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Figure A. Testing HormoneBayes on synthetic data. (A) Synthetic LH data (red 
circles) along with the model fit generated by HormoneBayes. In this example, 
synthetic data were generated using the model described in the main text with the 
following parameter values: 𝑑 = 0.0087, 𝑓 = 0.95, 𝑘 = 100, 𝜏!" = 10, 𝜏!## = 80. Four 
independent MCMC chains were generated using the algorithm described in the main 
text, with each chain consisting of 3 105 iterations (the first 104 iterations were excluded 
from further analysis). Traces of the (B) log-likelihood and (C) model parameters. 
Convergence of the MCMC chains was assessed using their autocorrelation functions 
(D) and the potential scale reduction factor (R-hat statistic), which in all cases was 
between 1 and 1.005 indicating good convergence. (E) The posterior parameter 
distributions accurately reflect the actual parameter values (black asterisks). In each 
figure, the red circle denotes the maximum a posteriori (MAP) estimate and the vertical 
black lines the Highest Posterior Density (HPD) credible interval. 
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Figure S1. We tested HormoneBayes by fitting the model to synthetic data. (A) Representative example of synthetic data (red circles) along with the model fit generated by 
HormoneBayes. In this example, synthetic data were generated using the model described in the main text with the following parameter values: , , , 

, . Four independent MCMC chains were generated using the algorithm described in the main text, with each chain consisting of 3 105 iterations (the first 104 

iterations were excluded from further analysis). Traces of the (B) log-likelihood and (C) model parameters. Convergence of the MCMC chains was assessed using their autocorrelation 
functions (D) and the potential scale reduction factor (R-hat statistic), which in all cases was found to be  between 1 and 1.005 indicating good convergence. (E) The posterior 
parameter distributions accurately reflect the actual parameter values (black asterisks). In each figure, the red circle denotes the maximum a posteriori (MAP) estimate and the vertical 
black lines the Highest Posterior Density (HPD) credible interval.

d = 0.0087 f = 0.95 k = 100
τON = 10 τOFF = 80



 

 
Figure B. Assessing the effect of the prior for the LH clearance rate. We used 
HormoneBayes to analyse synthetic LH data under two different specifications of the 
prior for the LH clearance parameter. In the first case (blue) we used an informative 
prior ( log(2) ∙ 𝑑$%~𝒩(80,9.3) ). In the second case (red) we used an uninformative 
prior (uniform log(2) ∙ 𝑑$%~𝒩(10$&, 10&)). In both cases the MCMC chains converged 
to similar posterior distributions that reflect the parameters used to generate the data. 
Synthetic data were generated using the model presented in the main text with the 
following parameters:  𝑑 = 0.0087, 𝑓 = 0.95, 𝑘 = 100, 𝜏!" = 10, 𝜏!## = 80. 
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Figure S3. We used HormoneBayes to analyse synthetic LH data under two different specifications of the prior for the LH clearance parameter. In the first case (blue) we used an 
informative prior (  ). In the second case (red) we used an uninformative prior (uniform  ). In both cases the MCMC 
chains converged to similar posterior distributions that reflect the parameters used to generate the data. Synthetic data were generated using the model presented in the main text 
with the following parameters: , , , , 


log(2)d−1 ∼ Normal(80,9.3) log(2)d−1 ∼ Uniform(10−5,105)

d = 0.0087 f = 0.95 k = 100 τON = 10 τOFF = 80



 
 
Figure C. Tuning HormoneBayes when pulses are not clear by using a more 
informative prior on parameter f. (A) Synthetic LH data (red circles) along with the 
model fit generated by HormoneBayes. In this example, synthetic data were generated 
using the model described in the main text with the following parameter values:  𝑑 =
0.0087, 𝑓 = 0.5, 𝑘 = 100, 𝜏!" = 10, 𝜏!## = 80. Here, a Beta distribution with 
parameters 𝛼 = 4, 𝛽 = 6 was used as a prior for parameter 𝑓 instead of a uniform. 
Four independent MCMC chains were generated using the algorithm described in the 
main text, with each chain consisting of 3 105 iterations (the first 104 iterations were 
excluded from further analysis). Traces of the (B) log-likelihood and (C) model 
parameters. Convergence of the MCMC chains was assessed using their 
autocorrelation functions (D) and the potential scale reduction factor (R-hat statistic), 
which in all cases was found to be  between 1 and 1.009 indicating good convergence. 
(E) The posterior parameter distributions provide some information about the actual 
parameter values (black asterisks). In each figure, the red circle denotes the maximum 
a posteriori (MAP) estimate and the vertical black lines the Highest Posterior Density 
(HPD) credible interval. 
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Figure S1. When pulses are not clearly evident in the data a more informative prior on parameter f can used. (A) Representative example of synthetic data (red circles) along with the 
model fit generated by HormoneBayes. In this example, synthetic data were generated using the model described in the main text with the following parameter values: , 

, , , . Here, a Beta distribution with parameters  is used as a prior for parameter  instead of a uniform. Four independent MCMC 
chains were generated using the algorithm described in the main text, with each chain consisting of 3 105 iterations (the first 104 iterations were excluded from further analysis). Traces 
of the (B) log-likelihood and (C) model parameters. Convergence of the MCMC chains was assessed using their autocorrelation functions (D) and the potential scale reduction factor (R-
hat statistic), which in all cases was found to be  between 1 and 1.009 indicating good convergence. (E) The posterior parameter distributions provide some information about the 
actual parameter values (black asterisks). In each figure, the red circle denotes the maximum a posteriori (MAP) estimate and the vertical black lines the Highest Posterior Density (HPD) 
credible interval.

d = 0.0087
f = 0.5 k = 100 τON = 10 τOFF = 80 α = 4 and β = 6 f



 

 
Figure D. Pulse identification using HormoneBayes. Percentage of matched 
pulses between hormoneBayes and the Deconvolution method as the pulse-detection 
threshold is varied. Maximum agreement between the two methods is observed when 
the threshold is around the 0.5 range. For the analysis we used LH data obtained from 
healthy pre-menopausal women in early follicular phase (n=16). 
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Figure E. Using HormoneBayes to identify the effect of interventions on LH 
pulsatility. (A) Synthetic LH data from the baseline state (red circles)  and the state 
after a hypothetical intervention (blue squares). Baseline data were generated using 
the following parameter values:  𝑑 = 0.0087, 𝑓' = 0.75, 𝑘' = 10(.*, 𝜏!",' = 10, 𝜏!##,' =
120. Data corresponding to the state after the intervention were generated by 
changing the pulsatility strength and maximum secretion rate: 𝑓, = 0.95, and 𝑓, = 10(.- 
(while keeping the other parmeters the same), leading to more pronounced pulses. 
HormoneBayes was used to fit both datasets and infer the effect of the intervention on 
the parameters. Traces of the (B) log-likelihood and (C) model parameters. 
Convergence of the MCMC chains was assessed using the R-hat statistic, which in all 
cases was between 1 and 1.005 indicating good convergence. (D) The posterior 
parameter distributions accurately reflect the relationship of parameter before and 
after the intervention (red asterisks). In each figure, the red circle denotes the 
maximum a posteriori (MAP) estimate and the vertical black lines the Highest Posterior 
Density (HPD) credible interval. Four independent MCMC chains were generated, 
each consisting of 3 105 iterations (the first 104 iterations were excluded from the 
analysis). 
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