A Notes on ICD Code Preprocessing

In CAML's preprocessing pipeline, there are two errors. Firstly, when they load the DIAGNOSES_ICD and PROCEDURES_ICD tables into Pandas dataframes, the ICD codes are loaded without specifying a data type, dtype in the pd.read_csv() method, resulting in the loss of some of leading zeros (e.g. $0040 \rightarrow 40$). This affects more than 190 codes out of 8930 in MIMIC-III. Also, when they store the converted ICD codes (with period) into a file and re-read it, data type is not specified, resulting in that some of the codes are converted as floating number and lose leading and trailing zeros. This also affects many ICD codes. For example, a major top-50 ICD code, 93.90 is not selected.

Secondly, MIMIC-III has duplicate ICD codes in the DIAGNOSES_ICD and PROCEDURES_ICD table, i.e., an ICD code can be repeated in one admission⁷. While preprocessing, CAML's code does not remove such duplicate codes, and as a result of this, some ICD codes were selected as top-50 incorrectly.

As a result, CAML's MIMIC-III full dataset has 8922 labels, while our correctly fixed dataset has 8930 labels. Moreover, our MIMIC-III top-50 dataset has ICD codes 93.90, V45.82, and CAML's dataset has 33.24, 45.13 instead.

Table 4 lists the ICD codes in CAML's, our, and TransICD's MIMIC-III top-50 datasets. TransICD (Biswas et al., 2021) corrected the first mentioned error, i.e., loading ICD codes incorrectly, but counts duplicate ICD codes when choosing top-50 codes, resulting in another incorrect set of top-50 codes.

B Sample Configuration File

Figure 4 shows the YAML config files for preprocessing our MIMIC-III full dataset, to show the configurable pipeline of AnEMIC. Users can create their own ICD coding datasets with, for example, different top-k or word stemmer, by customizing options in the config file. Also, for more customized behavior, users can implement submodules of the pipeline – for example, tokenizer and embedding trainer, and register in the ConfigMapper to be used in the config file.

C Reproduction Results on the CAML's Dataset

In this section, we describe the reproduction experiments and explain the results. To ensure that our framework correctly re-implemented the old, CAML version of the datasets and the key models, we trained the models on the old datasets and compared the results with the ones reported in the papers. As in the benchmark experiments, for each configuration, we ran experiments three times and computed the mean and the standard deviation. To make a fair comparison between the models, we created three sets of the old datasets and used each of them for each run of model training. Effectively, the runs will have different weight initialization, including the embedding matrix.

The results are shown in Table 5 and 6. Overall, our reproduction shows similar performance as reported in the papers and preserves the relative order

 $^{^{7}\}mbox{For example, ICD code 33.24}$ appears 11 times in the admission with HADM_ID=193989.

No.	CAML	TransICD	AnEMIC		
12345678901123456789012222222222233333335678901223444444444490	401.9 20053 38.93 14444 428.0 12842 427.31 12594 414.01 12179 96.04 9932 96.6 9161 584.9 8907 250.00 8784 96.71 8619 272.4 8504 518.81 7249 99.04 7147 39.61 6809 599.0 6442 530.81 6156 96.72 5926 272.0 5766 285.9 5296 88.56 5240 244.9 4788 486 4733 38.91 4575 285.1 4499 36.15 4390 276.2 4358 496 4296 99.15 4172 995.92 3792 V58.61 3698 507.0 3592 038.9 3580 88.72 3500 585.9 3367 403.90 3350 311 3347 305.1 3272 37.22 3248 410.71 3001 37.23 2659 V45.81 2943 424.0 2878 45.13 2849 V15.82 2741 511.9 2693 37.23 2659	$\begin{array}{c} 401.9\ 20053\\ 38.93\ 14444\\ 428.0\ 12842\\ 427.31\ 12594\\ 414.01\ 12179\\ 96.04\ 9932\\ 96.6\ 9161\\ 584.9\ 8907\\ 250.00\ 8784\\ 96.71\ 8619\\ 272.4\ 8504\\ 518.81\ 7249\\ 99.04\ 7147\\ 39.61\ 6809\\ 599.0\ 6442\\ 530.81\ 6156\\ 96.72\ 5926\\ 272.0\ 5766\\ 285.9\ 5296\\ 88.56\ 5240\\ 244.9\ 4788\\ 486\ 4733\\ 38.91\ 4575\\ 285.1\ 4499\\ 36.15\ 4390\\ 276.2\ 4358\\ 496\ 4296\\ 99.15\ 4172\\ 995.92\ 3792\\ V58.61\ 3698\\ 507.0\ 3592\\ 038.9\ 3580\\ 85.9\ 3367\\ 403.90\ 3350\\ 311\ 3347\\ 305.1\ 3272\\ 37.22\ 3248\\ 39.95\ 3178\\ 287.5\ 3002\\ 410.71\ 3001\\ 276.1\ 2985\\ V45.81\ 2943\\ 424.0\ 2878\\ 45.13\ 2849\\ V15.82\ 2741\\ 511.9\ 2693\\ 9.90\ 2663\\ 37\ 20\ 2663\\ 37\ 20\ 20\ 20\ 20\ 20\ 20\ 20\ 20\ 20\ 20$	$\begin{array}{c} 401.9\ 20046\\ 38.93\ 12866\\ 428.0\ 12842\\ 427.31\ 12589\\ 414.01\ 12178\\ 96.04\ 9493\\ 96.6\ 9102\\ 584.9\ 8906\\ 250.00\ 8783\\ 272.4\ 8503\\ 96.71\ 8426\\ 518.81\ 7249\\ 99.04\ 7102\\ 39.61\ 6781\\ 599.0\ 6442\\ 530.81\ 6154\\ 96.72\ 5815\\ 272.0\ 5766\\ 285.9\ 5295\\ 88.56\ 5045\\ 244.9\ 4785\\ 486\ 4732\\ 285.1\ 4499\\ 38.91\ 4449\\ 36.15\ 4387\\ 276.2\ 4358\\ 496\ 4296\\ 99.15\ 4162\\ 995.92\ 3792\\ V58.61\ 3697\\ 507.0\ 3592\\ 038.9\ 3580\\ 311\ 3347\\ 88.72\ 3305\\ 305.1\ 3272\\ 412\ 3203\\ 37.22\ 3147\\ 39.95\ 3133\\ 287.5\ 3002\\ 410.71\ 3001\\ 276.1\ 2985\\ V45.82\ 2741\\ 511.9\ 2693\\ 93.90\ 2656\\ V45.82\ 2651\\ 37.23\ 2619\\ 23.24\ 2651\\ 37.24\ 2651\ 37.24\ 2651\\ 37.24\ 2651\ 37.24\ 2651\ 37.24\ 2651\ 37.24\ 2651\ 37$		
51 52 53 55 55 57 59 61	v45.82 2651 403.91 2566 V29.0 2529 424.1 2517 785.52 2501 V58.67 2497 427.89 2396 327.23 2328 997.1 2313 99.55 2304 93.9 2233	37.23 2659 V45.82 2651 403.91 2566 V29.0 2529 424.1 2517 785.52 2501 V58.67 2497 427.89 2396 327.23 2328 997.1 2313 99.55 2304	33.24 2607 403.91 2566 45.13 2552 V29.0 2529 424.1 2517 785.52 2501 V58.67 2497 427.89 2396 327.23 2328 997.1 2313 99.55 2275		

static_dir: *static_dir
save_dir: *dataset_dir 13 14 15 diagnosis_code_csv_name: DIAGNOSES_ICD.csv.gz procedure_code_csv_name: PROCEDURES_ICD.csv.gz noteevents csv name: NOTEEVENTS.csv.gz 16 17 train_json_name: train.json # will be saved 18 19 val ison name: val.ison # will be saved test_json_name: test.json # will be saved 20 21 22 label_json_name: labels.json # will be computed and saved label_freq_json_name: null dataset metadata: column_names: subject_id: SUBJECT_ID 23 24 25 26 27 28 hadm id: HADM ID chartdate: CHARTDATE charttime: CHARTTIME storetime: STORETIME category: CATEGORY 29 30 31 description: DESCRIPTION cgid: CGID 32 33 iserror: ISERROR text: TEXT icd9 code: ICD9 CODE 34 35 36 37 labels: LABELS dataset_splitting_method: name: caml_official_split params: 38 39 40 hadms. hadm_dir: *static_dir train_hadm_ids_name: train_full_split.json 41 42 val_hadm_ids_name: val_full_split.json test_hadm_ids_name: test_full_split.json clinical note preprocessing: 43 44 45 46 47 to_lower: perform: true remove_punctuation: perform: true remove_numeric: perform: true 48 49 50 51 52 53 replace numerics with letter: null remove_stopwords: perform: true params: stopwords file path: null 54 55 57 58 59 60 remove_common_medical_terms: true
stem_or_lemmatize: perform: true params: stemmer name: nltk.WordNetLemmatizer truncate: perform: false 61 62 incorrect_code_loading: false 63 64 65 count_duplicate_codes: false code_preprocessing: # enter 0 for all codes top_k: 0 code_type: both
add_period_in_correct_pos: 66 67 perform: true 68 69 70 71 72 73 74 75 76 77 78 train_embed_with_all_split: false tokenizer: name: spacetokenizer params: null

mimic_dir: &mimic_dir datasets/mimic3/csv static_dir: &static_dir datasets/mimic3/static dataset_dir: &dataset_dir datasets/mimic3_full word2vec_dir: &word2vec_dir datasets/mimic3_full/word2vec

name: mimic_iii_preprocessing_pipeline

mimic_dir: *mimic_dir

paths:

preprocessing:

params: paths:

10

11 12

Table 4: Top-61 frequency ICD codes from differently processed datasets. The frequency of each code to select the top-50 labels is shown next to each code. Note the frequencies of ICD codes are affected by preprocessing method and error. The top-50 ICD codes that are not contained in all three top-50 sets are marked in bold.

of performance among the models, illustrating that our code can be used in the research of automatic ICD coding.

Despite the effort of re-implementing the ex-

Figure 4: The YAML config file for preprocessing the MIMIC-III full dataset.

embedding_dir: *word2vec_dir pad_token: "<pad>"
unk_token: "<unk>" word2vec_params:

vector_size: 100 min_count: 3

epochs: 5

embedding: name: word2vec params:

79 80

81 82

isting datasets and key models, there is a minor difference from the CAML's preprocessing, specifically in training vocabulary and embeddings, that may affect the results. In our preprocessing, the vocabulary and embeddings are trained together from Gensim's word2vec training, which means

Model		Macro AUC	Micro AUC	Macro F1	Micro F1	P@8	P@15
CNN	Repr Orig	0.833±0.003 0.806	$\begin{array}{c} 0.974 {\pm} 0.000 \\ 0.969 \end{array}$	$ \begin{vmatrix} 0.027 \pm 0.005 \\ 0.042 \end{vmatrix} $	$\begin{array}{c} 0.419 {\pm} 0.006 \\ 0.419 \end{array}$	$ \begin{vmatrix} 0.612 \pm 0.004 \\ 0.581 \end{vmatrix} $	$\begin{array}{c} 0.467 {\pm} 0.001 \\ 0.443 \end{array}$
CAML	Repr Orig	$\begin{array}{c c} 0.880 {\pm} 0.003 \\ 0.895 \end{array}$	$0.983 {\pm} 0.000$ 0.986	$ \begin{vmatrix} 0.057 \pm 0.000 \\ 0.088 \end{vmatrix} $	$\begin{array}{c} 0.502{\pm}0.002\\ 0.539\end{array}$	$\begin{array}{c} 0.698 {\pm} 0.002 \\ 0.709 \end{array}$	$\begin{array}{c} 0.548 {\pm} 0.001 \\ 0.561 \end{array}$
MultiResCNN	Repr Orig	$\begin{array}{c c} 0.905 {\pm} 0.003 \\ 0.910 {\pm} 0.002 \end{array}$	$\begin{array}{c} 0.986 {\pm} 0.000 \\ 0.986 {\pm} 0.001 \end{array}$	$ \begin{vmatrix} 0.076 \pm 0.002 \\ 0.085 \pm 0.007 \end{vmatrix} $	$\begin{array}{c} 0.551{\pm}0.005\\ 0.552{\pm}0.005\end{array}$	$ \begin{vmatrix} 0.738 \pm 0.003 \\ 0.734 \pm 0.002 \end{vmatrix} $	$\begin{array}{c} 0.586{\pm}0.003\\ 0.584{\pm}0.001\end{array}$
DCAN	Repr Orig	0.837±0.005	$0.977{\pm}0.001$	0.063±0.002 Not ava	0.527±0.002 ailable	0.721 ± 0.001	$0.572{\pm}0.001$
TransICD	Repr Orig	0.882±0.010	$0.982{\pm}0.001$	0.059±0.008 Not ava	0.495±0.005 ailable	0.663±0.007	$0.521 {\pm} 0.006$
Fusion	Repr Orig	$\begin{array}{c} 0.910 {\pm} 0.003 \\ 0.915 \end{array}$	$0.986 \pm 0.000 \\ 0.987$	$ \begin{vmatrix} 0.076 \pm 0.007 \\ 0.083 \end{vmatrix} $	$\begin{array}{c} 0.555 \pm 0.008 \\ 0.554 \end{array}$	0.744±0.003 0.736	0.588±0.003 N/A

Table 5: Reproduced test set results on the MIMIC-III full (old) dataset. For each model, the upper row (Repr) shows the reproduction results in mean \pm standard deviation, and the lower row (Orig) shows the results in the original papers.

Model		Macro AUC	Micro AUC	Macro F1	Micro F1	P@5
CNN	Repr Orig	0.892±0.003 0.876	$\begin{array}{c} 0.920{\pm}0.003\\ 0.907\end{array}$	$ \begin{vmatrix} 0.583 \pm 0.006 \\ 0.576 \end{vmatrix} $	$\begin{array}{c} 0.652{\pm}0.008\\ 0.625\end{array}$	$ \begin{vmatrix} 0.627 \pm 0.007 \\ 0.620 \end{vmatrix} $
CAML	Repr Orig	$\begin{array}{c c} 0.865 {\pm} 0.017 \\ 0.875 \end{array}$	$\begin{array}{c} 0.899 {\pm} 0.008 \\ 0.909 \end{array}$		$\begin{array}{c} 0.593 {\pm} 0.020 \\ 0.614 \end{array}$	$\begin{array}{c} 0.597 {\pm} 0.016 \\ 0.609 \end{array}$
MultiResCNN	Repr Orig	$\begin{array}{c c} 0.898 {\pm} 0.006 \\ 0.899 {\pm} 0.004 \end{array}$	$\begin{array}{c} 0.928 {\pm} 0.003 \\ 0.928 {\pm} 0.002 \end{array}$	$ \begin{vmatrix} 0.590 \pm 0.012 \\ 0.606 \pm 0.011 \end{vmatrix} $	$\begin{array}{c} 0.666 {\pm} 0.013 \\ 0.670 {\pm} 0.003 \end{array}$	$ \begin{vmatrix} 0.638 \pm 0.005 \\ 0.641 \pm 0.001 \end{vmatrix} $
DCAN	Repr Orig	$\begin{array}{c c} 0.915 {\pm} 0.002 \\ 0.902 {\pm} 0.006 \end{array}$	$\begin{array}{c} 0.938 {\pm} 0.001 \\ 0.931 {\pm} 0.001 \end{array}$	$\begin{array}{c} 0.614 {\pm} 0.001 \\ 0.615 {\pm} 0.007 \end{array}$	$\begin{array}{c} 0.690 {\pm} 0.002 \\ 0.671 {\pm} 0.001 \end{array}$	
TransICD	Repr Orig	$\begin{array}{c} 0.895 {\pm} 0.003 \\ 0.894 {\pm} 0.001 \end{array}$	$\begin{array}{c} 0.924 {\pm} 0.002 \\ 0.923 {\pm} 0.001 \end{array}$	$ \begin{vmatrix} 0.541 \pm 0.010 \\ 0.562 \pm 0.004 \end{vmatrix} $	$\begin{array}{c} 0.637 {\pm} 0.003 \\ 0.644 {\pm} 0.003 \end{array}$	$\begin{array}{c} 0.617 {\pm} 0.005 \\ 0.617 {\pm} 0.003 \end{array}$
Fusion	Repr Orig	$\begin{array}{c} 0.904 {\pm} 0.002 \\ 0.909 \end{array}$	$0.930 \pm 0.001 \\ 0.933$	0.606±0.009 0.619	0.677 ± 0.003 0.674	0.640±0.001 0.647

Table 6: Reproduced test set results on the MIMIC-III top-50 (old) dataset. For each model, the upper row (Repr) shows the reproduction results in mean \pm standard deviation, and the lower row (Orig) shows the results in the original papers.

that rare words in the corpus are replaced with the UNK token before training word2vec. In CAML's preprocessing, the embeddings are trained without replacing UNK tokens, and later, the embeddings of the frequent words are extracted. Also, in our code, only the train corpus is used to train the embedding, while the CAML's code uses the whole corpus. Furthermore, when choosing words for the vocabulary, CAML's code counts the number of documents, i.e., discharge summary note, that each word appears in, while our code uses the total occurrences of each word. Here, both codes use only the train corpus.

D More Attribution Scores of MIMIC-III

Table $7 \sim 10$ show more examples of interpretability visualization. When the model predicted an ICD code correctly, then the relevant part of the input text is attributed. The cases when a model does not predicted are the second and third row of Table 8.

Intergrated Gradients for 428.0 (Congestive neart failure unspecified), HADM_1D=158682				
CNN	hypoventilation syndrome chronic diastolic heart failure hypothyroidism irritable bowel syndrome			
CAML	hypoventilation syndrome chronic diastolic heart failure hypothyroidism irritable bowel syndrome			
MultiResCNN	hypoventilation syndrome chronic diastolic heart failure hypothyroidism irritable bowel syndrome			
DCAN	hypoventilation syndrome chronic diastolic heart failure hypothyroidism irritable bowel syndrome			
TransICD	obes hypoventil syndrom <mark>chronic diastol heart failur hypothyroid</mark> irrit bowel syndrom vitamin			
Fusion	hypoventilation syndrome chronic diastolic heart failure hypothyroidism irritable bowel syndrome			

Intergrated Gradients for **428.0** (Congestive heart failure unspecified), HADM_ID=158682

Table 7: Integrated gradients of various models on a fixed input and a fixed ICD code

Intergrated Gradients for 285.9 (Anemia, unspecified), HADM_ID=100408		
CNN	p mv repair htn lipid chronic anemia persistent afib chf arthritis	
CAML	physician name9 pre information name9 pre name3 lf r division cardiothoracic	
MultiResCNN	cardiothoracic allergy recorded known allergy drug attending name3 If asymptomatic	
DCAN	p mv repair htn lipid chronic anemia persistent afib chf arthritis	
TransICD	p <mark>mv</mark> repair htn lipid chronic <mark>anemia</mark> persist afib <mark>chf</mark> arthriti tonsillectomi	
Fusion	p mv repair htn <mark>lipid</mark> chronic anemia persistent afib chf arthritis	

Table 8: Integrated gradients of various models on a fixed input and a fixed ICD code

Integrated Gradients of Fusion, HADM_ID=148372
96.04 (Insertion of endotracheal tube) unsuccessfully repeat abg paco2 ph intubated arterial line finally placed successfully
38.91 (Arterial catheterization) repeat abg paco2 ph intubated arterial line finally placed successfully extubated
427.31 (Atrial fibrillation) perioperative pe anticoagulation atrial fibrillation anticoagulation hypertension diabetes type
250.00 (Diabetes mellitus without mention of complication, type ii or unspecified type) fibrillation anticoagulation hypertension diabetes type ii obstructive sleep apnea hypercholesterolemia
401.9 (Unspecified essential hypertension) anticoagulation atrial fibrillation anticoagulation hypertension diabetes type ii obstructive sleep
Table 9: Integrated gradients of Fusion for various ICD codes on a fixed input
Integrated Gradients of MultiResCNN, HADM_ID=135796
414.01 (Coronary atherosclerosis of native coronary artery) niacin attending name3 If cad vessel cad aortic stenosis toxic multinodular goiter
427.31 (Atrial fibrillation) operative dysphagia post operative atrial fibrillation h 1st degree av block p peg
96.6 (Enteral infusion of concentrated nutritional substances) ir post pyloric tube placed feeding eventually peg placed picc placed pt screened
38.93 (Venous catheterization, not elsewhere classified) placed feeding eventually peg placed picc placed pt screened rehab c rehad
584.9 (Acute renal failure, unspecified) protection mri brain performed cu arf elevation creatinine pt subsequently reintubated

.

Table 10: Integrated gradients of Fusion for various ICD codes on a fixed input