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Supplementary Methods

Prize-collecting Steiner tree algorithm

To identify subnetworks in protein networks with physical and regulatory links, we used
prize-collecting Steiner forests, which are an extension of Steiner's network problem
(Hakimi, 1971). Let ¢ = (V,E) be a connected, undirected graph with non-negative
edge costs c(e) for each e € E. Considering a subset of nodes called terminals S c
V7, the goal of the classical Steiner problem in graphs is to find a subgraph connecting
all terminals with minimum weight. The nodes that are part of that subgraph in addition
to the terminals are called Steiner nodes. The prize-collecting Steiner tree (or forest)
problem is a generalization where a prize p(s) is given to each terminal s € S and a
dummy node r is added, which corresponds to the root node that is connected to all
terminals with a weight of w. The goal is to identify a subnetwork that minimizes the
weighted sum of the prizes of the not-included terminals and the costs of the included
edge. For implementation, the Forest tool from the Python package OmicsIntegrator 2
(Huang & Fraenkel, 2009) was used, which searches for a connected subgraph T =
(Vr,Er) of the modified graph G* = (VU {r}, E U {{r,s}:s € S}). The
corresponding objective function is:

P =b- ) pM+ Y (e

veVr e€EET

The parameter b € R* controls the relative weighting of the node prizes compared to
the edge costs. We used b = 2 for the experiments to ensure that in most cases all
prized proteins are included in the solution. c*(.) is a modified cost function that takes
the degree d, of a node x in G into account. For any edgee = {x,y} € E U

{{r, shs € S}:
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Where w, g € R* are tuning parameters. We used w = 2, such that it is at least twice
as expensive to include an edge from a terminal to the root node instead of connecting
the terminal directly to a node in G. This results in the solution to be a tree and not a
forest with multiple unconnected components after the root is removed. The parameter
g controls how strongly the edge costs are penalized depending on the node degrees.
In general, this adaptation leads to increased costs for nodes that have many edges,
which avoids network biases towards "hub nodes', which are highly studied proteins
interacting with many others that might not be specific to the biological question of
interest (Huang & Fraenkel, 2009). We used g = 0 such that this cost scaling is as
small as possible, which was shown in previous work (Belyaeva et al., 2021) to give
similar results as a setting without any cost-scaling, i.e., g = —oo.

Large Average Submatrix (LAS) algorithm

Due to the noise that corrupts Hi-C data matrices, a pixel-by-pixel comparison between
the young and old samples is not tractable to identify differences in intermingling
regions. Therefore, the LAS algorithm, a bi-clustering procedure which searches for



continuous submatrices U € R**! with a high average value 7 in a real-valued data
matrix X € R™ ", was used to call intermingling regions (Shabalin et al., 2009). LAS
is an iterative, heuristic algorithm that scores submatrices based on a trade-off
between matrix size and average value. The LAS algorithm was run for all
chromosome pairs of chromosomes 1-22 as described in (Belyaeva et al., 2017) with
a maximum allowed matrix size of 10 Mb x 10 Mb, i.e., 40 x 40 pixels in the Hi-C
maps with a resolution of 250 kb. The threshold was determined based on a p-value
of 1e-15 by using the distribution over all Hi-C entries of inter- and
intrachromosomal contacts separately (Supplementary Fig. 14B), thereby
controlling the FWER at approximately 1e-4. This resulted in a score threshold of 20
for the interchromosomal contact maps and a score threshold of 5 for the
intrachromosomal maps, where the LAS submatrix score is defined as vkr for a
submatrix of size k-by-k. Since the LAS algorithm is not guaranteed to find all
significant submatrices and it could happen that a submatrix is found in one sample,
but not in the other even though the submatrix score would be above the threshold
there too, for all LAS submatrices that were identified in at least one sample, we
calculated the corresponding score in all other samples. The results for the two
replicates per condition were combined by only keeping submatrices whose score
was higher than the threshold in both replicates.
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Supplementary Figure 1

A. Histogram of the number of individuals for each age in the RNA-seq data set
used in this work (see Methods). The distributions are shown for females (red)
and males (blue) separately.

B. Gene expression in males (x-axis) vs. females (y-axis) for age-associated DE
genes. For each age group, the log2 raw expression counts were averaged
across all female and male individuals in the group for each gene that is
differentially expressed in at least one age group transition. A fitted linear
regression line is shown in blue; the correlation coefficient R and the
corresponding p-value are reported for each age group.
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Supplementary Figure 2

A. Robustness of DE gene analysis in 100 subsamples containing a random
selection of 80% of the individuals per age group. For each subsample, the
genes that were differentially expressed between one age group and the next
older one (FDR adjusted p-value < 0.1) were determined. The percentage of
subsamples in which a gene is DE is shown on the y-axis. For each of the four
transitions between consecutive age groups, the x-axis contains all genes
identified as being DE in at least one of the simulations, sorted in decreasing
order of the percentage of subsampling simulations in which a gene occurred
as DE.

B. Histogram of the p-values obtained for all genes in a differential gene expression
analysis between each pair of consecutive age groups.

C. Thresholds to select 160-180 DE genes for each transition between consecutive
age groups. 3 types of thresholds were used and adapted for each of the
transitions to get approximately the same number of DE genes: (i) the selected
DE genes had to have an adjusted p-value lower than the defined threshold, (ii)
they had to be included in at least the given percentage of subsamples from A,
and (iii) they had to have a log2 fold change higher than the given threshold.

D. Gene Ontology analysis for the selected DE genes for each transition between
consecutive age groups. For the four groups of DE genes, the Enrichr gene set
'GO_Biological_Process_ 2021’ was used to obtain functional annotations. The
top 5 pathways with the lowest FDR-adjusted p-values (p-value < 0.05) are
shown.
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Supplementary Figure 3

A. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition
from Group 1 to Group 2. The RNA-seq expression is shown for all age groups
(Group 1 and Group 2 are boxed in black). The genes (x-axis) are ordered by
hierarchical clustering using Euclidean distance with complete linkage.

B. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition
from Group 2 to Group 3.

C. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition
from Group 3 to Group 4.

D. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition
from Group 4 to Group 5.
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Supplementary Figure 4

A. Histogram of the edge cost distribution in the processed protein-protein
interaction data retrieved from STRING (see Methods).

B. Histogram of the number of gene targets for the selected TFs retrieved from the
hTFtarget database (see Methods).
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Supplementary Figure 5

A. Histograms of the logarithmic mean FPKM gene expression for each age group
used to define gene activity thresholds. The threshold (red line, log(FPKM+1) >
0.8) to distinguish between inactive and active genes was set to exclude the
first mode. Genes expressed below this threshold were considered inactive,
while genes above this threshold were considered active. Only proteins
corresponding to active genes were used to construct the Steiner networks.

B. UpSet plot of the active genes in the 5 age groups. While most of the active
genes are active in all 5 age groups (11,467 genes), there are also more than
800 genes that change their activity during aging and thus are only active in
various subsets of the age groups.
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Supplementary Figure 6

Prize-collecting Steiner network S3 using the DE genes between Group 3 vs. Group 4
as source DE genes (orange nodes) and the DE genes between Group 4 vs. Group 5
as target DE genes (red nodes). In addition to the DE genes, the network also contains
bridge TFs (crosses) and other unprized nodes (Steiner nodes, colored in blue) that
help connect the source DE genes to the target DE genes. The nodes were sized
according to their prize, which is why the orange and red nodes are in general larger
than the blue, unprized nodes.
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Supplementary Figure 7

Five different design choices for the Steiner networks were tested and compared to
analyze the robustness of design choices. Design 2 is the one described in the main
text and used for all subsequent analyses. The only difference in Design 1 compared
to 2 is that TFs from the next older network are not prized additionally, but every
network is constructed independently. For Design 3-5, we also added protein-protein
interaction edges between the target DE genes (red nodes in Fig. 2A). In Design 4, not
only transcription factors, but also unprized nodes that were included in the next older
network as well as their protein-protein interactions with the differentially expressed
genes were added. Finally, in Design 5, these unprized nodes from the next older
network were not only included, but also prized with a minimum prize.
A. Intersections of the shared bridge TFs (occurring in all 3 networks) over the 5
design choices.
B. Intersections of the bridge TFs only occurring in Steiner network S1 over the 5
design choices.
C. Intersections of the bridge TFs only occurring in Steiner network S2 over the 5
design choices.
D. Intersections of the bridge TFs only occurring in Steiner network S3 over the 5
design choices.
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Supplementary Figure 8

A.

mo o

UpSet plot of Steiner nodes selected in the three Steiner networks (S1, S2, S3).
The first four groups are marked using specific colors since the functions of
these groups of genes are analyzed in B-E.

Gene Ontology Analysis of S1-specific Steiner nodes, using the gene set
'GO_Biological_Process_2021’. The top 5 pathways with lowest FDR-adjusted
p-values (p < 0.05) are reported.

Gene Ontology Analysis of S2-specific Steiner nodes.

Gene Ontology Analysis of S3-specific Steiner nodes.

Gene Ontology Analysis of Steiner nodes shared between S1, S2, and S3.
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Supplementary Figure 9

A. Scatterplot of bridge TFs in the Steiner network S1 based on the percentage of
genes targeted overall in the genome (x-axis) and the percentage of target DE
genes targeted (y-axis). The red line marks the identity function and the area
shaded in grey corresponds to the Bonferroni-adjusted 95% hypergeometric
confidence interval (see Methods).

B. Scatterplot of bridge TFs in the Steiner network S2.

C. Scatterplot of bridge TFs in the Steiner network S3.
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Supplementary Figure 10

A. RNA-seq expression of significant bridge TFs in the Steiner network S1
(identified in the analysis in Supplementary Figure 9) over the 5 age groups.
Each dot shows the variance-stabilized expression of one individual and the red
line marks the mean expression in each age group.

B. RNA-seq expression of significant bridge TFs in the Steiner network S3
(identified in the analysis in Supplementary Figure 9) over the 5 age groups.
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Supplementary Figure 11

Selected Hi-C matrices for the young and old cell states at multiple resolutions
(100 kb, 250 kb and 1 Mb). Hi-C contact values were preprocessed and
centerdized (see Methods). For visualization, the mean contact values over the
two replicates in the young and old replicates is shown for each resolution.
Black boxes in the 250kb resolution indicate significant submatrices with high
average values in both replicates that were selected by the Large Average Submatrix
(LAS) algorithm. To compare these submatrices between the young and old state,
intermingling difference maps for gene loci (excluding loci removed during
preprocessing) were created. They show which of the LAS submatrices only
occurred in young samples (blue), only in old samples (magenta) or in both
samples (grey).

A. Intrachromosomal Hi-C matrices of chromosome 17.
B. Interchromosomal Hi-C matrices of chromosomes 17 and 19.
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Supplementary Figure 12

Distance decay plots for all chromosomes in the young and old Hi-C
replicates displaying the expected Hi-C contact strength (y-axis) in pairs of
genomic loci at a given genomic distance (x-axis). Intrachromosomal Hi-C maps
were binned at the 250 kb resolution and balanced using the Knight-Ruiz algorithm.
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Supplementary Figure 13

A. Spearman correlation matrices of insulation score profiles of both young Hi-C
replicate maps and both old Hi-C replicate maps for all chromosomes. Insulation
scores were computed from the balanced Hi-C matrices (using the Knight-Ruiz
algorithm) binned at the 100 kb resolution, with a window size of 1 Mb.

B. Spearman correlation matrices of boundary score profiles of both young Hi-C
replicate maps and both old Hi-C replicate maps for all chromosomes. Boundary
score profiles were obtained by calling all minima from the insulation score
profiles in A.



A

1000 A

800

Number of 250kb loci

200 -

600 1

400 -

Number of loci per chromosome

1234567 8910111213141516171819202122

—
N

Chromosomes

Young

B (i) Interchromosomal contacts

Count

N w S % o ~ <]
o o o o o o o

Submatrix scores in replicate 2
=
o

r=0.85, p < 2e-308 J

IIIIII'IIIII-I

ANNSTINONOOO-ANM
A

I 4|0 6|0
Submatrix scores in replicate 1

Specific intermingling in Young

[ | Il En

| | | |

[ | [ |

I II
[ ] I.
LT
=

22 -

[ I I |
NON~NOONO
A A AN N

Chromosomes

B Top 10% chromosome pairs

Other chromosome pairs

80

(

120000 A

100000 4

80000 4

60000 -

40000

20000 A

sample
[ Young_B1R1
[ Young_B1R2
[ Old_B1R1
[ OId_B2R2

Processed non-zero Hi-C entries

Old

o
c
3
o

o

—_—

—

o =

S S
L

o ~
o o
L L

%
o
L

301

20 1

10 1

Submatrix scores in replicate 2

r=0.94, p < 2e-308
®

)

Y 4|0 6‘0
Submatrix scores in replicate 1

Specific intermingling in Old

HANMNFINONOOO-HNM
e

n
—

Chromosomes

Top 10% chromosome pairs
Other chromosome pairs

80

Chromosomes

Supplementary Figure 14

70000

60000 -

50000 4

40000 -

30000

20000 4

10000

(ii) Intrachromosomal contacts

80000 -

sample
Young_B1R1
Young_B1R2
Old_B1R1

—
—
—
1 Old_B2R2

Processed non-zero Hi-C entries

Difference map

N

-

17
18 -
19 -
20 -

|
21-
2- AR

HNMSINONOOIOANMS
A

Chromosomes

B Young-specific
B Old-specific
Shared

[ I A |
NONOONO
HeAH A AN N

22 -




Supplementary Figure 14

A. Distribution of the number of 250 kb loci per chromosome (excluding

B.

chromosomes X, Y, and M).

Distribution of z-scored non-zero interchromosomal contacts (B(i)) and
intrachromosomal contacts (B(ii)) over all chromosome pairs in the two young
and two old Hi-C replicates. Note that the histograms are not centered at 0
because z-scores are calculated over all Hi-C entries, but only the z-scores
corresponding to non-zero values are shown here.

Comparison of interchromosomal LAS scores between Hi-C replicates of the
same cell line. Since two replicates of Hi-C data from a young individual (10-
year-old) and from an old individual (75-year-old) were generated, the LAS
score of each submatrix in replicate 1 (x-axis) versus its score in replicate 2 (y-
axis) for the young individual (C(i)) and for the old individual (C(ii)) are shown.
The red lines mark the threshold of 20 that was used in the LAS algorithm (see
Methods). Only submatrices that were above the threshold in both replicates
were kept for downstream analyses. The correlation coefficient r, as well as the
p-value of the correlation test are shown.

Distribution of intermingling interactions per chromosome pair. For each
chromosome pair, the number of loci pairs that were part of a submatrix only in
young (D(i)) or only in old (D(ii)) was calculated and the top 10% chromosome
pairs with most cell-state-specific intermingling are marked in dark red. D(iii)
visualizes a comparison of the chromosome pairs with most young-specific and
old-specific intermingling, Chromosome pairs that were only part of the top 10%
in young are shown in blue, chromosome pairs only part of the top 10% in old
in magenta and chromosome pairs with many cell-type-specific intermingling
interactions in young and old in grey.
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Supplementary Figure 15

Intermingling difference maps for selected age-associated DE genes. Young-
specific LAS submatrices are colored in shades of blue and old-specific LAS
submatrices are shown in shades of magenta based on the difference of their
respective LAS scores (see Methods) between the young Hi-C replicates and the
old Hi-C replicates. The selected genes are sorted in ascending genomic order.
A. Upregulated genes in Group 1 with specific intermingling (upper left quadrant
of Figure 4A(ii)).
B. Downregulated genes in Group 1 with specific intermingling (upper left
quadrant of Figure 4B(ii)).
C. Upregulated genes in Group 5 with specific intermingling (upper left quadrant
of Figure 4C(ii)).
D. Downregulated genes in Group 5 with specific intermingling (upper left
quadrant of Figure 4D(ii)).
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Supplementary Figure 16

A. Histograms for the intermingling ratio in 1000 simulations creating intermingling
difference maps for 170 random genes (see Methods) used as null model. The
intermingling ratio of an intermingling difference map is defined as the number
of young-specific intermingling entries divided by the number of old-specific
intermingling entries. These distributions (blue) were compared to the ratios for
the intermingling maps in Figure 4 (red vertical line): DE genes upregulated in
Group 1 (A(i)), DE genes downregulated in Group 1 (A(ii)), DE genes
upregulated in Group 5 (A(iii)), and DE genes downregulated in Group 5 (A(iv)).

B. Bar plots quantifying the percentage of young- and old-specific intermingling
entries out of all intermingling interactions in the intermingling difference maps
for the upregulated DE genes in Group 1 (B(i)), downregulated DE genes in
Group 1 (B(ii)), upregulated DE genes in Group 5 (B(iii)) and downregulated DE
genes in Group 5 (B(iv)).
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Supplementary Figure 17

Comparison of the transcriptomics data in young (left panel) and old fibroblasts (right
panel) from the cell lines used in the Hi-C analysis (x-axis) and the data set from
Fleischer et al. which was used for the differential gene expression analysis in our work
(y-axis). For the Hi-C cell lines, we used the average TPM over two replicates (young:
GMO09503 and old: GM08401) and for the data from Fleischer et al., we used the
average TPM over Group 1 (young) and Group 5 (old). The average expression of
each gene (black dots) is visualized as the log(TPM +1)) transformation. The fitted
regression line is shown in red, and the correlation coefficient R and the p-value of the
correlation test were added to the two panels.
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Supplementary Figure 18

A. Distribution of the proportion of age-specific intermingling among non-DE genes
targeted by significant bridge TFs (green box) and non-significant bridge TFs
(grey box) from Steiner networks S1 (left) and S3 (right). Significant bridge TFs
correspond to the TFs in Fig. 2F.

B. Proportion of age-specific intermingling among DE genes targeted by significant
bridge TFs (green bar), DE genes targeted by non-significant bridge TFs (light
grey bar), and DE genes that are not targeted by any bridge TF (dark grey bair,
22 genes in S1 and 18 genes in S3) from Steiner networks S1 (left) and S3
(right). The green and light grey bars correspond to the median value of the
similarly colored boxplots in Fig. 5B.
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Supplementary Figure 19

A. Heatmap with hierarchical clustering of the significant bridge TFs (y-axis) in the
Steiner network S1 for multiple features (x-axis) using Euclidean metric and
complete linkage. The selected features are: (i) mean RNA-seq expression of
the TF over the 5 age groups, (ii) variance of its RNA-seq expression over the
five age groups, (iii) number of target genes in the genome, (iv) number of target
DE genes targeted by the TF, (v) Katz centrality of a TF in the Steiner network,
(vi) number of protein-protein interactions of the TF in the Steiner network, (vii)
p-value for the enrichment in DE gene targeting from the hypergeometric test of
Fig. 2F, (viii) proportion of intermingling interactions between the target DE
genes targeted by the TF that were only part of an LAS submatrix in young or
old Hi-C data, but not in both, and (ix) proportion of intermingling interactions
between the target DE genes targeted by a TF that were part of an LAS
submatrix in both young and old Hi-C data. Values were z-scored for each
feature and clipped to the [-2, 2] interval. Only features (iv) — (viii) were used for
clustering the TFs. The annotation bar on the left side of the heatmap marks
bridge TFs included in all three Steiner networks (S1, S2 and S3) in red.

B. Heatmap with hierarchical clustering of the significant bridge TFs (y-axis) in the
Steiner network S3.
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Supplementary Figure 20

Intermingling network for various bridge TFs with their upregulated DE targets in
Steiner network S1.
A. EP300 (low p-value for targeting DE genes and a high percentage of cell-state-
specific intermingling, see Fig. 5C1)
B. ERG (low p-value for targeting DE genes and a high percentage of cell-state-
specific intermingling, see Fig. 5C1)
C. LYL1 (among the highest percentage of cell-state-specific intermingling in the
heatmap of Fig. 5C1)
D. KAT5 (among the highest percentage of cell-state-specific intermingling in the
heatmap of Fig. 5C1)
ATF1 (negative example that is not enriched in DE targeting)
RELA (negative example that is not enriched in DE targeting)
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Supplementary Figure 21

Intermingling networks for various bridge TFs with their downregulated DE targets in
Steiner network S3.

A.
B.

C.
D

nm

E2F1 (among the lowest p-values for DE gene targeting and has a high
percentage of cell-state-specific intermingling)
KDM4C (among the lowest p-values for DE gene targeting and has a high
percentage of cell-state-specific intermingling)
TAF3 (among the lowest p-values for DE gene targeting and has a high
percentage of cell-state-specific intermingling)

. ELK1 (this TF is encoded on chromosome X and is therefore not included in its

intermingling network)

RUNX2 (highest percentage of intermingling between its DE targets in Fig. 5C2)
TRIM24 (negative example with no DE enrichment and no intermingling
changes)
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