (23.21\%)$	13 (38.23%) 31 (55.35%)	$2 (6.67\%) \\ 12 (21.42\%)$

Supplementary Table 5: Failure quantities computed for H&E and TFF3 BE-TransMIL models. Percentages in parentheses are with respect to the total number of errors for each failure type.

Workflow operating points at 95% sensitivity and 8% prevalence

Supplementary Fig. 5: Performance analysis of multiple ML-assisted workflows. The sensitivity and specificity of each workflow with respect to pathologist (cross at top-left corner) is presented alongside 95% confidence intervals. ROC curves of the H&E and TFF3 models are also presented.

Workflow	Pathologist review	TFF3 staining	Obs. prevalence
----------	--------------------	---------------	-----------------

Pathologist	100%	100%	8%
H&E only	0%	0%	0%
TFF3 only	0%	100%	0%
H&E AND TFF3	0%	37% [31-45%]	0%
H&E OR TFF3	0%	63% [55 $-69%$]	0%
H&E AND Pathologist	$37\% [31{-}45\%]$	37% [31 - 45%]	19% [16 – 24%]
H&E OR Pathologist	63% [55–69%]	63% [55-69%]	1% [1-2%]
TFF3 AND Pathologist	31% [25–38%]	100%	24% [20-31%]
TFF3 OR Pathologist	69% [62-75%]	100%	1% [0-2%]
H&E AND (TFF3 OR Path.)	17% [12-23%]	37% [31-45%]	3% [1-7%]
H&E AND TFF3 AND Path.	20% [16-26%]	37% [31-45%]	33% [26-43%]
(H&E OR TFF3) AND Path.	48% [41 - 55%]	100%	17% [14 - 20%]
(H&E AND TFF3) OR Path.	80% [74-84%]	100%	2% [1-2%]
Consensus OR Pathologist	28% [21–35%]	100%	5% [2-8%]

Supplementary Table 6: Pathologists' workload as a fraction of current reviewed cases, TFF3 staining as a fraction of the current cases, and observed (obs.) prevalence of Barrett's esophagus (BE) for possible workflows using the BE-TransMIL models, along with their 95% confidence intervals (CIs).

Patient demographics

Supplementary Table 7: Patient demographics for discovery and external evaluation datasets.

Patient demographics for discovery (DELTA) dataset		
Age	Median 66 years, IQR 58-74 years.	
Sex	Male: n=726 (57.7%)	
	Female: $n=508$ (40.3%)	
	Missing: $n=25$ (2%).	
Ethnicity	Not provided.	
Patient demograp	hics for external (BEST2) dataset	
Age	Median 63 years, IQR 52-70 years.	
Sex	Male: $n=439 (60.5\%)$	
	Female: $n=241$ (33.2%)	
	Missing: $n=45$ (6.2%).	
Ethnicity	Not provided.	

Summary of key study elements

In this section, we summarize the key study elements of our paper listed according to recent reporting guidelines [9, 10] for applications of machine learning (ML) in clinical research. We present the study setup (Supplementary Table 8), model details (Supplementary Table 9), experimental details (Supplementary Table 10) and reproducibility (Supplementary table 11).

Study design	
Clinical question	Can we detect BE from the routinely-stained H&E slides
	using weakly-supervised deep learning methods?
Model task and	Binary classification of H&E whole-slide images into BE pos-
outputs	itive or negative. Slide attention heatmaps showing high and
	low attended tiles by the model to make the predictions.
Intended use of	Predictions and model outputs (e.g., slide attention
results/target	heatmaps) can be made available to clinical supporters as
user	part of the Cytosponge-TFF3 test management, for instance,
	to assist pathologists in semi-automated workflows (see
	Results), enhance the scalability of the test, and improve
	patient outcomes.
Study population	n and setting
Population	Comprises of data from patients attending Barrett's surveil-
	lance or screening programs as enrolled in one of the two
	studies, namely, DELTA and BEST2 (see Methods: Discov-
	ery and external evaluation datasets).
Study setting	DELTA implementation study and BEST2 clinical trials reg-
	istered in the UK (see Methods: Discovery and external
	evaluation datasets).
Data source	Cyted Ltd, Cambridge, UK.
Cohort selection	All available slides from the DELTA study.
(exclusion and	Licensed slides available to Cyted Ltd from the BEST2
inclusion criteria)	study.
Data sources	
Data types	Whole-slide images in NDPI format (discovery dataset) and
	SVS format (external dataset), converted into TIFF at objec-
	tive magnification $10 \times (0.92 \ \mu m/pixel)$. Tiles generated of
	size 224 × 224 pixels ($\approx 200 \times 200 \mu m$) from whole-slide
	images of sizes of order of 1×10^8 pixels. Structured metadata
	in TSV format.
Data collection	See Methods: Discovery and external evaluation datasets,
and processing	Data preprocessing.
Data structures	RGB image (array of 3 channels), binary label for BE.
Data partitions	See Table 1.

Supplementary Table 8: Study setup

Supplementary Table 9: Model details

Model archite	ecture
ML method	Weakly supervised multiple instance learning (MIL) method can
and rationale	achieve a high diagnostic performance to detect BE from H&E
	slides due to a strong alignment with the nature of the task:
	a slide is labeled BE positive when goblet cells are detected
	in a small area of the whole-slide image — this is a classi-
	cal MIL task and resembles the assessment criteria of expert
	histopathologists. We use a weakly supervised deep learning net-
	work architecture inspired by Transformer-MIL proposed in [8].
	The resulting model architecture is called BE-TransMIL. Bench-
	marked encoders: ResNet18, ResNet50, DenseNet121, Swin-T
	(see Methods: Model architecture).
Features	Learnable features selected by the deep learning model. Inter-
	pretability analysis highlights the following features with higher
	attention values given by the model (see Results, Fig. 2, Fig.
	3, Fig. 5). H&E slides: Mucin-containing goblet cells are visible
	with a distinct cellular morphology in the high-attention tiles.
	TFF3 slides: Goblet cells show positive staining of the brown
	histochemical stain in the high-attention tiles.
Model trainin	lg
Hardware,	- Azure ML infrastructure (https://azure.microsoft.com/) for
software,	pre-processing TFF3 slides, training and evaluating deep learn-
packages	ing models.
	- HistoQC configv2.1 [5] for pre-processing H&E slides.
	- MONAI 1.2.dev2310 [6] for data pre-processing and tiling-on-
	the-fly.
	- Eight NVIDIA V100 GPUs for training, one NVIDIA V100
	GPU for inference.
	- 40 CPU cores for tiling on-the-fly.
	- Python 3.9 for code implementation.
	- PyTorch 1.1.0 [3] and PyTorch-Lightening1.6.5 [4] for imple-
	menting the deep learning models and model evaluation.
	- Scikit-learn 1.2.2 [2], Scikit-image 0.19.3 [11] for data process-
	ing and analysis.
	- SimpleITK 2.1.1.2 [1] for registration of H&E and TFF3 slides.
Hyper-	BE-TransMIL models trained for binary classification task using
parameters	BCE loss, ADAM optimizer ($\beta_1 = 0.9, \beta_2 = 0.99$), batch size 8,
	varying bag size (ResNet18: 2300, ResNet50: 1200, Swin-T: 1100,
	DenseNet121: 700), hidden dimension of attention pooling layer
	2048, 50 epochs, learning rate 3e-5, weight decay 0.1, random
	seed 42. Hyperparameter tuning of models based on classifi-
	cation accuracy, prioritized on specificity (in order to identify
	negative cases with high confidence for screening populations).
Scalability	activation checkpointing (training), encoding in chunks (whole
methods	slide inference). See Methods: Model description for details.

Supplementary Table 10: Experimental details

Evaluation setup)
Data labels (Gold	The BE positive or negative labels are manually extracted
standard)	from pathologists' diagnostic reports. Pathologists visually
,	assessed each slide pair (H&E, TFF3) to make their BE
	diagnosis.
Missingness	Not applicable
Data split	80:20 split of discovery dataset into development (training.
	validation) and test datasets (See Fig 1c). Four-fold cross
	validation leading to 60:20:20 split over the entire discov-
	erv dataset. Validation and test datasets were randomly
	selected stratified according to distributions of class labels
	and patient pathway (surveillance or screening)
Evaluation mea-	AUBOC AUPR Accuracy Sensitivity Specificity (at
sures (metrics)	threshold -0.5) for comparing and model selection with pri-
sures (metrics)	arity to AUROC and AURB as these are threshold agnostic
	motrice
	Accuracy AUROC AUPR Sonsitivity Specificity at
	solected operating point (corresponding to 0.85 validation
	songitivity for clinical utility) for reporting performance on
	discovery and external test sets
	BOC curves with bootstrapping for 05% CI
Model validation	
Internal model	Discovery detect comprises of eases from the DELTA
validation	implementation study
validation	For each fold in four fold areas validation discovery training
	set consists of 012 glides and validation, discovery training
	model selection and comparison
	Discovery test set consists of 220 slides for model evaluation
Errtonnal madal	External detect comprises of slide images from the PEST2
unlidetion	External dataset comprises of side images from the DEST2
validation	of 725 alidea
Internetability	We apply the attentions of the model evolitatively and
interpretability	we analyze the attentions of the model qualitatively and
analysis	which collect colle show positive staining and applying fail
	which gobiet cens show positive standing, and analyze fail-
	Desulta) The analysis includes 1) Visual accessment of alide
	Results). The analysis includes 1) visual assessment of side
	attention neatmaps and top/ bottom attention tiles to ana-
	lyze the visual leatures selected by the models to make a
	decision. 2) GradOAW salency maps to analyze nne-grained
	attention in thes. 3) Stain-attention correspondence analysis
	to correlate the attentions with 1FF3 stain ratio. 4) Failure
	modes analysis to assess the failures of shared and individual
	mistakes of H&E and TFF3 models.

Supplementary Table 11: Transparency, reproducibility, code re-use

D ('1 1 '1')	
Data availability	Data cannot be shared by corresponding author due to
	license agreements of Cyted Ltd with partners. The study
	protocols for DELTA and BEST2 are publicly available. All
	data used was deidentified. The dataset is governed by data
	usage policies specified by the data controller (University
	of Cambridge, Cancer Research UK). We are committed to
	complying with Cancer Research UK's Data Sharing and
	Preservation Policy. Whole-slide images used in this study
	will be available for non-commercial research purposes upon
	approval by a Data Access Committee according to institu-
	tional requirements. Applications for data access should be
	directed to as 200 come as all
	directed to rci29@cam.ac.uk.
Code availability	All the code associated with the paper is open-
	sourced and available for public use ¹ . The main reposi-
	tory, BE-TransMIL, can be found at https://github.com/
	microsoft/be-trans-mil. It provides code for data pro-
	cessing and result analysis. It includes Microsoft Health
	Intelligence Machine Learning toolbox (hi-ml) https://
	github.com/microsoft/hi-ml as a submodule, which con-
	tains code and library requirements for data preprocess-
	ing network architectures and training and evaluation of
	weakly supervised deep learning models for computational
	not below: (https://withub.com/migrosoft/hi.ml/troo/main/
	pathology (https://github.com/microsoft/m-fm/tree/main/
	hi-mi-cpath#readme). Detailed instructions on using the hi-
	ml software are provided at https://github.com/microsoft/
	hi-ml/blob/main/docs/source/histopathology.md

References

- Bradley Lowekamp, David Chen, Luis Ibáñez, and Daniel Blezek. The Design of SimpleITK. Frontiers in Neuroinformatics, 7:2013. https: //www.frontiersin.org/articles/10.3389/fninf.2013.00045 doi: 10.3389/fninf.2013.00045 ISSN: 1662-5196
- [2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.
- [3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.

¹The software described in the repository is provided for research and development use only. The software is not intended for use in clinical decision-making or for any other clinical use, and the performance of model for clinical use has not been established. You bear sole responsibility for any use of this software, including incorporation into any product intended for clinical use.

Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. *Advances in Neural Information Processing Systems*, 32:8024–8035, 2019.

- [4] W.A. Falcon, A. Bojarski, S. Beery, and W. Zaremba. PyTorch Lightning. arXiv preprint arXiv:2012.09184, 2020.
- [5] Andrew Janowczyk, Ren Zuo, Hannah Gilmore, Michael Feldman, and Anant Madabhushi. HistoQC: An Open-Source Quality Control Tool for Digital Pathology Slides. JCO Clinical Cancer Informatics, (3):1–7, 2019. doi: 10.1200/CCI.18.00157
- [6] M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Andriy Myronenko, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, and Andrew Feng. MONAI: An open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701, 2022.
- [7] Xiyue Wang, Sen Yang, Jun Zhang, Minghui Wang, Jing Zhang, Wei Yang, Junzhou Huang, and Xiao Han. Transformer-based unsupervised contrastive learning for histopathological image classification. *Medical Image Analysis*, 81:102559, 2022. doi: 10.1016/j.media.2022.102559 url: https://www.sciencedirect.com/science/article/pii/S1361841522002043
- [8] Andriy Myronenko, Ziyue Xu, Dong Yang, Holger R. Roth, and Daguang Xu. Accounting for dependencies in deep learning based multiple instance learning for whole slide imaging. In *Medical Image Computing and Computer Assisted Intervention MICCAI 2021*, pages 329–338, Cham, 2021. Springer. doi: 10.1007/978-3-030-87237-3_32
- [9] Laura M. Stevens, Bobak J. Mortazavi, Rahul C. Deo, Lesley Curtis, and David P. Kao. Recommendations for reporting machine learning analyses in clinical research. *Circulation: Cardiovascular Quality and Outcomes*, 13(10):e006556, 2020. Publisher: Am Heart Assoc.

- [10] Tina Hernandez-Boussard, Selen Bozkurt, John PA Ioannidis, and Nigam H. Shah. MINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health care. *Journal of the American Medical Informatics Association*, 27(12):2011– 2015, 2020. Publisher: Oxford University Press.
- [11] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image contributors. scikit-image: image processing in Python. *PeerJ*, 2:e453, 2014. doi: 10.7717/peerj.453