Supplementary Materials

Part 1 Feature Extraction Parameters

1. Image normalization

MR image patterns may differ between scanners and vendors. By normalizing the image before feature calculation, this confounding effect may be reduced. The normalization scale was 100 with bin width 5, voxel array shift: 300.

To address potential variations arising from the use of different MRI scanners, we implemented a preprocessing protocol for the ADC maps. This protocol included image normalization, a crucial step in reducing confounding effects that might skew the analysis. Specifically, normalization was used to adjust the intensity values across the images, bringing them to a common scale and thus enhancing the comparability of images obtained from different scanners.

2. Image types

In our study, we analyzed three distinct types of images:

Original images: These are the unprocessed, raw images acquired directly from the MR scans. The data served as the baseline data for analysis.

"LoG images": These images are generated by applying the Laplacian of Gaussian (LoG) filter to the original images. The LoG filter, known for enhancing regions of rapid intensity change, is applied at three different scales to capture a range of textural details: fine (σ =1.0), medium (σ =3.0), and coarse (σ =5.0). Consequently, three distinct sets of LoG images are produced, each corresponding to one of these scales.

"Wavelet images": To obtain these images, the original images underwent a three-dimensional wavelet transformation in the x, y, and z directions using the PyWavelet package. Each transformation involves filtering the image with either a high or low bandpass filter in each direction. This process results in eight unique combinations of high- and low-pass filtering, namely, LLH, LHL, HLL, LHH, HHL, HLH, HHH, and LLL, where 'H' denotes high-pass filtering and 'L' denotes low-pass filtering. Each combination represents a different wavelet-decomposed image, capturing various aspects of image texture and detail.

Finally, 3 types of images were used in this study: Original image (n = 1), LoG images (n = 3) and Wavelet images (n = 8).

3. Radiomics feature extraction

Following the generation of these image types, we standardized the ROI to ensure consistency in size across all images. We then proceeded with the extraction of a comprehensive set of features. There were 3 types of radiomics features used in this study: (1) shape-based features (n = 14); (2) first-order statistical features (n = 18); and (3) texture features (n = 24 Gray Level Cooccurrence Matrix (GLCM) +16 Gray Level Co-occurrence Matrix (GLRLM) +16 Gray Level Size Zone Matrix (GLSZM) +14 Gray Level Dependence Matrix (GLDM)).

The shape features were only extracted from the "Original Images", while the first-order statistical and textural features were extracted from all three types of images (Table 1). Therefore, 14 shape features, 216 ((1 Original Images + 3 LoG Images + 8 Wavelet Images) × 18) first-order statistical features and 840 (1 Original Images + 3 LoG Images + 8 Wavelet Images) × (24+16+16+14)) texture features were used in our study. We extracted all or some of these features from the region of interest (ROI) as needed.

Table 1 Radionne reatures used in this study					
Feature classification	Features names				
Shape Features (n=14)					
	Elongation				

Table 1 Radiomic features used in this study

Flatness Least Axis Length Major Axis Length Maximum 2D Diameter (Column) Maximum 2D Diameter (Row) Maximum 2D Diameter (Slice) Maximum 3D Diameter Mesh Volume Minor Axis Length Sphericity Surface Area Surface Volume Ratio Voxel Volume

First-order Statistical

Features (n=18)

10th Percentile 90th Percentile Energy Entropy Interquartile Range Kurtosis Maximum Mean Absolute Deviation Mean Median Minimum Robust Mean Absolute Deviation Root Mean Squared Skewness Total Energy Uniformity Variance

Texture Features

GLCM (n=24)

Autocorrelation **Cluster Prominence Cluster Shade Cluster Tendency** Contrast Correlation Difference Average **Difference** Entropy **Difference** Variance Inverse Difference (ID) Inverse Difference Moment (IDM) Inverse Difference Moment Normalized (IDMN) Inverse Difference Normalized (IDN) Informational Measure of Correlation (IMC) 1 Informational Measure of Correlation (IMC) 2 **Inverse Variance** Joint Average Joint Energy Joint Entropy

	Maximal Correlation Coefficient (MCC)
	Maximum Probability
	Sum Average
	Sum Entropy
	Sum of Squares
GLRLM (n=16)	
	Gray Level Non-Uniformity (GLN)
	Gray Level Non-Uniformity Normalized (GLNN)
	Gray Level Variance (GLV)
	High Gray Level Run Emphasis (HGLRE)
	Long Run Emphasis (LRE)
	Long Run High Gray Level Emphasis (LRHGLE)
	Long Run Low Gray Level Emphasis (LRLGLE)
	Low Gray Level Run Emphasis (LGLRE)
	Run Entropy (RE)
	Run Length Non-Uniformity (RLN)
	Run Length Non-Uniformity Normalized (RLNN)
	Run Percentage (RP)
	Run Variance (RV)
	Short Run Emphasis (SRE)
	Short Run High Gray Level Emphasis (SRHGLE)
	Short Run Low Gray Level Emphasis (SRLGLE)
GLSZM (n=16)	
	Gray Level Non-Uniformity (GLN)
	Gray Level Non-Uniformity Normalized (GLNN)
	Gray Level Variance (GLV)
	High Gray Level Zone Emphasis (HGLZE)

Large Area Emphasis (LAE) Large Area High Gray Level Emphasis (LAHGLE) Large Area Low Gray Level Emphasis (LALGLE) Low Gray Level Zone Emphasis (LGLZE) Size-Zone Non-Uniformity (SZN) Size-Zone Non-Uniformity Normalized (SZNN) Small Area Emphasis (SAE) Small Area High Gray Level Emphasis (SAHGLE) Small Area Low Gray Level Emphasis (SALGLE) Zone Entropy (ZE) Zone Percentage (ZP) Zone Variance (ZV)

GLDM) (n=14)

Dependence Entropy (DE) Dependence Non-Uniformity (DN) Dependence Non-Uniformity Normalized (DNN) Dependence Variance (DV) Gray Level Non-Uniformity (GLN) Gray Level Variance (GLV) High Gray Level Emphasis (HGLE) Large Dependence Emphasis (LDE) Large Dependence High Gray Level Emphasis (LDHGLE) Large Dependence Low Gray Level Emphasis (LDLGLE) Low Gray Level Emphasis (LGLE) Small Dependence Emphasis (SDE) Small Dependence High Gray Level Emphasis(SDHGLE)Small Dependence Low Gray Level Emphasis(SDLGLE)

GLCM: Gray Level Co-occurrence Matrix; GLRLM: Gray Level Co-occurrence Matrix; GLSZM: Gray Level Size Zone Matrix; GLDM: Gray Level Dependence Matrix.

The checklist from the radiomics reporting guidelines (<u>https://arxiv.org/pdf/1612.07003.pdf</u>) has been fully completed and included to facilitate a clear and comprehensive understanding of our methodology (Table 2).

Торіс	Item	Description	Details in this study
Patient			
Pagion of interact	1	Describe the region of	Prostate gland
Region of interest	1	interest that is being imaged.	Tiostate gland
		Describe specific instructions	
Detient anonenstica	2.	given to patients prior to	Not specific instructions given
Patient preparation	Za	image acquisition, e.g.	to patients.
		fasting prior to imaging.	
		Describe administration of	
	21	drugs to the patient prior to	
	20	image acquisition, e.g.	No administration of drugs.
		muscle relaxants.	
		Describe the use of specific	
		equipment for patient	F 1
		comfort during scanning, e.g.	Ear plugs
		ear plugs.	

Table 2 Checklist following the ISBI radiomics report guidelines

Radioactive tracer	DET		Describe which radioactive		
	SDECT	3a	tracer was administered to	NA	
	SILCI		the patient, e.g. 18F-FDG.	ř.	
	PET,	2h	Describe the administration	NA	
	SPECT	50	method.		
	DET		Describe the injected activity		
	SDECT	3c 3d	of the radioactive tracer at	NA	
	SFLUI		administration.		
	PET,		Describe the uptake time	NΛ	
	SPECT		prior to image acquisition.	INA	
	DET	3e	Describe how competing		
	FEI,		substance levels were	NA	
	SILCI		controlled.		
			Describe which contrast		
Contrast agent		4a	agent was administered to the	NA	
			patient.		
		Лh	Describe the administration	N۸	
		40	method.	INA	

	40	Describe the injected	NΔ
		quantity of contrast agent.	1 1 1 1
	44	Describe the uptake time	ΝΔ
	4 u	prior to image acquisition.	INA
		Describe how competing	
	4e	substance levels were	NA
		controlled.	
		Describe if the patients have	
Comorbidities	5	comorbidities that affect	NA
		imaging.	
Acquisition			
		Describe whether a standard	
A aquisition protocol	6	imaging protocol was used,	Table 1 describes the imaging
Acquisition protocol	0	and where its description	protocols.
		may be found.	
		Describe the scanner type(s)	Table 1 describes the second
Scanner type	7	and vendor(s) used in the	Table T describes the scanner
		study.	types.

Clearly, state the imaging Imaging modality modality that was used in the MRI 8 study, e.g. CT, MRI. State if the scans were static Static/dynamic scans 9a Static or dynamic. Dynamic Describe the acquisition time 9b NA per time frame. scans Describe any temporal Dynamic modelling technique that was NA 9c scans used. Describe how and when the Scanner calibration 10 NA scanner was calibrated. Describe specific instructions During the scanning process, given to the patient during the patient is instructed to Patient instructions 11 acquisition, e.g. breath remain still and breathe holding. steadily.

Anatomical motion correction		12	Describe the method used to minimise the effect of anatomical motion.	During the scanning process, the patient is instructed to remain still and breathe steadily.
Scan duration		13	Describe the duration of the complete scan or the time per bed position.	20-40 minutes
Tube voltage	СТ	14	Describe the peak kilo voltage output of the X-ray source.	NA
Tube current	СТ	15	Describe the tube current in mA. State if scanner time-of-flight	NA
Time-of-flight	PET	16	capabilities are used during acquisition.	NA
RF coil	MRI	17	Describe what kind RF coil used for acquisition, incl. vendor.	Body phased array coil

Seenning sequence	MDI	180	Describe which scanning	T1WI, T2WI, DWI, and
Scalling sequence	WIN	10a	sequence was acquired.	sometimes DCE
	MDI	1.01	Describe which sequence	No variant sequence was
	WINI	100	variant was acquired.	acquired.
			Describe which scan options	
			apply to the current	No specific options were
	MRI	18c	sequence, e.g. flow	applied
			compensation, cardiac	applied.
			gating.	
			Describe the time in ms	Table 1 describes the TD
Repetition time	MRI	19	between subsequent pulse	values
			sequences.	values.
Echo time	MRI	20	Describe the echo time in ms.	Table 1 describes the TE values.
			Describe the number of lines	
Echo train length	MRI	21	in k-space that are acquired	1 to 8
			per excitation pulse.	

			Describe the time in ms	
			between the middle of the	No inversion recovery sequence
Inversion time	MRI	22	inverting RF pulse to the	was used
			middle of the excitation	was used.
			pulse.	
	MDI	7 2	Describe the flip angle	00 dograag
Flip angle	MRI	23	produced by the RF pulses.	90 degrees
A aquisition trues	MDI	24	Describe the acquisition type	20
Acquisition type	WIKI		of the MRI scan, e.g. 3D.	2D
			Describe the acquisition	Echo planar acquisition
k-space traversal	MRI	25	trajactory of the k space	trajectory for DWI. Linear scan
			trajectory of the k-space.	acquisition trajectory for T2WI.
Number of overages/ ev			Describe the number of times	
citations	MRI	26	each point in k-space is	1
Citations			sampled.	
			Describe the nominal	Table 1 describes the magnetic
Magnetic field strength	MRI	27	strength of the MR magnetic	field strength
			field.	notu su ongui.

Reconstruction				
			Describe the distance	
Tu ulana maalatian		28	between pixels, or	Table 1 describes the in-plane
m-plane resolution		20	alternatively the field of view	resolution.
			and matrix size.	
Imaga aliaa thiaknaga		20	Describe the slice thickness	Table 1 describes the image
mage shee unekness		29	Describe the slice thickness.	slice thickness.
T 1' '		30	Describe the distance	Table 1 describes the image
mage since spacing			between image slices.	slice spacing.
			Describe the convolution	
Convolution kernel	CT	31a	kernel used to reconstruct the	NA
			image.	
			Describe settings pertaining	
	CT	31b	to iterative reconstruction	NA
			algorithms.	
			Describe the exposure (in	
Exposure	CT	31c	mAs) in slices containing the	NA
			region of interest.	

Describe which

Reconstruction method	PET	32a	reconstruction method was	NA
			used, e.g. 3D OSEM.	
			Describe the number of	
	PET	32b	iterations for iterative	NA
			reconstruction.	
			Describe the number of	
	PET	32c	subsets for iterative	NA
			reconstruction.	
			Describe if and how point-	
Point spread function modelling	PET	33	spread function modelling	NA
			was performed.	
			Describe if and how	
Image corrections	PET	34a	attenuation correction was	NA
			performed.	

	PET		Describe if and how other		
		34b	forms of correction were	NA	
			performed, e.g. scatter		
			correction, randoms		
			correction, dead time		
			correction etc.		
	MRI	35a	Describe the reconstruction	Inverse Fourier transform was	
Deconstruction method			method used to reconstruct	inverse Fourier transform was	
Reconstruction method			the image from the k-space	from the k space information	
			information.	from the k-space mormation.	
			Describe any artifact		
			suppression methods used	No specific artifact suppression	
	MRI	35b	during reconstruction to	methods used during	
			suppress artifacts due to	reconstruction.	
			undersampling of k-space.		
Diffusion weighted imaging	DWI-	26	Describe the b-values used	Table 1 describes the b values	
Diffusion-weighted imaging	MRI	50	for diffusion-weighting.	used for DWI.	
Image registration					

Describe the method used to Registration method register multi- modality NA 37 imaging. Image processing - data conversion Describe which standardised uptake value (SUV) SUV normalisation PET 38 NA normalisation method is used. Describe how apparent The ADC value for each voxel DWI-ADC computation 39 diffusion coefficient (ADC) was calculated by applying the MRI values were calculated. Stejskal-Tanner equation. Describe any other conversions that are Other data conversions 40 NA performed to generate e.g. perfusion maps.

Image processing - post-acquisition processing

			Describe the method used to	
Anti-aliasing		41	deal with anti-aliasing when down-sampling during	NA
			interpolation.	
Noise suppression		42	Describe methods used to	NΔ
Noise suppression		72	suppress image noise.	
Dost reconstruction smoothing			Describe the width of the	
Post-reconstruction smootning	PET	43	Gaussian filter (FWHM) to	NA
IIItel			spatially smooth intensities.	
Stall stringing	MRI	11	Describe method used to	NIA
Skun suipping	(brain)	44	perform skull stripping.	NA
				We scaled image intensities to a
				standard range (e.g., 1-100) and
Non-uniformity correction	MDI	45	settings used to perform non	aligned the median intensity
		43	uniformity correction	across all patients to ensure
			uniformity correction.	uniformity in signal
				representation.

Intensity normalisation	46	Describe the method and settings used to normalise intensity distributions within a patient or patient cohort.	We scaled image intensities to a standard range (e.g., 1-100) and aligned the median intensity across all patients to ensure uniformity in signal
Other post-acquisition processing methods	47	Describe any other methods that were used to process the image and are not mentioned separately in this list.	NA
Segmentation			
Segmentation method	48a	Describe how regions of interest were segmented, e.g. manually.	The ROI was segmented by a pre-trained AI model.
	48b	Describe the number of experts, their expertise and consensus strategies for manual delineation.	NA

	48c	Describe methods and settings used for semi- automatic and fully automatic segmentation.	The fully automatic segmentation model is described in reference 22.
	48d	Describe which image was used to define segmentation in case of multi-modality imaging.	NA
Conversion to mask	49	Describe the method used to convert polygonal or mesh- based segmentations to a voxel-based mask.	NA
Image processing - image interpolation			
Interpolation method	50a	Describe which interpolation algorithm was used to interpolate the image.	SitkBSpline algorithm was used to interpolate the image.

		Describe how the position of	Position of the interpolation
	50b	the interpolation grid was	grid was defined align by
		defined, e.g. align by center.	center.
	50c	Describe how the dimensions of the interpolation grid were defined, e.g. rounded to nearest integer.	Dimensions of the interpolation grid were defined rounded to nearest integer.
	50d	Describe how extrapolation beyond the original image was handled.	Padding, achieved by mirroring the edge values from the image, was used to extrapolate beyond the original image.
Voxel dimensions	51	Describe the size of the interpolated voxels.	The interpolated voxel size was 1 mm.
Intensity rounding CT	52	Describe how fractional Hounsfield Units are rounded to integer values after interpolation.	NA
		*	

Image processing - ROI interpolation

Describe which interpolation

Interpolation method	53	algorithm was used to	SitkBSpline algorithm was used
		interpolate the region of	to interpolate the ROI mask.
		interest mask.	
		Describe how partially	
Partially masked voxels	54	masked voxels after	NA
		interpolation are handled.	
Image processing - re-segmentation			
		Describe which methods and	
Re segmentation methods	55	settings are used to re-	NΛ
Re-segmentation methods	55	segment the ROI intensity	
		mask.	
Image processing - discretisation			
Discretisation method	56a		Fixed bin width, e.g., each bin
		Describe the method used to	represents an intensity range of
		discretise image intensities.	5 units, was used to discretise
			image intensities.

56b	Describe the number of bins (FBN) or the bin size (FBS) used for discretisation.	The number of bins used for discretisation was 20.
56c	Describe the lowest intensity in the first bin for FBS discretisation.	The lowest intensity in the first bin for FBS was 1.

Image processing - image transformation

In the method part, we described three types of images were analyzed: "Original Images" representing unfiltered images, "LoG Images" obtained Describe the methods and by applying the Laplacian of settings used to filter images, 57 Gaussian filter, and "Wavelet e.g. Laplacian-of-Gaussian. Images" generated through a three-dimensional wavelet transformation using the PyWavelet package in the x, y, and z directions.

Image filter

Image biomarker computation

Describe which set of image biomarkers is computed and Biomarker set 58 refer to their definitions or provide these. State if the software used to extract the set of image biomarkers is able to **IBSI** compliance 59 reproduce the IBSI feature reference values. Robustness 60

Age, total serum prostate specific antigen level (tPSA), clinical staging of the prostate cancer (cT), and ADC image features of the suspicious lesion in the prostate gland We used PyRadiomics, a Python package dedicated to radiomic feature extraction from medical imaging, to extract the ADC image features. It is designed to be able to reproduce the IBSI feature reference values.

Describe how robustness of the image biomarkers was assessed, e.g. test-retest analysis.

NA

Describe which software and

61 version was used to compute image biomarkers.

PyRadiomics v3.1.0
(https://github.com/AIMHarvard/pyradiomics) was used
to compute image biomarkers.

Image biomarker computation - texture parameters

Software availability

Texture matrix aggregation

Define how texture-matrix based biomarkers were computed from underlying texture matrices.

62

Texture-matrix based biomarkers were computed using various types of underlying texture matrices. The Gray Level Co-occurrence Matrix (GLCM) was used to assess pixel intensity correlations, the Gray Level Run Length Matrix (GLRLM) to analyze the length of consecutive runs of pixels with the same intensity, the Gray Level Size Zone Matrix (GLSZM) to evaluate the homogeneity of intensity areas, and the Gray Level Dependence Matrix (GLDM) to measure the dependence of pixel intensities

on neighboring pixels. From each of these matrices, specific biomarkers were extracted to quantify different aspects of the image texture.

Distance weighting	63	Define how CM, RLM, NGTDM and NGLDM weight distances, e.g. no weighting.	In the computation of the Co- occurrence Matrix (CM) and Run Length Matrix (RLM), no weighting is applied to distances.
CM symmetry	64	Define whether symmetric or asymmetric cooccurrence matrices were computed.	Symmetric cooccurrence matrices were computed.

CM distance

SZM linkage distance

Define the (Chebyshev)
distance at which cooccurrence of intensities is
determined, e.g. 1.
Define the distance and
distance norm for which
voxels with the same
intensity are considered to
belong to the same zone for
the purpose of constructing
an SZM, e.g. Chebyshev
distance of 1.

65

66

The Chebyshev distance used to determine the co-occurrence of intensities is set at 1.

In constructing a SZM, voxels with the same intensity are considered to belong to the same zone if they are within a Chebyshev distance of 1 from each other. DZM linkage distance

DZM zone distance norm

Define the distance and distance norm for which voxels with the same intensity are considered to belong to the same zone for the purpose of constructing a DZM, e.g. Chebyshev distance of 1.

Define the distance norm for

determining the distance of

zones to the border of the

ROI, e.g. Manhattan

distance.

68

For constructing a DZM, voxels with the same intensity are considered to belong to the same zone if they are within a Chebyshev distance of 1 from each other.

Manhattan distance, which calculates the sum of the absolute differences of the Cartesian coordinates, was used to determine the distance of zones to the border of the ROI. This method measures distance based on a grid-like path, akin to navigating city blocks

Define the neighbourhood distance and distance norm NGTDM distance 69 NA for the NGTDM, e.g. Chebyshev distance of 1. Define the neighbourhood distance and distance norm NGLDM distance 70 NA for the NGLDM, e.g. Chebyshev distance of 1. Define the coarseness NGLDM coarseness parameter for the NGLDM, NA 71 e.g. 0. Machine learning and radiomics analysis See the TRIPOD guidelines The performance of the model Diagnostic and prognostic for reporting on diagnostic was reported in accordance with 72 modelling and prognostic modelling. TRIPOD guidelines.

Comparison with known factors	73	Describe where performance of radiomics models is compared with known (clinical) factors.	curve demonstrated superiorperformance of the deep-radiomics model compared tothe conventional radiomicsmodel and the clinical modelacross all risk thresholds.
Multicollinearity	74	Describe where the multicollinearity between image biomarkers in the signature is assessed.	In the methods part, the Pearson correlation coefficient was used to deal with the multicollinearity.
Model availability	75	Describe where radiomics models with the necessary pre-processing information may be found.	In the methods part and the supplementary materials, we provided the pre-processing information.
Data availability	76	Describe where imaging data and relevant meta-data used in the study may be found.	The authors are not allowed to share the data publicly.

In the result part, the DCA

Part 2 Feature Selection

After feature extraction, several additional steps were performed for feature selection.

First, Z score normalization was applied to rescale the extracted features. This method utilizes the mean (μ) and standard deviation (σ) of the original data to standardize the data. The resulting data conform to a standard normal distribution, meaning that the mean is 0 and the standard deviation is 1. The transformation is applied using the formula $x^* = \frac{x-\mu}{\delta}$ (where μ is the mean of all sample data and σ is the standard deviation of all sample data).

Subsequently, Pearson correlation coefficients (PCCs) were calculated to identify highly correlated features. The PCC is used to measure the degree of linear correlation between two features. If the PCC value between two features exceeded 0.99, one of the features was removed at random. This step reduces the dimensionality of the feature set while retaining its original classification power.

Then, Analysis of Variance (ANOVA) was employed to select features for the radiomics model. The F-value for each feature was calculated to evaluate its relationship with the label. Features were ranked based on their corresponding Fvalues, and the top 20 features were selected for model building.

During the model building process, we tested and selected different numbers of features from the top 20 features to train the models. For instance, we started by selecting 1 feature and then 2 features, followed by 3 features, and so on, for up to 20 features. A corresponding model was trained for each different number of selected features. Among these models, we chose the one with the highest average AUC value during cross-validation as the final model. In this study, the final radiomics model included 4 features, while the final deep-radiomics model included 3 features.

Part 3 Internal Validation Methods

In our study, we employed an internal validation framework using 5-fold cross-validation to ensure the reliability and generalizability of our predictive models, both radiomic and deep-radiomics. This process involved several key steps:

1. Data partitioning: Initially, the training dataset was subdivided into five distinct subsets.

2. Sequential Model Training and Validation: For each fold in the 5-fold cross-validation, four subsets were combined to form the training data, and the remaining subset served as the validation data. This process was repeated five times, with each subset serving as the validation data exactly once. This approach ensures that every data point in the training set is used for both training and validation, thereby enhancing the model's robustness.

3. Performance Metrics Calculation: During each fold of the cross-validation, key performance metrics (AUC) were computed.

4. Model Selection and Optimization: After completing the 5-fold crossvalidation, we aggregated the performance metrics across all folds to obtain an overall performance profile for each model. The model exhibiting the highest AUC was selected as the optimal model.

5. Final Evaluation on the Test Set: The chosen model was then subjected to a final evaluation on the independent test set.

Part 4 Model building

The eXtreme gradient boosting (XGBoost) algorithm was employed as the classifier in this study (sklearn 0.24.1, Xgboost 1.4.1), with log loss as the loss function. The settings of the hyperparameters were as follows:

max_depth=None,

learning_rate=None,

n_estimators=100,

verbosity=None,

objective=None,

booster=None,

tree_method=None,

n_jobs=None,

gamma=None,

min_child_weight=None,

max_delta_step=None,

base_score=None,

random_state=None,

missing=np.nan,

num_parallel_tree=None,

monotone_constraints=None,

interaction_constraints=None,

importance_type="gain",

gpu_id=None,

validate_parameters=None.