Cancer Cell, Volume 42

Supplemental information

Cancer-associated fibroblast phenotypes

are associated with patient outcome

in non-small cell lung cancer

Lena Cords, Stefanie Engler, Martina Haberecker, Jan Hendrik Rüschoff, Holger Moch, Natalie de Souza, and Bernd Bodenmiller

Figure S1 – Marker expression in IMC images. Related to figures 1 and 2.

- A) Representative images of all markers. Scale bars indicate 100 µm.
- B) Cell masks coloured by the mean SMA (green) and panCK (red) expression per cell. Scale bars indicate 170 μm.
- C) Cell masks pseudo-coloured stromal (green) or tumour (red) compartment. Scale bars indicate 170 µm.
- D) Cell masks pseudo-coloured by cell category: tumour (red), immune (blue), fibroblast (green), vessel (yellow), other (white). Scale bars indicate 170 µm.
- E) Cell masks pseudo-coloured by the distance from each cell to the closest tumour stroma border: tumour (white), 0-30 μm (red), 31-60 μm (orange), 61-90 μm (yellow), 91-120 μm (green), 121-150 μm (blue), > 150 μm (purple). Scale bars indicate 170 μm.

А

В

Ki-67 MMP11

PDGFR-b

Vimentin

PDPN

SMA

Figure S2 – CAF phenotyping. Relates to Figure 3.

- A) Heatmap of expression levels of CAFs clustered with FLOWSOM (k max = 45, som = 40) together with CAF type and CAF subtype.
- B) UMAP of a random subset of 200,000 cells of all fibroblasts showing the mean intensity per cell scaled from 0-1 for all CAF markers.

Figure S3 – Correlation of CAF types with clinical data. Relates to figure 3.

- A) Differential abundance analysis for CAF types over tumour types (LUAD/LUSC)
- B) Boxplots comparing the proportions of CAF types between LUAD growth patterns (acinar, lepidic, micropapillary, papillary, solid); Kruskal-Wallis: * p < 0.05, ** p < 0.01, *** p < 0.001)</p>
- C) Average silhouette width plot showing the optimal calculated cluster number for hierarchical clustering of CAF type proportions calculated per patient.
- D) Differential abundance analysis for CAF types over relapse and sex in both tumour types taken together.
- E) Differential abundance analysis for CAF type in LUAD for relapse and sex.
- F) Differential abundance analysis for CAF type in LUSC for relapse and sex

Figure S4 – Correlation of CAF types with survival data. Relates to figure 4.

- A) Kaplan-Meier plots of disease-free survival for patients stratified by median proportion into high and low for Collagen CAFs (all patients), vCAFs (LUSC), iCAFs (LUSC), and ifnCAFs (all patients).
- B) Kaplan-Meier plots of overall survival for patients stratified by median density into high and low for vCAFs (all patients), Collagen CAFs (all patients), hypoxic CAFs (all patients), tCAFs (LUAD), mCAFs (LUSC), SMA CAFs (all patients), iCAFs (LUSC), ifnCAFs (all patients), and dCAFs (all patients).
- C) Kaplan-Meier plots of disease-free survival for patients stratified by median density into high and low for Collagen CAFs (all patients), dCAFs (LUSC), and ifnCAFs (all patients).
- D) Lasso-regressed CoxPH model including mean CAF type density calculated per tumour core per patient as well as patient stratification into high and low for each CAF type (by median proportion) together with all available clinical data.

Figure S5 – Correlation of CAF types with other cells and hypoxia. Relates to figure 6.

- A) Correlations of the mean proportions per patient of all cell types (bottom left). Cluster 1 shows the correlation of ifnCAFs with various immune cells; cluster 2 shows the correlation of iCAFs with lymphatic and blood vessel cells and vCAFs. The second correlation matrix (top right) displays the correlation only of CAF types. (* p < 0.05, ** p < 0.01, *** p < 0.001).</p>
- B) Correlations of the mean density per patient of all cell types (* p < 0.05, ** p < 0.01, *** p < 0.001). Cluster 1 shows the correlation of ifnCAFs with various immune cells; cluster 2 shows the correlation of iCAFs with lymphatic and blood vessel cells and vCAFs.</p>
- C) Dot plot of three TMA cores showing the mean cellular expression of CAIX for each cell.
- D) Dot plot of three TMA cores (as in E) coloured by their categorisation as hypoxic (hypoxic epithelia, hypoxic tCAFs and hypoxic CAFs) and all normoxic cells.
- E) Dot plot of three TMA cores (as in E) showing patches calculated based on hypoxic cells.
- F) Dot plot of three TMA cores (as in E) showing patches defined as either hypoxic (red) or normoxic patches (blue).
- G) Differential abundance analysis comparing hypoxic versus normoxic patches.
- H) Correlations of all cells with hypoxic and normoxic patches.

Supplementary Figure 6 – TME composition of patients stratified by CAF types. Relates to figure 6.

 A) Boxplots showing cellular enrichment of all cell types between the four metaclustered patient groups (1, 2, 3, 4; Kruskal-Wallis: * p < 0.05, ** p < 0.01, *** p < 0.001).

Figure S7 – TME composition of patients stratified by CAF types. Relates to figure 6.

- A) Differential abundance analysis of all cell types between patients stratified as high or low based on mean proportions of poor-prognosis CAF types (tCAFs, PDPN CAFs, Collagen CAFs, dCAFs, hypoxic tCAFs, hypoxic CAFs, vCAFs and mCAFs).
- B) Differential abundance analysis of all cell types between patients stratified as high or low based on mean proportions of good-prognosis CAF types (SMA CAFs, iCAFs and ifnCAFs).

Supplementary tables and legends

Table S1 – Antibody panel. Related to STAR Methods

Metal	Target	Antibody	Lot	Provider	Catalogue	RRID
Тад		Clone			Number	
Y89	Myelo-	Polyclonal	200304	Dako	A0398	AB_233
	peroxidase		5			5676
In113	FSP1 /	Polyclonal	312695	Millipore	136784	AB_108
	S100A4		3			07552
In115	SMA	1A4	218390	eBioscience	14-9760-82	AB_257
			0			2996
Pr141	Histone H3	D1H2	15	Cell Signaling	4499BF	AB_105
				Technology		44537
Nd142	CD11b	SP330	GR325	Abcam	ab241408	AB_288
			8740-1			9379
Nd143	HLA-DR	TAL 1B5	GR322	Abcam	ab20181	AB_445
			2279-4			401
Nd144	CD146	Polyclonal	ECL03	R&D	AF932	AB_355
			19041	Systems		721
Nd145	Cadherin-11	283416	VLT021	R&D	MAB1790	AB_207
			9091	Systems		6970
Nd146	FAP	Polyclonal	ZKW03	R&D	AF3715	AB_210
			15081	Systems		2369
Sm147	CD11b	M1/70	B18648	Biolegend	101202	AB_312
			4			785
Nd148	VCAM1	EPR5047	GR325	Abcam	ab215380	AB_289
			5420-4			4839
Sm149	CD20	L26	205997	eBioscience	14-0202-82	AB_107
			6			34340
Nd150	CD68	KP1	213029	eBioscience	14-0688-82	AB_111
			1			51139
Eu151	Indoleamine	SP260	GR325	Abcam	ab245737	AB_289
	2- 3-		9345-2			4840
	dioxygenase					
Sm152	CD3	Polyclonal	GR322	Dako	A0452	AB_233
			9164-6			5677

Eu153	Podoplanin	NC-08	B26083	Biolegend	337002	AB_159
			4			5511
Sm154	CD11c	D3V1E	2	Cell Signaling	45581BF	AB_279
				Technology		9286
Gd155	Carbonic	Polyclonal	VNQ03	R&D	AF2188	AB_416
	Anhydrase IX		19011	Systems		562
Gd156	CD73	D7F9A	2	Cell Signaling	13160BF	AB_271
				Technology		6625
Gd158	MMP9	D6O3H	4	Cell Signaling	13667BF	AB_279
				Technology		8289
Tb159	p75 / CD271	Polyclonal	ANT00	Alomone labs	ANT-007	AB_203
			7AN07			9968
			02			
Dy161	CD10	E5P7S	2	Cell Signaling	65534	AB_289
				Technology		4842
Dy162	Vimentin	EPR3776	GR286	Abcam	ab193555	AB_281
			525-2			4713
Dy163	FOXP3	236A/E7	212967	eBioscience	14-4777-82	AB_467
			6			556
Dy164	CXCL13	Polyclonal	BAS03	R&D	AF801	AB_355
			17101	Systems		613
Ho165	PNAd	MECA-79	B25713	Biolegend	120802	AB_493
			9			555
Er166	CD8a	C8/144B	213259	eBioscience	14-0085-82	AB_111
			5			50240
Er167	Fibronectin	10/Fibro-	625188	BD	610078	AB_397
		nectin	8	Biosciences		486
Er167	Collagen I	Polyclonal	GR325	Abcam	ab34710	AB_731
			3239-3			684
Er168	LYVE-1	Polyclonal	KPY01	R&D	AF2089	AB_355
			19052	Systems		144
Tm169	CD140b	Y92	GR296	Abcam	ab215978	AB_289
			584-4			4841
Er170	CD34	EP373Y	GR327	Abcam	ab198395	AB_288
			1518-1			9381

Yb171	CD4	Polyclonal	YS071	R&D	AF-379-NA	AB_354
			8031	Systems		469
Yb172	vWF	poly vwf	332299	Millipore	AB7356	AB_922
			8			16
Yb172	CD31	EPR3094	GR322	Abcam	ab207090	AB_288
			9164-6			9382
Yb173	CXCL12 /	79018	JOJ051	R&D	MAB350-100	AB_208
	SDF-1		9031	Systems		8149
Yb174	CCL21 /	Polyclonal	AYJ218	R&D	AF366	AB_355
	6Ckine		071	Systems		327
Lu175	Keratin	AE3	325545	Millipore	MAB1611	AB_213
	Epithelial		7			4409
Lu175	Pan	AE1	325291	Millipore	MAB1612	AB_213
	Cytokeratin		0			2794
Pt194	Ki-67	B56	811675	Becton	556003	AB_396
			1	Dickinson		287
Bi209	CD45	2B11	200342	eBioscience	14-9457-82	AB_110
			2			63696

Table S1. List of all antibodies used in this study, their respective metal tag, clonenumber and vendor information, RRID (Research Resource Identifiers) and cataloguenumber.

 Table S2 – Distribution of different cell classes in the stromal and tumour

 compartment. Related to STAR Methods

	Stroma [n]	Stroma [%]	Tumour [n]	Tumour [%]
Fibroblast	894478	82.3	192200	17.7
Immune	522302	63.5	299903	36.5
Other	387435	65.8	201453	34.2
T cell	265970	74.5	90939	25.5
Tumour	149901	5.0	2829811	95.0
vessel	124863	83.2	25199	16.8

Table S2. Number of cells and percentage within tumour and stroma subsets.

Table S3 – Number of cells in bins measured from the tumour-stroma border.Related to STAR Methods

Bins in µm	Area	Fibroblast	Immune	Other	T cell	Tumour	Vessel
from		[n]	[n]	[n]	[n]	[n]	[n]
tumour-							
stroma							
border							
(>0)	Tumour	192100	299765	201349	90902	2829644	25183
-10 to -0	Stroma –	299316	179225	127500	76138	126899	45952
	tumour						
	interface						
-30 to -0	Stroma	598811	359337	257938	164075	144455	89846
-60 to 30	Stroma	155405	90191	71943	52227	3691	19364
-90 to -60	Stroma	63052	34494	27229	22389	995	6887
-120 to -90	Stroma	31572	17255	12560	11408	449	3416
-150 to -120	Stroma	17349	8971	6387	6202	217	1951
(-150)	Stroma	28389	12192	11482	9706	261	3415

Table S3. Number of cells in different bins from the tumour stroma border.