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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): expert in deep learning 

 

OVERVIEW 

 

This manuscript examines ML methods to assist in the early detection in esophageal 

adenocarcinoma (EAC). The paper emphasizes the significance of identifying Barrett's esophagus 

(BE) as a pre-malignant condition that presents an opportunity for early intervention. 

Currently, BE diagnosis relies on manual histopathological inspection of multiple slides, making it 

resource-intensive and limiting its scalability for screening. Contributions include: 

 

- A weakly supervised deep learning method based on multiple instance learning (MIL) for 

classifying pathology slides 

- An validation experiments of 2 datasets (DELTA and BEST2) 

- An analysis of error modes for models trained on H&E and TFF3 stained slides and their interplay 

when combined to inform a model-assisted workflow for pathologists 

 

STRENGTHS 

 

- Is a great clinical application setting. Better early detection of EAC is critical and ML-accelerated 

screening could really make a difference in people's lives. 

- Includes evaluations on multiple datasets. 

- A range of image encoding architectures (SWIM-T, ResNets, etc) is explored. 

 

WEAKNESSES 

 

- The authors don't cite (Campanella et al. 2019) "Clinical-grade computational pathology using 

weakly supervised deep learning on whole slide image" 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418463/ That work shares many similarities with 

this manuscript, including a weakly supervised pathology slide classification framework that uses 

MIL and an analysis of a hypothetical clinical decision support system based on model predictions. 

Campanella et al. 2019 goes beyond this current work too and: 

1) Looks at variability in glass slide preparation 

2) Includes comparisons to a strong, fully supervised ML baseline based on pixel-wise annotations 

for training slides 

3) Is evaluated on much larger patient population -- 44,732 whole slide images from 15,187 

patients. 

This manuscript does improve upon the core ML architecture used, but only slightly (ResNet34 + 

RNN vs. ResNet50 + Transformer) and not in a way that constitutes added novelty. 

 

- The whole-slide image datasets used here are modestly sized compared to offerings in ML, e.g., 

ARCH and OpenPath are 8K and 200k respectively, with the very recent QUILT-1M 

(https://github.com/wisdomikezogwo/quilt1m) containing 1M image/text pairs. Given that all the 

models used in the manuscript were pretrained using only natural images (line 929), there is a 

missed opportunity to incorporate additional in-domain (other path slides) pretraining data from 

these other path slide datasets. 

 

- The manuscript would benefit from discussion of the risk of automated workflows. The 

assessment of model-assisted workflows here is overly optimistic, where the human pathologist is 

assumed to detect all cases (line 650) 

 

 

ASSESSMENT 

 

I think this is an important clinical application setting. However, I feel the overall novelty of the 

manuscript from an ML perspective and clinical decision support tool is limited in light of 

(Campanella et al 2019). 



 

 

Reviewer #2 (Remarks to the Author): expert in Barretts oesophagus pathology 

 

In this paper, Bouzid et al. presents a study on the application of a weakly supervised deep 

learning model for identifying Barrett's esophagus (BE) from routine histopathology slides. This 

approach relies solely on the diagnostic reports provided by pathologists, obviating the need for 

manual annotations on whole slide images. While the study is well-conducted and shows promising 

results, it has several limitations and areas that could benefit from further investigation: 

 

1. The paper does not compare its results with those of other papers that rely on conventional 

deep learning methods involving manual annotations. For instance, Gehrung et al (reference #9) 

reported that their conventional deep learning method can reduce the workload of pathologists by 

57%, while maintaining diagnostic performance at a level comparable to experienced pathologists. 

Their conventional deep learning approach seems to outperform the proposed weakly supervised 

deep learning method, even though it may require more time and effort from expert pathologists. 

A comparison of these findings could provide a better perspective on the novelty and effectiveness 

of the proposed method. 

 

Gehrung, M., Crispin-Ortuzar, M., Berman, A. G., O'Donovan, M., Fitzgerald, R. C., & Markowetz, F. 

(2021). Triage-driven diagnosis of Barrett's esophagus for early detection of esophageal 

adenocarcinoma using deep learning. Nature medicine, 27(5), 833–841. 

 

2. The discussion of false negative and false positive results is helpful, but more details on the 

implications of these errors would be beneficial. To gain clinical acceptance, it is important to 

understand not only how well the model performs but also how it arrives at its decisions, 

particularly when the model fails. On the discovery test set, both the H&E model (with rates of 

27.3% for false negatives and 7.8% for false positives) and the TFF3 model (with rates of 20.9% 

for false negatives and 3.5% for false positives) showed relatively high error rates. While it is 

acknowledged that these cases may pose challenges even for pathologists, these findings appear 

to raise questions about the suitability of their weakly supervised deep learning method for goblet 

cell identification. It seems to suggest that conventional deep learning methods relying on 

pathologists' annotations might offer greater accuracy in this task. This is also underscored by the 

observation that the authors' weakly supervised deep learning model frequently struggled to 

differentiate pseudo-goblet cells from true goblet cells. Pseudo-goblet cells have distinct 

morphologic features that experienced pathologists can readily discern from true goblet cells. It is 

reasonable to speculate that adopting conventional deep learning methods would lead to 

substantially reduced rates of false negative and false positive results. 

 

3. The manuscript briefly talks about improving data extraction from pathologists' diagnostic 

reports, but it does not delve into the mechanism through which their model extracts relevant 

diagnostic information from these reports. It appears that their weakly supervised deep learning 

model relies on a certain degree of consistency in the reporting style of pathologists to optimize its 

results. However, specific details regarding the error rate associated with accurately extracting 

diagnostic labels from pathologists' reports are not provided. It is unclear whether their model 

actively searches for specific diagnostic terms like "intestinal metaplasia," "goblet cell," or 

"Barrett's esophagus" in the reports. A Cytosponge sample may contain gastric-type columnar 

epithelium from the stomach with intestinal metaplasia, which can be a source of potential 

confusion. Searching for terms like "intestinal metaplasia" without corroborating endoscopic 

evidence of Barrett's esophagus may also lead to false-positive results. The current diagnostic 

criteria for Barrett's esophagus require the extension of salmon-colored gastric-type mucosa into 

the tubular esophagus, specifically at least 1 cm proximal to the gastroesophageal junction, with 

biopsy confirmation of intestinal metaplasia. 

 

4. The manuscript does a good job of highlighting the importance of large-scale screening to 

increase the detection and monitoring of BE through minimally invasive techniques like the 

Cytosponge. However, it would be beneficial to discuss certain limitations of this approach prior to 

introducing their proposed deep learning model. For instance, the Cytosponge collects a small 

amount of surface esophageal cells, potentially missing deeper tissue which may contain intestinal 



metaplasia and/or dysplasia. This method is also less comprehensive than traditional endoscopy, 

which allows direct visualization of the esophagus and targeted biopsies. In addition, despite being 

generally regarded as a more cost-effective alternative to traditional endoscopy, there may still be 

cost considerations, as this test usually entails additional expenses for TFF3 and p53 stains in 

addition to H&E staining. Another major limitation of the existing data related to the Cytosponge is 

that, while many of the trials have been conducted at multiple centers, studies examining the 

sensitivity and specificity of the Cytosponge in BE detection have typically involved the processing 

and interpretation of samples at a single center. It is important to have independent studies 

employing this device to confirm these results. 

 

5. The authors used two clinical trial datasets, but more information about these datasets would be 

useful. Specifically, it would be helpful to know the distribution of cases that are H&E-only positive, 

TFF3-only positive, and cases that exhibit both H&E and TFF3 positivity for goblet cells. While TFF3 

immunohistochemistry has been shown to enhance the accuracy of the Cytosponge test, it is 

generally considered unnecessary for goblet cell identification by experienced pathologists. To 

enhance cost-effectiveness and reduce the requirement for specialized stains, it could be 

advantageous to restrict the use of TFF3 staining to cases where the results from H&E staining are 

inconclusive. 

 

6. The authors mention that their deep learning method generalizes well to an external dataset 

derived from the multi-center BEST2 case-control clinical trial study. However, it would be 

beneficial to provide more information about the differences between the discovery and the 

external datasets, including patient demographic, staining procedures, and potential variations in 

slide quality. This is crucial considering that their model achieved comparable but somewhat 

diminished performance on the external dataset. The authors alluded to the possibility that 

different staining protocols between the two datasets, leading to elevated levels of stain blush and 

other non-specific darker staining, could be responsible for false negative or positive results. This 

once again raises questions regarding the appropriateness of their weakly supervised deep 

learning method for goblet cell identification. It seems to imply that conventional deep learning 

methods, which rely on annotations from pathologists, may offer superior accuracy in this 

particular task. 

 

7. The authors suggest that the implementation of their deep learning model could alleviate the 

workload of pathologists. However, the current model is limited to the identification of goblet cells 

exclusively, without consideration for other pathologic features, such as inflammation, viral or 

fungal infection, and dysplasia. The authors also note that pathologists spend 8-10 minutes on a 

complete visual inspection of a case. However, this is because pathologists need to assess all 

pertinent histopathologic features, not just goblet cells. If pathologists were solely tasked with 

identifying goblet cells without evaluating other pathologic features, it would likely be a more 

straightforward task, probably taking no more than 2 minutes. To offer a more comprehensive 

perspective, the paper should delve deeper into the potential resource utilization implications, 

including the requirements for computational resources and technical infrastructure, which may 

not be readily available. 

 

8. I do not think that Figure 5 is necessary, as it presents redundant information already found in 

Figure 2. 



Response to reviewers: Enabling large-scale

screening of Barrett’s esophagus using weakly

supervised deep learning in histopathology

We would like to extend our sincere gratitude for the time and effort the
reviewers have dedicated to reviewing our paper. Their valuable feedback
and constructive criticism have been instrumental in enhancing the quality
of our work. We have carefully considered each of the reviewers’ comments
and suggestions and have addressed them in a point-to-point response as the
following.

1 Reviewer 1

OVERVIEW
This manuscript examines ML methods to assist in the early detection in
esophageal adenocarcinoma (EAC). The paper emphasizes the significance
of identifying Barrett’s esophagus (BE) as a pre-malignant condition that
presents an opportunity for early intervention. Currently, BE diagnosis relies
on manual histopathological inspection of multiple slides, making it resource-
intensive and limiting its scalability for screening. Contributions include:
- A weakly supervised deep learning method based on multiple instance learn-
ing (MIL) for classifying pathology slides
- An validation experiments of 2 datasets (DELTA and BEST2)
- An analysis of error modes for models trained on H&E and TFF3 stained
slides and their interplay when combined to inform a model-assisted workflow
for pathologists

STRENGTHS
- Is a great clinical application setting. Better early detection of EAC is critical
and ML-accelerated screening could really make a difference in people’s lives.
- Includes evaluations on multiple datasets.
- A range of image encoding architectures (SWIM-T, ResNets, etc) is explored.

WEAKNESSES
- The authors don’t cite (Campanella et al. 2019) ”Clinical-grade computa-
tional pathology using weakly supervised deep learning on whole slide image”

1
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2 Response to reviewers: Enabling large-scale screening of Barrett’s esophagus
using weakly supervised deep learning in histopathology

https://www.ncbi.nlm.nih.gov/ pmc/ articles/PMC7418463/ . That work
shares many similarities with this manuscript, including a weakly supervised
pathology slide classification framework that uses MIL and an analysis of
a hypothetical clinical decision support system based on model predictions.
Campanella et al. 2019 goes beyond this current work too and:
1) Looks at variability in glass slide preparation
2) Includes comparisons to a strong, fully supervised ML baseline based on
pixel-wise annotations for training slides
3) Is evaluated on much larger patient population – 44,732 whole slide images
from 15,187 patients.
This manuscript does improve upon the core ML architecture used, but only
slightly (ResNet34 + RNN vs. ResNet50 + Transformer) and not in a way
that constitutes added novelty.

Response:
We thank the reviewer for their detailed comment and sharing the work in
(Campanella et al. 2019) [1]. We have now cited [1] first in Introduction
section in line 106, reference number 19. We have highlighted the dif-
ferences and improvements in our ML method to existing works in Methods:
Model Description lines [888-892, 912-918]. Please find below the point-
by-point response highlighting the differences and improvements of our work,
and corresponding modifications in the manuscript.

1. Variability in glass slide preparation
Due to the unique tissue sample type, sampling and slide preparation
process of the Cytosponge-TFF3 test for identifying Barrett’s esophagus
(BE) (sampling and slide preparation performed at two sites, details in
Methods: Discovery and external evaluation datasets), the variability in
glass slides would be lower compared to the to the datasets (multiple can-
cer types, tissue types, processing sites) studied in [1]. We acknowledge
the differences between the discovery and external datasets in Discus-
sion lines [683-685]. We also mention the limitation of the discovery
dataset samples being sectioned and stained at a single site, and varia-
tions observed in the external dataset in Discussion lines [691-695]. A
comparable predictive performance on both the external and discovery
test sets demonstrate the robustness of the trained models and their capa-
bility to generalize to new unseen data quantitatively and qualitatively
(Results lines [521-531] and Discussion lines [681-688]). We discuss
plausible future directions where studies can account for these variations
by continuing to include new data in training and test sets over time as
sample processing protocols change (Discussion lines [697-699]).
To further illustrate the intra- and inter-dataset stain variations in the

discovery and external datasets, we have added slide montages of the
discovery and external datasets in Fig. 5a, and we acknowledge this
variation in Results, lines [524-527] and Discussion lines [683-685]. We
provide sample and stain preparation information in Methods: Discovery

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418463/
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and external evaluation datasets (Methods lines [746-748], [757-759]).
We provide demographic information of the discovery and external patient
cohorts in Supplementary Material, Table 1.

2. Comparisons to a strong, fully supervised ML baseline
In our manuscript, we cite [2] that explores fully supervised models trained
on manual pixel-wise annotations for BE detection from Cytosponge sam-
ples, and reports extensive experimental results. Our weakly supervised
approach is inspired by and draws upon the work in [2] to pave the
way for large-scale screening of Cytosponge samples for BE detection,
where we train models using slide-level diagnostic information rather than
specialized expensive local annotations.
Since manual expert annotations used in [2] are unavailable to us on

the reported datasets, a direct comparison is not feasible. We have added
a paragraph comparing this predictive performance of our approach to
the fully supervised approach used in [2], also highlighting the reviewer’s
comment in section Results lines [532-538]. We achieve comparable per-
formance even though 1) our model was trained on H&E slides using
slide-level labels whereas the model in [2] was trained on TFF3 tiles (which
is a visually easier task) with pathologists’ manual annotations. 2) For our
results, slides from BEST2 study constitute an unseen (external) dataset
whereas it is an internal cohort (in-domain) in [2].

3. Patient population size
Our approach addressed the unique problem setting to detect BE from
Cytosponge samples. The Cytosponge-TFF3 test is a new method [3, 4]
that involves specific sample preparation for esophageal tissue samples,
hence, available dataset sizes are limited. We have leveraged two existing
clinical trials datasets for our work. Therefore, our patient population
sizes are smaller compared to the datasets (different tissue types and
multiple diseases) used in [1].

4. Core ML architecture used
We emphasize the main differences in our core ML architecture compared
to [1] and novelty as the following. Our architectures are inspired by
the TransformerMIL model architecture [5]; we discuss the advantages
of this approach and of using the learnable attention-based MIL [6]
in (Methods: Model Description, lines [868-888]). We now highlight
the key differences of our model architecture to previous approaches in
Methods: Model Description, lines [888-892]. Furthermore, we improve
the robustness of our models by using tiling-on-the-fly, as explained in
Methods: Model Description, lines [848-855]. We perform a comparison
of different latest image encoders, including vision transformer encoders
(Swin-T), for the detection of BE from Cytosponge samples in Methods:
Model Description, lines [893-899]. We fine-tune the BE-TransMIL
models in end-to-end manner, where the deep image encoder, trans-
former, and attention MIL modules are jointly trained. At 10× objective
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magnification, Cytosponge histopathological slides contain 3,779 tiles
on average, which makes it difficult to process these slides in a scalable
manner. We highlight the slide differences to public benchmark datasets
used in previous studies, and our optimization methods to improve slide
coverage in Methods: Model Description, lines [912-918].

- The whole-slide image datasets used here are modestly sized compared to
offerings in ML, e.g., ARCH and OpenPath are 8K and 200k respectively, with
the very recent QUILT-1M (https:// github.com/wisdomikezogwo/ quilt1m)
containing 1M image/text pairs. Given that all the models used in the
manuscript were pretrained using only natural images (line 929), there is a
missed opportunity to incorporate additional in-domain (other path slides)
pretraining data from these other path slide datasets.

Response:
We thank the reviewer for their comment. Following the reviewer’s sugges-
tion, we have added the H&E BE-TransMIL cross-validation performance
on the discovery dataset comparing a histopathology pretrained encoder [7],
and an encoder pretrained on natural images and fine-tuned end-to-end on
Cytosponge slides, in Extended Data: Table 4. We have added the corre-
sponding observations and reasoning in Methods, lines [930-948].

- The manuscript would benefit from discussion of the risk of automated work-
flows. The assessment of model-assisted workflows here is overly optimistic,
where the human pathologist is assumed to detect all cases (line 650)

Response:
We thank the reviewer for their comment. We want to emphasize that the
current standard-of-care for the Cytosponge-TFF3 test is the manual assess-
ment of the samples by a trained pathologist. Hence, we have considered
pathologists’ diagnostic labels as the gold standard. The performance of
pathologists with respect to endoscopy labels is studied in [2], we have also
mentioned this briefly in section Results, lines [539-541].

To address the risks associated with ML-assisted clinical workflows, we
acknowledge these to be an active area of research, and outline a scenario
where the risks could be minimized in Discussion, lines [705-716]. We dis-
cuss two lower risk scenarios in detail in Methods: Workflow analysis, lines
[1087-1098].

ASSESSMENT
I think this is an important clinical application setting. However, I feel the
overall novelty of the manuscript from an ML perspective and clinical decision
support tool is limited in light of (Campanella et al 2019).

We thank reviewer 1 for their thorough assessment and valuable feedback. We

https://github.com/wisdomikezogwo/quilt1m
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have made several improvements in our manuscript, as stated in the above
point-to-point response.

2 Reviewer 2

In this paper, Bouzid et al. presents a study on the application of a weakly
supervised deep learning model for identifying Barrett’s esophagus (BE) from
routine histopathology slides. This approach relies solely on the diagnostic
reports provided by pathologists, obviating the need for manual annotations
on whole slide images. While the study is well-conducted and shows promis-
ing results, it has several limitations and areas that could benefit from further
investigation:

1. The paper does not compare its results with those of other papers that rely
on conventional deep learning methods involving manual annotations. For
instance, Gehrung et al (reference #9) reported that their conventional
deep learning method can reduce the workload of pathologists by 57%, while
maintaining diagnostic performance at a level comparable to experienced
pathologists. Their conventional deep learning approach seems to outper-
form the proposed weakly supervised deep learning method, even though
it may require more time and effort from expert pathologists. A compari-
son of these findings could provide a better perspective on the novelty and
effectiveness of the proposed method.
Gehrung, M., Crispin-Ortuzar, M., Berman, A. G., O’Donovan, M.,

Fitzgerald, R. C., & Markowetz, F. (2021). Triage-driven diagnosis of
Barrett’s esophagus for early detection of esophageal adenocarcinoma
using deep learning. Nature medicine, 27(5), 833–841.

Response:
We thank the reviewer for their comment. In our manuscript, we cite [2]
that explores fully supervised models trained on manual pixel-wise anno-
tations for BE detection from Cytosponge samples, and reports extensive
experimental results. Our weakly supervised approach is inspired by and
draws upon the work in [2] to pave the way for large-scale screening
of Cytosponge samples for BE detection, where we train models using
slide-level diagnostic information rather than specialized expensive local
annotations.
Since manual expert annotations used in [2] are unavailable to us on

the reported datasets, a direct comparison is not feasible. We have added
a paragraph comparing this predictive performance of our approach to
the fully supervised approach used in [2], also highlighting the reviewer’s
comment in Results, lines [532-58]. We achieve comparable performance
even though 1) our model was trained on H&E slides using slide-level
labels whereas the model in [2] was trained on TFF3 tiles (which is a
visually easier task) with pathologists’ manual annotations. 2) For our
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results, slides from BEST2 study constitute an unseen (external) dataset
whereas it is an internal cohort (in-domain) in [2].
As we emphasize in the Introduction, lines [99-114] and Discussion,

lines [674-680], the advantage of our weakly supervised method com-
pared to fully supervised models is that we don’t require manual expert
annotations at pixel-level which can be tedious and time-consuming to
collect. We leverage existing datasets composed of slides and patholo-
gists’ routine diagnostic reports. Hence, the weakly-supervised approach
can enable large-scale screening of BE using the Cytosponge-TFF3 test.

2. The discussion of false negative and false positive results is helpful, but
more details on the implications of these errors would be beneficial. To
gain clinical acceptance, it is important to understand not only how well
the model performs but also how it arrives at its decisions, particularly
when the model fails. On the discovery test set, both the H&E model (with
rates of 27.3% for false negatives and 7.8% for false positives) and the
TFF3 model (with rates of 20.9% for false negatives and 3.5% for false
positives) showed relatively high error rates. While it is acknowledged
that these cases may pose challenges even for pathologists, these findings
appear to raise questions about the suitability of their weakly supervised
deep learning method for goblet cell identification. It seems to suggest that
conventional deep learning methods relying on pathologists’ annotations
might offer greater accuracy in this task. This is also underscored by the
observation that the authors’ weakly supervised deep learning model fre-
quently struggled to differentiate pseudo-goblet cells from true goblet cells.
Pseudo-goblet cells have distinct morphologic features that experienced
pathologists can readily discern from true goblet cells. It is reasonable to
speculate that adopting conventional deep learning methods would lead to
substantially reduced rates of false negative and false positive results.

Response:
We thank the reviewer for the detailed comment. We want to emphasize
that failure analysis is performed at default operating points (Methods:
Statistical analysis), where we analyze the failure cases of the models
in detail. We further discuss the clinical applicability of our proposed
approach by proposing two ML-assisted clinical workflows (Results, Dis-
cussion, Methods: Workflow analysis). We keep pathologists in the loop
in both workflows so that they could catch the model failures (Fig. 6). To
analyze these workflows, we select appropriate operating points of mod-
els to optimize specificity, in order to enable pathologists to review fewer
negative cases and focus on high-risk cases. Using these ML-assisted
clinical workflows, we demonstrate that we can achieve much lower
failure rates (0.0 for workflow 1, 0.09 for workflow 2), suggesting the
clinical applicability of the weakly supervised deep learning approach.
Specifically, the H&E-only false positives in our failure mode analysis
suggest the presence of pseudo-goblet cells. However, in the ML-assisted
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clinical workflows, these cases will be reviewed by pathologists (Fig. 6).
To address the reviewers’ comment, we have added more explanation in
Results, lines [507-510].
As we mentioned in point 1., we aim to demonstrate that weakly

supervised models trained on slide-level diagnostic labels (derived from
existing pathologists’ reports in our case) can lead to reasonable pre-
dictive performance and enable training on large-scale datasets, without
the requirement of pixel-level manual annotations for training, which are
costly to collect. This also means that future models could be trained con-
tinually in real-time as new diagnostic data is generated, plausibly leading
to further improvements in the performance of the trained models.

3. The manuscript briefly talks about improving data extraction from
pathologists’ diagnostic reports, but it does not delve into the mechanism
through which their model extracts relevant diagnostic information from
these reports. It appears that their weakly supervised deep learning model
relies on a certain degree of consistency in the reporting style of patholo-
gists to optimize its results. However, specific details regarding the error
rate associated with accurately extracting diagnostic labels from patholo-
gists’ reports are not provided. It is unclear whether their model actively
searches for specific diagnostic terms like ”intestinal metaplasia,” ”goblet
cell,” or ”Barrett’s esophagus” in the reports. A Cytosponge sample may
contain gastric-type columnar epithelium from the stomach with intesti-
nal metaplasia, which can be a source of potential confusion. Searching
for terms like ”intestinal metaplasia” without corroborating endoscopic
evidence of Barrett’s esophagus may also lead to false-positive results.
The current diagnostic criteria for Barrett’s esophagus require the exten-
sion of salmon-colored gastric-type mucosa into the tubular esophagus,
specifically at least 1 cm proximal to the gastroesophageal junction, with
biopsy confirmation of intestinal metaplasia.

Response:
Our models are trained with diagnostic labels that were extracted from
routine pathologists’ diagnostic reports. The labels were extracted man-
ually from reports, we have now added a brief explanation for the label
extraction from reports in Methods, lines [779-781].

4. The manuscript does a good job of highlighting the importance of large-
scale screening to increase the detection and monitoring of BE through
minimally invasive techniques like the Cytosponge. However, it would be
beneficial to discuss certain limitations of this approach prior to intro-
ducing their proposed deep learning model. For instance, the Cytosponge
collects a small amount of surface esophageal cells, potentially missing
deeper tissue which may contain intestinal metaplasia and/or dysplasia.
This method is also less comprehensive than traditional endoscopy, which
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allows direct visualization of the esophagus and targeted biopsies. In addi-
tion, despite being generally regarded as a more cost-effective alternative
to traditional endoscopy, there may still be cost considerations, as this test
usually entails additional expenses for TFF3 and p53 stains in addition
to H&E staining. Another major limitation of the existing data related
to the Cytosponge is that, while many of the trials have been conducted
at multiple centers, studies examining the sensitivity and specificity of
the Cytosponge in BE detection have typically involved the processing
and interpretation of samples at a single center. It is important to have
independent studies employing this device to confirm these results.

Response:

Thank you very much for the detailed comment. We agree that
there are certain limitations of the Cytosponge-TFF3 test. The perfor-
mance of our weakly supervised models is based on pathologists’ visual
assessment of these Cytosponge samples obtained with the Cytosponge-
TFF3 test which has been previously published, hence, the limitations
of the Cytosponge-TFF3 test would affect both the pathologist assess-
ment and ML models. Assessment of the limitations and effectiveness of
the Cytosponge-TFF3 test is beyond scope for this paper, as we focus
on weakly supervised deep learning models for detection of BE using
Cytosponge samples, using pathologist assessment as the gold standard.

5. The authors used two clinical trial datasets, but more information about
these datasets would be useful. Specifically, it would be helpful to know the
distribution of cases that are H&E-only positive, TFF3-only positive, and
cases that exhibit both H&E and TFF3 positivity for goblet cells. While
TFF3 immunohistochemistry has been shown to enhance the accuracy of
the Cytosponge test, it is generally considered unnecessary for goblet cell
identification by experienced pathologists. To enhance cost-effectiveness
and reduce the requirement for specialized stains, it could be advantageous
to restrict the use of TFF3 staining to cases where the results from H&E
staining are inconclusive.

Response:
We thank the reviewer for the comment. We are unable to provide the
distribution of cases which are H&E-only positive and TFF3-only posi-
tive because the pathologists assess both the H&E and TFF3 slides to
decide whether the case is BE positive or negative and provide a single
diagnostic label. We agree with the reviewer that we can enhance the
cost-effectiveness by reducing the requirement of TFF3 to cases where
the results from H&E staining are inconclusive. We have outlined ML-
assisted clinical workflows leading to TFF3 cost savings in Results, lines
[647-655], Methods: Workflow analysis, and Extended Data, Fig. 4 and
Table 6.
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6. The authors mention that their deep learning method generalizes well to
an external dataset derived from the multi-center BEST2 case-control
clinical trial study. However, it would be beneficial to provide more
information about the differences between the discovery and the exter-
nal datasets, including patient demographic, staining procedures, and
potential variations in slide quality. This is crucial considering that their
model achieved comparable but somewhat diminished performance on
the external dataset. The authors alluded to the possibility that different
staining protocols between the two datasets, leading to elevated levels of
stain blush and other non-specific darker staining, could be responsible
for false negative or positive results. This once again raises questions
regarding the appropriateness of their weakly supervised deep learning
method for goblet cell identification. It seems to imply that conventional
deep learning methods, which rely on annotations from pathologists, may
offer superior accuracy in this particular task.

Response:
We thank the reviewer for their suggestion. We have now provided more
detailed information about the differences in the discovery and external
datasets, including patient demographics in Supplementary Material,
Table 1. We have added slide montages of the discovery and external
datasets to demonstrate intra- and inter-dataset stain variation, in Fig
5a. We have now mentioned the differences in staining procedures in
Methods: Discovery and external evaluation datasets, lines [746-748],
[757-759]. In addition to Discussion section, lines [683-685], we have
now acknowledged the potential variations in slide quality between the
discovery and external datasets in Results, lines [524-527].
It is to be noted that the variation in staining among histopatho-

logical datasets is a well-recognized domain shift problem [8]. Several
machine learning algorithms are vulnerable to such shifts [9], includ-
ing the conventional deep learning methods. The performance of weakly
supervised models is encouraging on the external dataset, suggesting their
generalizability to out-of-domain dataset with stain variations.

7. The authors suggest that the implementation of their deep learning model
could alleviate the workload of pathologists. However, the current model
is limited to the identification of goblet cells exclusively, without consider-
ation for other pathologic features, such as inflammation, viral or fungal
infection, and dysplasia. The authors also note that pathologists spend
8-10 minutes on a complete visual inspection of a case. However, this is
because pathologists need to assess all pertinent histopathologic features,
not just goblet cells. If pathologists were solely tasked with identifying
goblet cells without evaluating other pathologic features, it would likely
be a more straightforward task, probably taking no more than 2 minutes.
To offer a more comprehensive perspective, the paper should delve deeper
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into the potential resource utilization implications, including the require-
ments for computational resources and technical infrastructure, which
may not be readily available.

Response:
We thank the reviewer for the comment. We agree that the pathologists
consider multiple histopathological features during the time spent on
a case, and it would take less time if the pathologists solely identified
goblet cells from Cytosponge samples. We have removed the mention of
pathologists spending 8-10 minutes per case as we realized that this time
can vary depending on pathologist’s skills and experience. Our weakly
supervised models trained using slide-level labels can learn from multiple
histopathological features in the slide in contrast to directly learning from
manual annotations (typically provided for goblet cells), where strongest
attention is observed for goblet cells. We have specified the computa-
tional resources and technical infrastructure that we used to train and
test the ML models in Methods: Model Description, lines [949-958] and
added the inference time for the given setup in Methods: Model Descrip-
tion, lines [959-960]. The inference time (test time) required to test a
slide with our computational setup is 4 seconds per slide, significantly
faster to the average time taken by pathologists. A full health economics
analysis including a more comprehensive perspective including potential
resource utilization implications is out of of scope for this paper, we have
included it as a future direction in Discussion, lines [716-720].

8. I do not think that Figure 5 is necessary, as it presents redundant infor-
mation already found in Figure 2.

Response:
We thank the reviewer for this suggestion. We have updated Fig. 5 to
represent the generalization capabilities of the proposed model quanti-
tatively (Fig. 5b) despite the intra- and inter-dataset stain variations
observed in slide montages that we now added in (Fig. 5a). We have
moved the qualitative assessment of model’s generalization to Extended
data Fig. 1. We have modified the figure caption to highlight this
difference between discovery and external datasets.

We thank reviewer 2 for their thorough assessment and valuable feedback.
We have now made improvements in our manuscript as stated in the point-to-
point response.
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

 

I thank the authors for their thoughtful responses and additional self-supervised experiments. I 

have 2 areas of remaining questions/comments: 

 

 

1) Self-supervised Learning 

 

- Pretraining on in-domain data (whole slide images) and performing worse is an unexpected 

result, 

depending on the pretraining setup. Some questions here: 

 

- SwinT transfomers need a lot of pretraining data to perform well, why did you only test the 

SwinT with self-supervised learning vs. ResNet50 (best performer here) or your other CNN 

architectures? Given the scale of data, the SwinT architecture would be the model I'd expect to be 

the least performant. 

 

- Was the SwinT encoder (A) pretrained from scratch on histopathology slides OR (B) was the 

same natural image pretrained encoder used for continued pretraining on histopathology slides 

(PAIP, TCGA)? In both of these settings the encoder would then be finetuned for the actual 

evalution task. If (A) was used, then the model would likely underperform, since it hasn't seen as 

much pretraining data and that data was less heterogenous. Continued pretraining on in-domain 

data usually leads to performance benefits, so if (B) was used, I'm somewhat surprised by the 

result, given the performance deltas outlined in Table 4. Regardless, I would make the author's 

experimental choice (A) or (B) clearer in the manuscript. 

 

2) Fully Supervised Baseline 

 

I recognize that comparison to a manually labeled, expert slide dataset isn't feasible for the 

authors (lines 532). However, in lieu of a direct comparison, I do think some assessment of the 

quality of the labels extracted from pathology notes would greatly strengthen the work. The 

authors state that TFF3 positivity was extracted manually (lines 780) from path notes, however 

this leaves a lot of questions on quality, specifically 

- Is extraction a trivial process and largely unambiguous? What is the degree of errors, if any, from 

the extraction process itself (inter-annotator agreement)? 

- Do these labels from notes agree with what a pathologist would verify by looking at only the 

image? 

 

Computing some scores around agreement/disagreement of labels generated from pathologists 

reports and those derived from manual review of pixel data for even a small validation set would 

go along way. 

 

3) Misc Questions 

- What was the natural image preatraining dataset used? 

 

If the authors could speak to the questions above, that would address my remaining concerns on 

the manuscript. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors fully addressed my concerns in this revision. I have no additional comments. 
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We would like to extend our sincere gratitude for the time and effort the
reviewers have dedicated to reviewing our paper. Their valuable feedback and
constructive criticism have been instrumental in enhancing the quality of our
work. We thank reviewer 2 for accepting our previous response and revised
manuscript. We have carefully considered reviewer 1’s remaining comments
and suggestions and have addressed them in a point-to-point response as the
following. New changes to the manuscript are marked in orange in this new
revision. Changes from the previous revision are kept in pink as before.

1 Reviewer 1

OVERVIEW
I thank the authors for their thoughtful responses and additional self-

supervised experiments. I have 2 areas of remaining questions/comments:
1) Self-supervised Learning

Pretraining on in-domain data (whole slide images) and performing worse is
an unexpected result, depending on the pretraining setup. Some questions here:

- SwinT transfomers need a lot of pretraining data to perform well, why did you
only test the SwinT with self-supervised learning vs. ResNet50 (best performer
here) or your other CNN architectures? Given the scale of data, the SwinT
architecture would be the model I’d expect to be the least performant.

We thank the reviewer for their comment. We would like to clarify that we did
not conduct any self-supervised learning (SSL) pretraining ourselves. Instead,
we utilized the publicly available model weights provided by [1]. The SwinT
in [1], also referred to as CTransPath, is an enhanced variant of SwinT with
integrated CNN layers for patching the input images into patch tokens. We
compare to SwinT as it is the closest model architecture in our established
benchmark of image encoders. Note that CTransPath was trained with 15

1
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million patches from TCGA and PAIP which is an appropriate data scale for
SwinT architecture. The downstream results reported in [1] demonstrate that
the image encoder performs well on a variety of H&E datasets and tasks even
surpassing ResNet50 pretrained with SSL (Table 5 in [1]). To the best of our
knowledge, there is no publicly available histopathology pretrained ResNet50
that we could leverage in this study as seamlessly as CTransPath. Morever,
CTransPath is relatively more recent and improves upon various previous work.

- Was the SwinT encoder (A) pretrained from scratch on histopathology slides
OR (B) was the same natural image pretrained encoder used for continued
pretraining on histopathology slides (PAIP, TCGA)? In both of these settings
the encoder would then be finetuned for the actual evalution task. If (A) was
used, then the model would likely underperform, since it hasn’t seen as much
pretraining data and that data was less heterogenous. Continued pretraining
on in-domain data usually leads to performance benefits, so if (B) was used,
I’m somewhat surprised by the result, given the performance deltas outlined in
Table 4. Regardless, I would make the author’s experimental choice (A) or (B)
clearer in the manuscript.

We can confirm that option (A) was used for CTransPath. The encoder was
pretrained from scratch on histopathology slides. All experimental details can
be found in the original manuscript and code [1]. As stated previously, we did
not perform the SSL pretraining ourselves, therefore the experimental choice
of (A) was decided by the authors of [1].

Additionally, we would like to clarify that we did not fine-tune the encoder
provided by [1] in the previous revision, and now renamed to CTransPath-
PT in Extended Data Table 4. We adopted a common approach, similar
to DeepSmile [2], where the image encoder is frozen and only the attention-
based aggregation module and the classifier are trained. We hypothesize that
due to the low prevalence of goblet cells, SSL fails to learn a good represen-
tation of these cells. We have now added an end-to-end finetuning experiment
(CTransPath-FT) to Extended Data Table 4 in order to adapt the encoder
to Cytosponge samples. We indeed find SSL to be helpful in this setting as
it improve upon the vanilla SwinT pretrained on ImageNet, however it is still
sub-optimal compared to our best performing model with ResNet50 encoder
initialized with ImageNet weights. We have now updated Table 4 with this
new experiment and clarified the experimental settings in the caption. Addi-
tionally, we describe those findings in more details in Method lines [977-999]
and also acknowledge SSL pretraining using publicly available H&E datasets
as a great follow up work in Discussion lines [705-711].

Finally, we would like to discuss our decision to not rely on SSL for pre-
training image encoders in our framework. As you pointed out, large quantities
of data are required to learn a meaningful representation using SSL. While
there are publicly available histopathology datasets of H&E stained whole
slides, we are not aware of a large dataset of TFF3 stained slides. Therefore,
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we are unable to use SSL to pretrain an image encoder for TFF3. Instead, we
decided to enable end-to-end fine-tuning of our pipeline for both stains. Since
we did not perform any SSL pretraining ourselves, adding the comparison to
an SSL pretrained ResNet50 is out of scope for this paper. We further empha-
size the limitations of SSL for TFF3 in Discussion lines [711-713] in addition
to Method lines [999-1001].

2) Fully Supervised Baseline
I recognize that comparison to a manually labeled, expert slide dataset isn’t
feasible for the authors (lines 532). However, in lieu of a direct comparison, I
do think some assessment of the quality of the labels extracted from pathology
notes would greatly strengthen the work. The authors state that TFF3 positiv-
ity was extracted manually (lines 780) from path notes, however this leaves
a lot of questions on quality, specifically - Is extraction a trivial process and
largely unambiguous? What is the degree of errors, if any, from the extraction
process itself (inter-annotator agreement)? - Do these labels from notes agree
with what a pathologist would verify by looking at only the image?
Computing some scores around agreement/disagreement of labels generated
from pathologists reports and those derived from manual review of pixel data
for even a small validation set would go along way.

Due to the centralised pathology performed on all capsule sponge slide sam-
ples, the labels were directly lifted from the pathology reports. Pathologists
report whether the case was TFF3 positive or negative, and cases that were
known to be from patients with Barrett’s were all listed as such when submit-
ted to the laboratory for testing. The manual extraction was simply parsing
the report text for the TFF3 description. In the majority of cases this was
simple and could be performed using simple string parsing scripts. Where
these scripts failed to extract the information an expert from the laboratory
read the report and identified the pathologists TFF3 reading. There were no
cases that were ambiguous and therefore required a pathologist to go back to
the slides to provide new labels, so all of the labels therefore directly agree
with the pathologist looking at the image.

3) Misc Questions - What was the natural image preatraining dataset used?

The natural image dataset is the ImageNet dataset [3], commonly used
for pretraining image encoders. We have now cited [3] in the manuscript,
where natural image pretrained encoders are mentioned (Methods: Model
Description, line 944 and 983).

If the authors could speak to the questions above, that would address my
remaining concerns on the manuscript.
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I thank the authors for their comments and clarifications. My only point of followup is in regard to 

their response to 2) Fully Supervised Baseline 

 

With weakly supervised labels, there are additional sources of potential error overlaid onto the 

label generation process vs. standard image annotation, where there the main error comes from 

the annotator observing pixels. In radiology there is a good overview of potential concerns outlined 

at https://laurenoakdenrayner.com/2019/02/25/half-a-million-x-rays-first-impressions-of-the-

stanford-and-mit-chest-x-ray-datasets/ which does a deep dive into Stanford's ChestXray14 which 

sourced weak labels for radiology reports. 

 

Some specific points relevant here (quoting from the above blog): 

"Labelling method: Labelled via natural language processing, which both has an error rate as a 

method, and an irreducible error due to the fact that reports don’t actually describe images very 

thoroughly. 

Labelling quality: Labels didn’t seem to match images very well, on the order of 30-90% error 

rates for the various classes." 

 

 

Here your automatic labeling method has some intrinsic performance error that requires manual 

annotation to fix. 

> "The manual extraction was simply parsing the report text for the TFF3 description. Where these 

scripts failed to extract the information an expert from the laboratory read the report and 

identified the pathologists TFF3 reading." 

You should report some quantitive performance measure here, even just a fraction of reports 

requiring manual review to fix. 

 

For the labeling quality, confirming that the pathologist report actually does match what is in the 

image is an additional check on quality, as there can be many practical reasons additional errors 

can happen here, e.g., original pathologist made an error in review, the pairing of report and 

image had errors, etc. Ideally these sources of error are measured and reported to characterize 

the weak labels. 

 

Now, it may be the case that the fundamental ambiguity of reviewing pathology slides is much 

lower than in radiology, combined with a relatively easy NLP extraction problem to find labels. 

That's find, I would just like to see some (minimal!) discussion/references/numbers to make the 

case for that point. 
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We would like to extend our sincere gratitude for the time and effort the
reviewers have dedicated to reviewing our paper. Their valuable feedback and
constructive criticism have been instrumental in enhancing the quality of our
work. We thank the editors for accepting our manuscript for publication. We
have carefully considered reviewer 1’s remaining comments and suggestions
and have addressed them in a point-to-point response as the following. We
have highlighted in bold the corresponding changes made to the manuscript.

1 Reviewer 1

I thank the authors for their comments and clarifications. My only point of
followup is in regard to their response to 2) Fully Supervised Baseline

With weakly supervised labels, there are additional sources of poten-
tial error overlaid onto the label generation process vs. standard image
annotation, where there the main error comes from the annotator
observing pixels. In radiology there is a good overview of poten-
tial concerns outlined at https://laurenoakdenrayner.com/2019/02/25/
half-a-million-x-rays-first-impressions-of-the-stanford-and-mit-chest-x-ray-datasets/
whichdoesadeepdiveintoStanford’sChestXray14whichsourcedweaklabelsforradiologyreports.

Some specific points relevant here (quoting from the above blog): ”Labelling
method: Labelled via natural language processing, which both has an error rate
as a method, and an irreducible error due to the fact that reports don’t actually
describe images very thoroughly. Labelling quality: Labels didn’t seem to match
images very well, on the order of 30-90% error rates for the various classes.”

Here your automatic labeling method has some intrinsic performance error
that requires manual annotation to fix. >”The manual extraction was simply
parsing the report text for the TFF3 description. Where these scripts failed
to extract the information an expert from the laboratory read the report and
identified the pathologists TFF3 reading.” You should report some quantitive
performance measure here, even just a fraction of reports requiring manual
review to fix.

1

 

https://laurenoakdenrayner.com/2019/02/25/half-a-million-x-rays-first-impressions-of-the-stanford-and-mit-chest-x-ray-datasets/ which does a deep dive into Stanford's ChestXray14 which sourced weak labels for radiology reports.
https://laurenoakdenrayner.com/2019/02/25/half-a-million-x-rays-first-impressions-of-the-stanford-and-mit-chest-x-ray-datasets/ which does a deep dive into Stanford's ChestXray14 which sourced weak labels for radiology reports.
https://laurenoakdenrayner.com/2019/02/25/half-a-million-x-rays-first-impressions-of-the-stanford-and-mit-chest-x-ray-datasets/ which does a deep dive into Stanford's ChestXray14 which sourced weak labels for radiology reports.
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For the labeling quality, confirming that the pathologist report actually does
match what is in the image is an additional check on quality, as there can
be many practical reasons additional errors can happen here, e.g., original
pathologist made an error in review, the pairing of report and image had errors,
etc. Ideally these sources of error are measured and reported to characterize
the weak labels.

Now, it may be the case that the fundamental ambiguity of reviewing pathol-
ogy slides is much lower than in radiology, combined with a relatively easy NLP
extraction problem to find labels. That’s find, I would just like to see some
(minimal!) discussion/references/numbers to make the case for that point.

We appreciate that there may be some mismatch in the terms used here
and apologize for the confusion. As the slide level labels are generated based
on a pathologist’s reading of the trefoil factor 3 (TFF3) stain in addition to
routine hematoxylin and eosin (H&E), the only errors were due to manual
transcription/extraction from the earliest reports where there was no standard-
ized reporting format. Even in this, only 10-15 of cases had to be rechecked
by a second reading of the reports. We have clarified this in the Discussion
section lines [758–768]: “Additionally, we observed occasional inconsis-
tencies in extraction of slide labels from pathologists’ reports during model
development. This was due to manual transcription errors made when reading
the pathologist reports and creating a summary table. Such errors (estimated
to be 10-15 slides) were found in the earliest cases where the report formats
were less standardized, making any automated extraction difficult. In standard
pathology reports this process could be improved using large language models
(e.g. GPT-4) to extract diagnostic information from unstructured text, how-
ever in this case standardizing the report format for pathologists due to the
singular use and nature of the sample would also ensure accurate automation
of label extraction.”

In regards to the pairing of image and report, these are medical diagnostic
images and reports rather than research datasets. There are multiple checks to
ensure that the digitized slides are associated with the correct patient record.
Regular audits of the systems are performed as per standards provided by the
Royal College of Pathologists. Finally, it is the case that there is less ambiguity
in IHC than in radiology due to the defined specificity of the stained antigens
and control tissues provided on each slide, the specific methods for analysis of
TFF3 stained goblet cells are provided in the Methods section lines [854–
856]: “Expert histopathologists scored the TFF3 slide in a binary fashion,
where a single TFF3 positive goblet cell is sufficient to classify the slide as
positive.” The general process with regards to ML workflows in pathology is
cited on line 854 as [1].
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