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Supplementary Table 1: Case-control sex characteristics for cancer cohorts. Two-way
contingency tables for the number of female and male individuals in the case and control groups
presented in the study. A Fisher exact test was used to test for an association between sex and case-
control status for each cohort and the exact p-value is reported. A p-value cutoff of 0.05 was used to
determine significance.

Female Male
Colorectal Cancer (10X) | 7 9
Controls (10X) | 88 51

The Fisher exact p-value is 0.1751. The result is not significant at p < .05.

Female Male
Breast Cancer (10X) | 52 0
Controls (10X) | 88 0

The Fisher exact p-value is 1. The result is not significant at p < .05.

Female Male
Multiple Myeloma (<0.3X) | 12 12
Controls (<0.3X) | 34 56

The Fisher exact p-value is 0.3502. The result is not significant at p < .05.



Supplementary Figure 1: Nucleosome peak calls in cfDNA data sequenced at different depths are concordant with an in silico callset. Genomic sequences have
different affinities for histones and contribute to the assemply and positioning of nucleosomes in vivo. Kaplan et a/ (2009) published an in silico model that predicts
nucleosome positions based on genomic sequence. Their per-base probabilities for nucleosome occupancy were calculated using the hgl9 assembly. Therefore, we applied the
in silico model from Kaplan et a/ (2009) on 20k gene body coordinates from hg38 (A) P occupied for the Kaplan in silico model for FCN1 are plotted to illustrate oscillatory
patterns. The oscillatory patterns mirror the patterns that we observed in the sequencing coverage and window protection scores (WPS) for our cfDNA data (B) We applied the
same heuristic peak calling algorithm on the P occupied values as we did on the WPS. For 230 healthy individuals with cfDNA sequencing data, the distance to the nearest
peak in the in silico callset was distributed around zero for all sequencing depths.
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Supplementary Figure 2: Local nucleosome dynamics are recovered from cfDNA data depending on the sequencing depth.

We looked at chromatin compartments associated with different functional annotations. To do this we downloaded chromatin state learning maps (ChromHMM v1.10) in
primary monocytes, neutrophils, B cells, T cells, and natural killer cells from peripheral blood, as well as maps from eight additional primary tissue types. The ChromHMM
core-15 state model uses interactions between 5 different histone marks to predict 15 distinct chromatin states, including quiescence (67.8% genome), transcription (15.2%
genome), and transcriptional start sites (TSS) (0.7% genome). Inter-nucleosome distances in transcribed regions compared to quiescent regions in monocytes are shown across
(A) all samples and (B) samples grouped by sequencing depth. (C) Internucleosomal distances are shown at specific regulatory sites (i.e. active and bivalent TSS) in samples
sequenced at <0.3-fold, 10-fold, and 35-fold coverage grouped by cell type. An enrichment of wider inter-peak distances was observed around TSS that are active in certain
blood cells (i.e. monocytes, neutrophils, T cells) compared to TSS active in other primary tissues. This altered distribution was not observed at bivalent TSS that are not bound
by transcription factors. The smoothed density curves are red for blood cell types with an enrichment of wider inter-nucleosome distances and grey for the rest of the tissues.

A ‘ C Active TSS Bivalent TSS

,,,,,,

ChromHMM w\
Monocytes ( “ \

@ auiescent | \‘ |
@ Transcribed . i \‘ ‘]

N Bl |:| E029 Monocytes
IR ) T |:| E030 Neutrophils

|:| E032 T cells

I
)| I = A ‘f‘f“ E034 B cells
/ \ E046 NK cells

ChromHMM
tissue

X€0>

400 &0 800
median o010 I’\

| I 1 E066 Liver
@ ﬂﬂﬂﬂﬂ \ E071 Brain
SN | N E076 Colon
E091 Placenta
ﬂ \ E095 Heart

X01<

| E096 Lung

| ! \ E112 Thymus
; \ E113 Spleen
]

001
| ooues |
I A\ / J !
|\ N / P VTSR
\ / N M / ~ 7= S
000 / L A .
3 £ %o 3 @ § % ED E3 o 3 £ ES Z %0 J o wo B : “

xxxxxxxxxx

X0€<

aaaaaaaaaaa

Median inter-peak distance



Supplementary Figure 3: Pearson correlation between cell type ranks across down sampling levels for healthy
non-pregnant control “GC01”. The correlation of 456 cell type (Tabula Sapiens) ranks are shown for each down
sampling pair. The y-axis indicates the % of reads down sampled for each level. Pearson correlation values and p-
values are provided for each correlation. The down sampling was done on a 35-fold coverage sample, therefore 40%
of reads corresponds to 14-fold coverage, 0.5% of reads corresponds to 0.1-fold coverage and 0.1% of reads
corresponds to 0.04-fold coverage.
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Supplementary Figure 4: Pairwise correlation between cell type ranks across down sampling levels for healthy
pregnant control “GC02”. The correlation of 487 cell type (Tabula Sapiens + Vento-Tormo) ranks are shown for
each down sampling pair. The y-axis indicates the % of reads down sampled for each level. Pearson correlation values
and p-values are provided for each correlation. The down sampling was done on a 35-fold coverage sample, therefore
40% of reads corresponds to 14-fold coverage, 0.5% of reads corresponds to 0.1-fold coverage and 0.1% of reads
corresponds to 0.04-fold coverage.
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Supplementary Figure S5: Immune cell types shared across tissues differ in their contribution to cfDNA
populations. Ranked relative contribution to cfDNA of immune cells stratified by tissue-residency in 230 healthy
individuals. This is possible because distinct transcriptional profiles are acquired by certain immune cells in to confer
tissue-specific functions. Certain immune cells are only present in a single tissue.
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Supplementary Figure 6: Distribution of cell type ranks per tissue in healthy individuals. Rank contribution to
cfDNA of all cell types in the reference set (n=456) in 230 healthy individuals. Cell types are grouped by tissue and
colored by compartment (i.e. immune, endothelial, epithelial, stromal) as annotated by the original publication.




Supplementary Figure 7: Unsupervised clustering and visualization of cell type features in cases and controls.
Principal component analysis (PCA) was used for dimension reduction and PCs with eigenvalue > 1 (Kaiser’s
criterion) were extracted for distance matrix construction using the Euclidean distance, followed by Walktrap
community detection to define clusters with fixed parameters (the nearest number of nodes was 3 with a walk step of
2). To visualize the dataset in lower dimensions, t-distributed stochastic neighbor embedding (tSNE) was used.
Clusters defined from the community detection were used for tSNE annotation.
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Supplementary Figure 8: Disease prediction using 50 bulk tissue level features. Gene-level fast Fourier
transformed (FFT) window protection scores (WPS) were correlated with the consensus transcript levels summarized
per gene in 50 tissues from the Human Protein Atlas and GTEx. Tissues were given a rank per sample based on the
strength of correlation. A support vector machine with leave-one-out cross validation and default hyperparameters was
trained using the resulting tissue rankings for each cancer cohort and preeclampsia cohort (cases + matched controls).

Bulk tissue features

1.0

0.8

Colorectal AUC: 0.734 (0.584-0.885)
Breast AUC: 0.846 (0.779-0.913)

Sensitivity
0.2 0.4
| ] 1

Preeclampsia AUC: 0.615 (0.455-0.775)
T T T T
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

0.0




Supplementary Figure 9: Cancer prediction using ichorCNA tumor fractions. IchorCNA tumor fractions were
estimated for colorectal cases (n=16), breast cancer cases (n=52), multiple myeloma cases (n=24), and matched high
coverage (n=139) and low coverage (n=90) controls using the default panel of normals provided by ichorCNA. Tumor
fractions were used as a predictive value in a receiver operating characteristic (ROC) analysis for each cancer type
versus matched controls.
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Supplementary Figure 10: Performance of Griffin for cancer prediction. Receiver operating characteristic (ROC)
curves for published Griffin model when applied on our <0.3X multiple myeloma cohort, 10X breast cancer cohort,
and 10X colorectal cancer cohort. The used the published Griffin model trained on the “LUCAS” cohort available on
the Griffin GitHub. The Griffin “LUCAS” model was trained on 1-2X whole-genome sequencing dataset of cfDNA
samples from healthy donors (#=158) and cancer patients (n=129).
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Supplementary Figure 11: Clinical Characteristics of Preeclampsia Cases and Healthy Pregnant Controls. A
two-sided Wilcoxon rank sum test between the characteristics of cases and controls for the preeclampsia cohort was
used to generate p-values. BMI = body mass index. Preg_preeclampsia_diagnosis = pregnant cases sampled at

preeclampsia diagnosis. Preg_control agematched = pregnant control individuals matched to cases by maternal
characteristics.
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