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Supplementary Methods 

Prize-collecting Steiner tree algorithm 

To identify subnetworks in protein networks with physical and regulatory links, we used 
prize-collecting Steiner forests, which are an extension of Steiner's network problem 
(Hakimi, 1971). Let 𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) be a connected, undirected graph with non-negative 
edge costs 𝑐𝑐(𝑒𝑒) for each 𝑒𝑒 ∈  𝐸𝐸. Considering a subset of nodes called terminals 𝑆𝑆 ⊂
 𝑉𝑉, the goal of the classical Steiner problem in graphs is to find a subgraph connecting 
all terminals with minimum weight. The nodes that are part of that subgraph in addition 
to the terminals are called Steiner nodes. The prize-collecting Steiner tree (or forest) 
problem is a generalization where a prize 𝑝𝑝(𝑠𝑠) is given to each terminal 𝑠𝑠 ∈  𝑆𝑆 and a 
dummy node 𝑟𝑟 is added, which corresponds to the root node that is connected to all 
terminals with a weight of 𝑤𝑤. The goal is to identify a subnetwork that minimizes the 
weighted sum of the prizes of the not-included terminals and the costs of the included 
edge. For implementation, the Forest tool from the Python package OmicsIntegrator 2 
(Huang & Fraenkel, 2009) was used, which searches for a connected subgraph 𝑇𝑇 =
 (𝑉𝑉𝑇𝑇 ,𝐸𝐸𝑇𝑇  ) of the modified graph  𝐺𝐺∗ =  (𝑉𝑉 ∪  {𝑟𝑟}, 𝐸𝐸 ∪  {{𝑟𝑟, 𝑠𝑠} ∶ 𝑠𝑠 ∈  𝑆𝑆}). The 
corresponding objective function is: 

𝜓𝜓(𝑇𝑇) = 𝑏𝑏 ⋅ � 𝑝𝑝(𝑉𝑉)
𝑣𝑣 ∉𝑉𝑉𝑇𝑇

+ � 𝑐𝑐∗(𝑒𝑒)
𝑒𝑒 ∈ 𝐸𝐸𝑇𝑇

. 

The parameter 𝑏𝑏 ∈  ℝ∗ controls the relative weighting of the node prizes compared to 
the edge costs. We used 𝑏𝑏 =  2 for the experiments to ensure that in most cases all 
prized proteins are included in the solution. 𝑐𝑐∗(. ) is a modified cost function that takes 
the degree 𝑑𝑑𝑥𝑥 of a node 𝑥𝑥 in 𝐺𝐺 into account. For any edge 𝑒𝑒 =  {𝑥𝑥, 𝑦𝑦}  ∈  𝐸𝐸 ∪
 �{𝑟𝑟, 𝑠𝑠}: 𝑠𝑠 ∈ 𝑆𝑆�:  

𝑐𝑐∗(𝑒𝑒) =  �
𝑐𝑐(𝑒𝑒) +  

𝑑𝑑𝑥𝑥 ∗ 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 ∗ 𝑑𝑑𝑦𝑦 + (𝑁𝑁 − 𝑑𝑑𝑥𝑥 − 1)(𝑁𝑁 − 𝑑𝑑𝑦𝑦 − 1)

∗ 10𝑔𝑔      𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐸𝐸

𝑤𝑤      𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ �{𝑟𝑟, 𝑠𝑠} ∶ 𝑠𝑠 ∈ 𝑆𝑆�

Where 𝑤𝑤,𝑔𝑔 ∈  ℝ+  are tuning parameters. We used 𝑤𝑤 = 2, such that it is at least twice 
as expensive to include an edge from a terminal to the root node instead of connecting 
the terminal directly to a node in 𝐺𝐺. This results in the solution to be a tree and not a 
forest with multiple unconnected components after the root is removed. The parameter 
𝑔𝑔 controls how strongly the edge costs are penalized depending on the node degrees. 
In general, this adaptation leads to increased costs for nodes that have many edges, 
which avoids network biases towards `hub nodes', which are highly studied proteins 
interacting with many others that might not be specific to the biological question of 
interest (Huang & Fraenkel, 2009). We used 𝑔𝑔 =  0 such that this cost scaling is as 
small as possible, which was shown in previous work (Belyaeva et al., 2021) to give 
similar results as a setting without any cost-scaling, i.e., 𝑔𝑔 =  −∞.  

Large Average Submatrix (LAS) algorithm 

Due to the noise that corrupts Hi-C data matrices, a pixel-by-pixel comparison between 
the young and old samples is not tractable to identify differences in intermingling 
regions. Therefore, the LAS algorithm, a bi-clustering procedure which searches for 



continuous submatrices 𝑈𝑈 ∈ ℝ𝑘𝑘×𝑙𝑙 with a high average value 𝜏𝜏 in a real-valued data 
matrix 𝑋𝑋 ∈ ℝ𝑚𝑚×𝑛𝑛, was used to call intermingling regions (Shabalin et al., 2009). LAS 
is an iterative, heuristic algorithm that scores submatrices based on a trade-off 
between matrix size and average value. The LAS algorithm was run for all 
chromosome pairs of chromosomes 1-22 as described in (Belyaeva et al., 2017) with 
a maximum allowed matrix size of 10 Mb × 10 Mb, i.e., 40 × 40 pixels in the Hi-C 
maps with a resolution of 250 kb. The threshold was determined based on a p-value 
of 1e-15 by using the distribution over all Hi-C entries of inter- and 
intrachromosomal contacts separately (Supplementary Fig. 14B), thereby 
controlling the FWER at approximately 1e-4. This resulted in a score threshold of 20 
for the interchromosomal contact maps and a score threshold of 5 for the 
intrachromosomal maps, where the LAS submatrix score is defined as √k𝜏𝜏  for a 
submatrix of size k-by-k. Since the LAS algorithm is not guaranteed to find all 
significant submatrices and it could happen that a submatrix is found in one sample, 
but not in the other even though the submatrix score would be above the threshold 
there too, for all LAS submatrices that were identified in at least one sample, we 
calculated the corresponding score in all other samples. The results for the two 
replicates per condition were combined by only keeping submatrices whose score 
was higher than the threshold in both replicates. 
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Supplementary Figure 1 

A. Histogram of the number of individuals for each age in the RNA-seq data set 
used in this work (see Methods). The distributions are shown for females (red) 
and males (blue) separately.

B. Gene expression in males (x-axis) vs. females (y-axis) for age-associated DE 
genes. For each age group, the log2 raw expression counts were averaged 
across all female and male individuals in the group for each gene that is 
differentially expressed in at least one age group transition. A fitted linear 
regression line is shown in blue; the correlation coefficient R and the 
corresponding p-value are reported for each age group.
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Transition p-value threshold % subsamples threshold Log2-fold change 
threshold

Group 1 vs. 
Group 2 0.05 50 0.6

Group 2 vs. 
Group 3 0.1 25 0.4

Group 3 vs. 
Group 4 0.1 20 0.4

Group 4 vs. 
Group 5 1e-17 99 1.6



Supplementary Figure 2 
 

A. Robustness of DE gene analysis in 100 subsamples containing a random 
selection of 80% of the individuals per age group. For each subsample, the 
genes that were differentially expressed between one age group and the next 
older one (FDR adjusted p-value < 0.1) were determined. The percentage of 
subsamples in which a gene is DE is shown on the y-axis. For each of the four 
transitions between consecutive age groups, the x-axis contains all genes 
identified as being DE in at least one of the simulations, sorted in decreasing 
order of the percentage of subsampling simulations in which a gene occurred 
as DE. 

B. Histogram of the p-values obtained for all genes in a differential gene expression 
analysis between each pair of consecutive age groups. 

C. Thresholds to select 160-180 DE genes for each transition between consecutive 
age groups. 3 types of thresholds were used and adapted for each of the 
transitions to get approximately the same number of DE genes: (i) the selected 
DE genes had to have an adjusted p-value lower than the defined threshold, (ii) 
they had to be included in at least the given percentage of subsamples from A, 
and (iii) they had to have a log2 fold change higher than the given threshold. 

D. Gene Ontology analysis for the selected DE genes for each transition between 
consecutive age groups. For the four groups of DE genes, the Enrichr gene set 
'GO_Biological_Process_2021’ was used to obtain functional annotations. The 
top 5 pathways with the lowest FDR-adjusted p-values (p-value < 0.05) are 
shown. 
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Supplementary Figure 3 
 

A. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition 
from Group 1 to Group 2. The RNA-seq expression is shown for all age groups 
(Group 1 and Group 2 are boxed in black). The genes (x-axis) are ordered by 
hierarchical clustering using Euclidean distance with complete linkage. 

B. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition 
from Group 2 to Group 3. 

C. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition 
from Group 3 to Group 4. 

D. Heatmap of the z-scored RNA-seq expression of the DE genes in the transition 
from Group 4 to Group 5. 
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Supplementary Figure 4 
 

A. Histogram of the edge cost distribution in the processed protein-protein 
interaction data retrieved from STRING (see Methods). 

B. Histogram of the number of gene targets for the selected TFs retrieved from the 
hTFtarget database (see Methods). 
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Supplementary Figure 5 
 

A. Histograms of the logarithmic mean FPKM gene expression for each age group 
used to define gene activity thresholds. The threshold (red line, log(FPKM+1) > 
0.8) to distinguish between inactive and active genes was set to exclude the 
first mode. Genes expressed below this threshold were considered inactive, 
while genes above this threshold were considered active. Only proteins 
corresponding to active genes were used to construct the Steiner networks. 

B. UpSet plot of the active genes in the 5 age groups. While most of the active 
genes are active in all 5 age groups (11,467 genes), there are also more than 
800 genes that change their activity during aging and thus are only active in 
various subsets of the age groups. 
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Supplementary Figure 6 
 
Prize-collecting Steiner network S3 using the DE genes between Group 3 vs. Group 4 
as source DE genes (orange nodes) and the DE genes between Group 4 vs. Group 5 
as target DE genes (red nodes). In addition to the DE genes, the network also contains 
bridge TFs (crosses) and other unprized nodes (Steiner nodes, colored in blue) that 
help connect the source DE genes to the target DE genes. The nodes were sized 
according to their prize, which is why the orange and red nodes are in general larger 
than the blue, unprized nodes. 
 
  



Supplementary Figure 7
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Supplementary Figure 7 
 
Five different design choices for the Steiner networks were tested and compared to 
analyze the robustness of design choices. Design 2 is the one described in the main 
text and used for all subsequent analyses. The only difference in Design 1 compared 
to 2 is that TFs from the next older network are not prized additionally, but every 
network is constructed independently. For Design 3-5, we also added protein-protein 
interaction edges between the target DE genes (red nodes in Fig. 2A). In Design 4, not 
only transcription factors, but also unprized nodes that were included in the next older 
network as well as their protein-protein interactions with the differentially expressed 
genes were added. Finally, in Design 5, these unprized nodes from the next older 
network were not only included, but also prized with a minimum prize. 

A. Intersections of the shared bridge TFs (occurring in all 3 networks) over the 5 
design choices. 

B. Intersections of the bridge TFs only occurring in Steiner network S1 over the 5 
design choices. 

C. Intersections of the bridge TFs only occurring in Steiner network S2 over the 5 
design choices. 

D. Intersections of the bridge TFs only occurring in Steiner network S3 over the 5 
design choices. 
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Supplementary Figure 8 
 

A. UpSet plot of Steiner nodes selected in the three Steiner networks (S1, S2, S3). 
The first four groups are marked using specific colors since the functions of 
these groups of genes are analyzed in B-E. 

B. Gene Ontology Analysis of S1-specific Steiner nodes, using the gene set 
'GO_Biological_Process_2021’. The top 5 pathways with lowest FDR-adjusted 
p-values (p < 0.05) are reported. 

C. Gene Ontology Analysis of S2-specific Steiner nodes. 
D. Gene Ontology Analysis of S3-specific Steiner nodes. 
E. Gene Ontology Analysis of Steiner nodes shared between S1, S2, and S3. 
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Supplementary Figure 9 
 

A. Scatterplot of bridge TFs in the Steiner network S1 based on the percentage of 
genes targeted overall in the genome (x-axis) and the percentage of target DE 
genes targeted (y-axis). The red line marks the identity function and the area 
shaded in grey corresponds to the Bonferroni-adjusted 95% hypergeometric 
confidence interval (see Methods). 

B. Scatterplot of bridge TFs in the Steiner network S2. 
C. Scatterplot of bridge TFs in the Steiner network S3. 

 
  



A Bridge TFs in Steiner network S1

B Bridge TFs in Steiner network S3
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Supplementary Figure 10 
 

A. RNA-seq expression of significant bridge TFs in the Steiner network S1 
(identified in the analysis in Supplementary Figure 9) over the 5 age groups. 
Each dot shows the variance-stabilized expression of one individual and the red 
line marks the mean expression in each age group. 

B. RNA-seq expression of significant bridge TFs in the Steiner network S3 
(identified in the analysis in Supplementary Figure 9) over the 5 age groups. 
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Supplementary Figure 11 

Selected Hi-C matrices for the young and old cell states at multiple resolutions 
(100 kb, 250 kb and 1 Mb). Hi-C contact values were preprocessed and 
centerdized (see Methods). For visualization, the mean contact values over the 
two replicates in the young and old replicates is shown for each resolution. 
Black boxes in the 250kb resolution indicate significant submatrices with high 
average values in both replicates that were selected by the Large Average Submatrix 
(LAS) algorithm. To compare these submatrices between the young and old state, 
intermingling difference maps for gene loci (excluding loci removed during 
preprocessing) were created. They show which of the LAS submatrices only 
occurred in young samples (blue), only in old samples (magenta) or in both 
samples (grey). 

A. Intrachromosomal Hi-C matrices of chromosome 17.
B. Interchromosomal Hi-C matrices of chromosomes 17 and 19.



Supplementary Figure 12



Supplementary Figure 12 

Distance decay plots for all chromosomes in the young and old Hi-C 
replicates displaying the expected Hi-C contact strength (y-axis) in pairs of 
genomic loci at a given genomic distance (x-axis). Intrachromosomal Hi-C maps 
were binned at the 250 kb resolution and balanced using the Knight-Ruiz algorithm. 
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Supplementary Figure 13 

A. Spearman correlation matrices of insulation score profiles of both young Hi-C 
replicate maps and both old Hi-C replicate maps for all chromosomes. Insulation 
scores were computed from the balanced Hi-C matrices (using the Knight-Ruiz 
algorithm) binned at the 100 kb resolution, with a window size of 1 Mb.

B. Spearman correlation matrices of boundary score profiles of both young Hi-C 
replicate maps and both old Hi-C replicate maps for all chromosomes. Boundary 
score profiles were obtained by calling all minima from the insulation score 
profiles in A.
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Supplementary Figure 14 

A. Distribution of the number of 250 kb loci per chromosome (excluding 
chromosomes X, Y, and M).

B. Distribution of z-scored non-zero interchromosomal contacts (B(i)) and 
intrachromosomal contacts (B(ii)) over all chromosome pairs in the two young 
and two old Hi-C replicates. Note that the histograms are not centered at 0 
because z-scores are calculated over all Hi-C entries, but only the z-scores 
corresponding to non-zero values are shown here.

C. Comparison of interchromosomal LAS scores between Hi-C replicates of the 
same cell line. Since two replicates of Hi-C data from a young individual (10-
year-old) and from an old individual (75-year-old) were generated, the LAS 
score of each submatrix in replicate 1 (x-axis) versus its score in replicate 2 (y-
axis) for the young individual (C(i)) and for the old individual (C(ii)) are shown. 
The red lines mark the threshold of 20 that was used in the LAS algorithm (see 
Methods). Only submatrices that were above the threshold in both replicates 
were kept for downstream analyses. The correlation coefficient r, as well as the
p-value of the correlation test are shown.

D. Distribution of intermingling interactions per chromosome pair. For each 
chromosome pair, the number of loci pairs that were part of a submatrix only in 
young (D(i)) or only in old (D(ii)) was calculated and the top 10% chromosome 
pairs with most cell-state-specific intermingling are marked in dark red. D(iii) 
visualizes a comparison of the chromosome pairs with most young-specific and 
old-specific intermingling, Chromosome pairs that were only part of the top 10%
in young are shown in blue, chromosome pairs only part of the top 10% in old 
in magenta and chromosome pairs with many cell-type-specific intermingling 
interactions in young and old in grey.
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Supplementary Figure 15 

Intermingling difference maps for selected age-associated DE genes. Young-
specific LAS submatrices are colored in shades of blue and old-specific LAS 
submatrices are shown in shades of magenta based on the difference of their 
respective LAS scores (see Methods) between the young Hi-C replicates and the 
old Hi-C replicates. The selected genes are sorted in ascending genomic order. 

A. Upregulated genes in Group 1 with specific intermingling (upper left quadrant 
of Figure 4A(ii)).

B. Downregulated genes in Group 1 with specific intermingling (upper left 
quadrant of Figure 4B(ii)).

C. Upregulated genes in Group 5 with specific intermingling (upper left quadrant 
of Figure 4C(ii)).

D. Downregulated genes in Group 5 with specific intermingling (upper left 
quadrant of Figure 4D(ii)).
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Supplementary Figure 16 

A. Histograms for the intermingling ratio in 1000 simulations creating intermingling 
difference maps for 170 random genes (see Methods) used as null model. The 
intermingling ratio of an intermingling difference map is defined as the number 
of young-specific intermingling entries divided by the number of old-specific 
intermingling entries. These distributions (blue) were compared to the ratios for 
the intermingling maps in Figure 4 (red vertical line): DE genes upregulated in 
Group 1 (A(i)), DE genes downregulated in Group 1 (A(ii)), DE genes 
upregulated in Group 5 (A(iii)), and DE genes downregulated in Group 5 (A(iv)).

B. Bar plots quantifying the percentage of young- and old-specific intermingling 
entries out of all intermingling interactions in the intermingling difference maps 
for the upregulated DE genes in Group 1 (B(i)), downregulated DE genes in 
Group 1 (B(ii)), upregulated DE genes in Group 5 (B(iii)) and downregulated DE 
genes in Group 5 (B(iv)).



Supplementary Figure 17



Supplementary Figure 17 

Comparison of the transcriptomics data in young (left panel) and old fibroblasts (right 
panel) from the cell lines used in the Hi-C analysis (x-axis) and the data set from 
Fleischer et al. which was used for the differential gene expression analysis in our work 
(y-axis). For the Hi-C cell lines, we used the average TPM over two replicates (young: 
GM09503 and old: GM08401) and for the data from Fleischer et al., we used the 
average TPM over Group 1 (young) and Group 5 (old). The average expression of 
each gene (black dots) is visualized as the log(TPM +1)) transformation. The fitted 
regression line is shown in red, and the correlation coefficient R and the p-value of the 
correlation test were added to the two panels.  



n.s. n.s.
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Supplementary Figure 18 

A. Distribution of the proportion of age-specific intermingling among non-DE genes 
targeted by significant bridge TFs (green box) and non-significant bridge TFs 
(grey box) from Steiner networks S1 (left) and S3 (right). Significant bridge TFs 
correspond to the TFs in Fig. 2F.

B. Proportion of age-specific intermingling among DE genes targeted by significant 
bridge TFs (green bar), DE genes targeted by non-significant bridge TFs (light 
grey bar), and DE genes that are not targeted by any bridge TF (dark grey bar, 
22 genes in S1 and 18 genes in S3) from Steiner networks S1 (left) and S3 
(right). The green and light grey bars correspond to the median value of the 
similarly colored boxplots in Fig. 5B.
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Supplementary Figure 19 

A. Heatmap with hierarchical clustering of the significant bridge TFs (y-axis) in the
Steiner network S1 for multiple features (x-axis) using Euclidean metric and
complete linkage. The selected features are: (i) mean RNA-seq expression of
the TF over the 5 age groups, (ii) variance of its RNA-seq expression over the
five age groups, (iii) number of target genes in the genome, (iv) number of target
DE genes targeted by the TF, (v) Katz centrality of a TF in the Steiner network,
(vi) number of protein-protein interactions of the TF in the Steiner network, (vii)
p-value for the enrichment in DE gene targeting from the hypergeometric test of
Fig. 2F, (viii) proportion of intermingling interactions between the target DE
genes targeted by the TF that were only part of an LAS submatrix in young or
old Hi-C data, but not in both, and (ix) proportion of intermingling interactions
between the target DE genes targeted by a TF that were part of an LAS
submatrix in both young and old Hi-C data. Values were z-scored for each
feature and clipped to the [-2, 2] interval. Only features (iv) – (viii) were used for
clustering the TFs. The annotation bar on the left side of the heatmap marks
bridge TFs included in all three Steiner networks (S1, S2 and S3) in red.

B. Heatmap with hierarchical clustering of the significant bridge TFs (y-axis) in the
Steiner network S3.
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Supplementary Figure 20 

Intermingling network for various bridge TFs with their upregulated DE targets in 
Steiner network S1. 

A. EP300 (low p-value for targeting DE genes and a high percentage of cell-state-
specific intermingling, see Fig. 5C1)

B. ERG (low p-value for targeting DE genes and a high percentage of cell-state-
specific intermingling, see Fig. 5C1)

C. LYL1 (among the highest percentage of cell-state-specific intermingling in the
heatmap of Fig. 5C1)

D. KAT5 (among the highest percentage of cell-state-specific intermingling in the
heatmap of Fig. 5C1)

E. ATF1 (negative example that is not enriched in DE targeting)
F. RELA (negative example that is not enriched in DE targeting)



A E2F1 from Steiner network S3 B KDM4C from Steiner network S3

C TAF3 from Steiner network S3 D ELK1* from Steiner network S3

E RUNX2 from Steiner network S3 F TRIM24 from Steiner network S3

Supplementary Figure 21
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Supplementary Figure 21 

Intermingling networks for various bridge TFs with their downregulated DE targets in 
Steiner network S3. 

A. E2F1 (among the lowest p-values for DE gene targeting and has a high
percentage of cell-state-specific intermingling)

B. KDM4C (among the lowest p-values for DE gene targeting and has a high
percentage of cell-state-specific intermingling)

C. TAF3 (among the lowest p-values for DE gene targeting and has a high
percentage of cell-state-specific intermingling)

D. ELK1 (this TF is encoded on chromosome X and is therefore not included in its
intermingling network)

E. RUNX2 (highest percentage of intermingling between its DE targets in Fig. 5C2)
F. TRIM24 (negative example with no DE enrichment and no intermingling

changes)
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