
Breath analysis by ultra-sensitive broadband laser

spectroscopy detects SARS-CoV-2 infection

Qizhong Liang1,2,*, Ya-Chu Chan1,3, Jutta Toscano1,2,8, Kristen K. Bjorkman4, Leslie A.

Leinwand4,5, Roy Parker4,6, Eva S. Nozik7, David J. Nesbitt1,2,3, and Jun Ye1,2,*

1
JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309

2Department of Physics, University of Colorado, Boulder, CO 80309

3Department of Chemistry, University of Colorado, Boulder, CO 80309

4BioFrontiers Institute, University of Colorado, Boulder, CO 80303

5Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303

6Department of Biochemistry and HHMI, University of Colorado, Boulder, CO 80303

7Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, and Division of Pediatric

Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045

8Present address: Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland

*Corresponding authors: Qizhong.Liang@colorado.edu, Ye@jila.colorado.edu



Supplementary Information

Partial least squares-discriminant analysis (PLS-DA)

The principle of PLS regression and its usage for discriminant analysis, namely the PLS-

DA algorithm, is briefly introduced here. The PLS regression toolbox used in our work

was developed by MATLAB and implemented using the SIMPLS formulation. We discuss

only the univariate response classification, corresponding to what is used in this work, but

interested readers may consult Ref.1 for more details beyond this classification type and

how the actual algorithm is implemented. We use bold upper case to denote matrices, bold

lower case for vectors, and un-bold for scalars, with primes (′) denoting a matrix or vector

transpose. Collected data used for the training process are represented by the n×p predictor

variables matrix X0 and the n×1 univariate response variable vector y0. Here, n is the total

number of research subjects, p is the total number of predictor variables. Both X0 and y0 are

column-centered so that the covariance of different predictor variables with the response can

be expressed by a p× 1 column vector s0 = X′
0y0. PLS regression relates X0 and y0 based

on y0 = X0b+e, where b is the p×1 coefficients estimate, X0b is the explained component,

and e is the fit residual. In contrast to least squares regression, where the coefficients

estimate b is constructed by minimizing the residual sum of squares e′e, PLS regression

constructs it based on the covariance s0 = X′
0y0 to get more stabilized values of b and

achieve more reliable predictive power. The formulation begins by projecting the predictor

variables matrix X0 onto a new coordinate system T = X0R of reduced dimensionality

spanned by a total of A (≤ p−1) PLS components, whereR denotes the p×A weight transfer

matrix and T denotes the n× A projected scores matrix. The construction of R is subject

to two constraints: 1) the covariance vector T′y0 is maximized for each entry, meaning

each PLS component exhibits the largest possible covariance with the response; 2) the PLS

components are orthonormal, i.e., columns of T satisfy t′itj = δij for any i, j = 1, 2, ..., A,

where δij is the Kronecker delta. The coefficients estimate b can be determined once R is

2



known, since y0 = TT′y0 = X0RR′X′
0y0 = X0b, and thus b = RR′X′

0y0 = RR′s0. The

process of determining R proceeds column by column. For the first iteration step k = 1, the

maximization of the covariance of the first PLS component (tk = X0rk) with the response,

t′ky0 = r′kX
′
0y0 = r′ks0 = max, constrains the first weight vector rk (k = 1) to be along

the direction of s0. For steps k > 1, the orthogonality condition, t′kti = r′k(X
′
0ti) = 0 for

i = 1, 2, ..., k − 1, requires the newly constructed rk to be orthogonal to each of the p × 1

vectors X′
0ti for i = 1, 2, ..., k− 1. We define pi ≡ X′

0ti as the loading vectors. One may use

the Gram-Schmidt process to find the orthonormal basis of the subspace Vk−1 spanned by

the loading vectors pi (i = 1, 2, ..., k − 1) and then determine the p× p projection operator

P⊥ for the orthogonal complement space V ⊥
k−1. This loosely constrains the direction of rk

to be within V ⊥
k−1, requiring rk = P⊥rk. Now, with the covariance maximization criteria,

t′ky0 = r′k(P
⊥′
s0) = max, the direction of rk is ultimately determined to be along the

direction of the vector P⊥′
s0, which is the projection of the covariance vector s0 onto the

subspace V ⊥
k−1. The iteration process proceeds until the directions of all rk are determined,

where the normalization condition T′T = 1 governs the magnitudes of rk. Finally, the

coefficients estimate is determined and can be used for prediction of the response class for

new observations based on ypred
0 = Xnew

0 b, where the m × p matrix Xnew
0 is the testing

data for a total of m research subjects. The m × 1 predicted values ypred
0 are translated

proportionally into posterior probabilities and compared with a threshold value for response

class assignment.
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Variable importance in the projection (VIP) scores

In PLS-DA, assessment of the importance of the predictor variables needs to consider 1) the

weighting of a given predictor variable to form different PLS components and 2) the impor-

tance of different PLS components in explaining the response. Regarding 1), the formation of

the a-th PLS component (a = 1, 2, ..., A) takes the contribution from the j-th predictor vari-

able with the normalized weight given by wja/∥wa∥, where wja is the j-th row a-th column

element from the p × A weight matrix R, and ∥wa∥ = (
∑p

j=1w
2
ja)

1/2 is the normalization.

Regarding 2), we first note that the variance of the response among all observations y′
0y0 is

explained by the total of A PLS components to the extent of ŷ′
0ŷ0, where ŷ0 = X0b = y0−e.

The total percentage variance explained in the response, (ŷ′
0ŷ0/y

′
0y0)× 100%, can be used

for estimating the minimum number of PLS components needed for reliable predictions. The

explained variance ŷ′
0ŷ0 = ŷ′

0TT′ŷ0 =
∑A

a=1(ŷ
′
0ta)

2 is further broken down into a summa-

tion of the square of the covariance of all PLS components with ŷ0. We can thus evaluate the

importance of the a-th PLS component by its variance explained q2
a ≡ (ŷ′

0ta)
2, a quantity

assigning larger importance to the PLS components that have larger covariance with the

explained component, with the total variance explained by the A PLS components given by∑A
a=1 q

2
a. Taking both 1) and 2) into account, the variable importance for the predictor vari-

able j summing over all the A PLS components is proportional to [
∑A

a=1 q
2
a · (wja/∥wa∥)2]1/2.

From this, one can define its VIP score2, a metric for characterizing its importance, by:

VIPj =

√
p ·

∑A
a=1[q

2
a · (wja/∥wa∥)2]∑A
a=1 q

2
a

(1)

Normalization ensures the mean square sums of the VIP scores among all predictor variables

equals unity, p−1
∑p

j=1 VIP
2
j = 1. Because of this normalization, predictor variables with

VIP scores above (or below) unity can be regarded as important (or unimportant) variables.
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Variance explained by the PLS components.

For SARS-CoV-2 infection classification, the total percentage variance explained in the re-

sponse analyzed by the molecule-based and the pattern-based approaches for the complete

data set (N = 170) are given in Figure S1. We found a sharp rise in the variance explained

for both the molecule-based and the pattern-based approaches when the number of PLS

components constructed lies in the range from unity to five. A total of 15 PLS components

were sufficient to saturate the percentage variance explained for both approaches. The lower

variance explained obtained by the molecular species-based approach suggests fitting the

spectroscopy data with more molecular species can better explain the response.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of PLS components

20

22

24

26

28

30

32

Va
ria

nc
e 

ex
pl

ai
ne

d

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of PLS components

0

20

40

60

80

100

Va
ria

nc
e 

ex
pl

ai
ne

d
(b)

1Figure S1: Total percentage variance explained in the response. Results for (a)
the molecule-based approach and (b) the pattern-based approach.
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Averaging of the Receiver-Operating-Characteristics curves

We performed averaging of the ROC curves using the non-parametric method adapted from

Ref.3. This method ensured that: 1) the AUC of the averaged curve equaled the average

AUC of individual cross-validation runs, and 2) the averaged AUC for a perfect (or random)

classifier was equal to 1 (or 0.5). Proof for statement 1) can be found in the appendix of Ref.3,

while statement 2) can be straightforwardly deduced from 1). In our work, we averaged

the individual ROC curves vertically in the tilted space formed by rotating the (FP,TP)

axes counter-clockwise by an angle θ < π/2, where FP and TP denotes false positive rates

and true positive rates, respectively. This enabled the averaging to be taken over singular

functions. Any data point from an individual ROC curve could take its FP values from

{(0, 1, 2, ...,N)/N}, and TP values from {(0, 1, 2, ...,P)/P}. Since we were using stratified

sampling at the fixed testing set size Ltest = P+N, different cross-validation runs preserved

the total number of positives P and negatives N. Hence, we chose θ = arctan (P/N) such

that the curve averaging in the tilted space would be performed to yield a total of (Ltest+1)

sample points for plotting the averaged ROC curve. The j-th (j = 0, 1, 2, ...,Ltest) sample

point represented the j-th observation in the testing set scanned over by the threshold line,

and was obtained from the statistical mean over a total of the number of cross-validation

runs of the j-th observation from each run.
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Uncertainty in the AUC

Uncertainty in the AUC for different response types was calculated using different numbers

of PLS components and different partition ratios of the training and testing set (see Fig-

ure S2). For each number of PLS components and partition ratio used, an AUC value was

calculated from the averaged ROC curve obtained from 1,000 cross-validation runs based

on stratified random sampling. As seen in Figure S2, the AUC values calculated with only

one PLS component were found to give worse prediction performance in general for both

the molecule-based and the pattern-based approaches. This is understandable because both

approaches showed limited total percentage variance explained when only one PLS compo-

nent was constructed (see Figure S1). For this reason, we calculated the mean and standard

deviation of the AUC for each plot excluding those obtained using only one PLS component.

Obtained values are reported in the title of each plot. The standard deviations were used as

the uncertainty of AUC. The means were provided for reference. Note that in the main text

the absolute values quoted for the AUC were computed using 15 PLS components, 140:30

training and testing partition ratio, and 10,000 cross-validation runs. We found the com-

puted values using these settings matched the means obtained here to within the calculated

uncertainty.
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Birth month (AUC = 0.483 ± 0.009)

0.400 0.478 0.498 0.486 0.490 0.487 0.489 0.493

0.408 0.471 0.478 0.492 0.488 0.491 0.489 0.487

0.413 0.463 0.473 0.489 0.484 0.484 0.485 0.488

0.421 0.462 0.476 0.483 0.490 0.487 0.489 0.488

0.425 0.463 0.474 0.484 0.485 0.487 0.486 0.485

0.432 0.461 0.473 0.483 0.484 0.484 0.485 0.484
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Sex (AUC = 0.639 ± 0.009)

0.648 0.659 0.659 0.645 0.647 0.647 0.646 0.655

0.651 0.653 0.643 0.639 0.641 0.641 0.643 0.641

0.642 0.648 0.638 0.640 0.643 0.641 0.639 0.639

0.642 0.649 0.633 0.637 0.638 0.636 0.631 0.635
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SARS-CoV-2 (AUC = 0.765 ± 0.007)
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Birth month (AUC = 0.517 ± 0.004)
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SARS-CoV-2 (AUC = 0.851 ± 0.004)
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1Figure S2: AUC calculated for different numbers of PLS components and differ-
ent training and testing set partition ratios. For different partition ratios, we show
the testing set size in plotting the results. The training set size can be obtained by sub-
tracting the testing set size from the complete data set size (N = 170). a, b, c: results for
the molecule-based approach, for birth month, sex, and SARS-CoV-2, respectively. d, e, f:
results for the pattern-based approach, for birth month, sex, and SARS-CoV-2, respectively.
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Prediction performance summary.

A summary of binary response classification results for various response types is provided

in Table S1. The obtained AUC shown for each response type were the mean and standard

deviation calculated for the results obtained using 1,000 cross-validation runs based on strat-

ified random sampling, evaluated at 3, 5, 7, ..., 15 PLS components, and at 10, 20, 30, ..., 60

test set size with training set size given by subtracting the testing set size from the complete

data set.
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Response Positive/Negative 
class assignment

Positive/Negative 
class distributions, 

n (%)

Obtained 
AUC,

mean, (SD)

Discrimination 
capability

Birth day Odd / Even 83(48.8) / 87(51.2) 0.510 (21) Random 
guessing

Birth month Odd / Even 83(48.8) / 87(51.2) 0.517 (4) Random 
guessing

Alcohol 
frequency

>0 days per week 
/ 0 days per week 125(73.5) / 45(26.5) 0.542 (16) Random 

guessing

Age
Below 23 yr 

(median)
/ above median

87 (52.1) / 80 (47.9) 0.549 (6) Random 
guessing

Lactose 
intolerance

Moderate to 
very severe / 

Not at all to mild
23(13.5) / 147(86.5) 0.574 (16) Random 

guessing

Smoker Yes / No 31(18.2) / 139(81.8) 0.604 (13) Significant

Abdominal 
pain

Rarely to frequently 
/ Never 91(53.5) / 79(46.4) 0.660 (15) Significant

Sex Female / Male 87(51.2) / 83(48.8) 0.673 (12) Significant

Constipation
Moderate to 
very severe /  
Never to mild

11(6.5) / 159(93.5) 0.674 (25) Significant

SARS-CoV-2 Infected / 
Not infected 83(48.8) / 87(51.2) 0.851 (4) Excellent

Breath or Air Breath / Air 170(91.9) / 15(8.1) 1.000 (0) Perfect

Table S1: Prediction performance summary. AUC values were obtained for each
response type and used for judgement of the discrimination capability.
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