Table S1–PedsCom *rpoB* gene primers and probes. Related to STAR Methods section.

Isolate	Primer	Sequence (5' to 3')	5' Dye	3' Quencher
Anaerostipes sp. PC18	Forward Primer	TGGAACTGGCGGATAAGA	NA	NA
	Reverse Primer	GCCAGGTTTACGGTCATATT	NA	NA
	Probe	TGC CGC TGT TCA GAG TGT GCT GAT	VIC	MGBNFQ
Clostridium intestinale PC17	Forward Primer	GGTAGTTCGCAGCTTTCTC	NA	NA
	Reverse Primer	CTTCAAACCCAGCTCTTTCT	NA	NA
	Probe	TCA GCT TTA GGA CCT GGA GGA CTT TCA	JUN	QSY
Kosakonia cowanii PC08	Forward Primer	GAAGACCTGAACGTCGATAAC	NA	NA
	Reverse Primer	GCTGACACCAGAAGAGAAAC	NA	NA
	Probe	AAA CAC CGT TTG GTA CGC GCA GAG	6FAM	MGBNFQ
Enterococcus faecalis PC15	Forward Primer	CTCGTTCAATCGGACCTTAC	NA	NA
	Reverse Primer	TTCCAGTGCCCAAACTTC	NA	NA
	Probe	ACG CAA CAA CCG TTG GGT GGT AAA	JUN	QSY
Lactobacillus johnsonii PC38	Forward Primer	ACAACCACTTGGTGGTAAAG	NA	NA
	Reverse Primer	GTGTGTAAGCAGCACCATAA	NA	NA
	Probe	TTG GTG GTC AGC GTT TCG GTG AAA	6FAM	MGBNFQ
Lactobacillus murinus PC39	Forward Primer	TGGTGCTTGGTTGGAATAC	NA	NA
	Reverse Primer	CCCAAAGCACGGATCAAT	NA	NA
	Probe	TCG ACC GCA CAC GTA AGA TCC CAT	VIC	MGBNFQ
Parabacteroides distasonis PC19	Forward Primer	TGAGTAACCCTCGGTAAGG	NA	NA
	Reverse Primer	GCGTAAGACCAACCAAAGTA	NA	NA
	Probe	TCA TCG CGG ACA ACG TGT GAA AGC	JUN	QSY
Staphylococcus sciuri PC04	Forward Primer	ACGTGCTCAACTCTACCT	NA	NA
	Reverse Primer	ACCCAGAAGCACCATTTG	NA	NA
	Probe	ACG TGC AGT TAC GTG TTC CAT ACC AGT	VIC	MGBNFQ
Staphylococcus xylosus PC20	Forward Primer	GTAGTGACAAGAGGCGAAAT	NA	NA
	Reverse Primer	TCACGGCATCCTCATAGT	NA	NA
	Probe	TGT TGG TTT CAT GAC TTG GGA CGG T	6FAM	MGBNFQ

Supplemental Figure 1. Low complexity of the pre-weaning microbial community enables the PedsCom consortium to recapitulate early-life microbial abundance and function, related to Figure 1

A. Alpha diversity of the intestinal microbiomes from 14-day-old donor mice (N = 4 samples per tissue site). **B.** Percentage of the total amplicon sequence variants (ASVs) present in each tissue that were recovered from bacterial culture plates. **C.** Median relative abundance of remaining non-PedsCom donor ASVs in the fecal microbiomes of 10-week-old adult SPF NOD mice (N = 19). **D.** Species-level distribution of the non-PedsCom ASVs present in the donor mice small intestine, cecum and large intestine samples. Median relative abundance of the top 20 species shown. **E.** Assessment of the functional potential of non-PedsCom taxa in donor mice samples. Mean relative abundance of KEGG orthologs (KOs) absent in the PedsCom consortium collapsed into KEGG superpathways. **F.** Significantly different abundances of non-PedsCom ASVs present in the donor mice in pre (<14 days-old) and post-weaning (>14 days-old) fecal microbiomes of SPF NOD mice. Differential abundances determined by ANCOM analysis with FDR corrected p-values.

Supplemental Figure 2. Community dynamics of PedsCom consortium is restricted during weaning, related to Figure 2

A. Weighted UniFrac PCoA beta-diversity of small intestinal microbiota of PedsCom (N: D14 = 3, D21 = 5, D28 = 2) and CMCom (N: D14 = 5, D21 = 8, D28 = 2) mice during ontogeny. **B.** Weighted UniFrac PCoA beta-diversity of cecal microbiota of PedsCom (N: D14 = 6, D21 = 5, D28 = 4) and CMCom (N: D14 = 5, D21 = 7, D28 = 6) mice during ontogeny. **C.** Species and family level 16S rRNA gene relative abundance of microbiota from PedsCom and CMCom mice during ontogeny in the small intestine. Two representative litters for CMCom per timepoint, one litter represented in PedsCom. **D.** Species and family level 16S rRNA gene relative abundance of microbiota from PedsCom and CMCom mice of microbiota from PedsCom and CMCom mice during ontogeny in the cecum. Two representative litters for communities per timepoint. **E.** Representative relative abundance of adult PedsCom and CMCom intestinal microbiota at species and family level.

Supplemental Figure 3. Community similarities of PedsCom, CMCom and Oligo-MM12 mice to pre- and post-weaning SPF fecal microbiomes, related to Figure 2

A. Weighted UniFrac PCoA of large intestinal microbiota of pre- (\leq 14 days-old) and post-weaning (>14 days-old) vivarium 3 mice (N = 25) to PedsCom and Oligo-MM12 (N = 51). **B**. Weighted UniFrac distance comparison of pre-weaning (\leq day 14) and post-weaning (> day 14) vivarium 3 mice to all PedsCom and Oligo-MM12 timepoints. Data presented with median box and whisker plot. Mann-Whitney-Wilcoxon test ****p<0.0001.

Supplemental Figure 4. Lymphoid cell populations of germfree, CMCom and PedsCom mice at weaning, related to Figure 3

Percentage of CD19⁺ B cells and $\gamma\delta$, $\alpha\beta$, CD8⁺, CD4⁺, Foxp3⁺ (Tregs), and Foxp3⁻ ROR γ^+ (Th17) T cells in the small intestine, cecum and large intestine lamina propria of germfree, PedsCom and CMCom mice during ontogeny. N = 3 for day 21 germfree cecum, N = 3 for comparisons of day 21 PedsCom $\alpha\beta$, CD8⁺, CD4⁺, and Th17 T cells, and N ≥ 4 per other communities and timepoints. Lines represent median value for each community.

Supplemental Figure 5. Lymphoid cell populations of adult germfree, CMCom, and PedsCom mice, related to Figure 3

Percentage of CD19⁺ B cells and $\gamma\delta$, $\alpha\beta$, CD8⁺, CD4⁺, Foxp3+ (Tregs), and Foxp3⁻ ROR γ^+ (Th17) T cells in the small intestine, cecum and large intestine lamina propria of germfree, PedsCom and CMCom 7–12-week-old adult mice. N ≥ 4 for germfree tissues, N ≥ 6 other communities and timepoints. Data presented with box and whisker plot.

Supplemental Figure 6. PedsCom consortium leads to lower cecal acetate and butyrate levels and increased systemic immunoglobulin levels, related to Figure 3-4

Acetic, propionic, isobutyric, and butyric acid concentrations in cecal contents of the indicated microbial communities at A. weaning (day 21) and B. adulthood (8-14 weeks old). N = 5 per timepoint, per group. GF = Germfree, CC = CMCom, PC = PedsCom, OMM12 = Oligo-MM12. C. Short-chain fatty acid concentration in cecal samples from adult CMCom (CC-ZT) and PedsCom (PC-ZT) mice sampled at ZT1500. N = 5 per group. **D.** Acetic, propionic, isobutyric, and butyric acid concentrations in cecal contents from adult CMCom and PedsCom mice sampled at ZT1500. E. ELISA of serum IgG1, IgG2b, IgG2c and IgE concentration in 7-12-week-old adult PedsCom and CMCom mice. N values: (Germfree = 8, CMCom = 18, PedsCom = 14). F. Representative gating scheme of microbial flow cytometry (mFLOW) analysis of immunoglobulin binding to fecal microbes. G. Acetic, propionic, isobutyric, and butyric acid concentrations in cecal contents from PedsCom co-housed mice. [Control (PC) N = 4, Co-housed (PC+CC) N = 5]. H. Primary bile acid concentration (median) in cecal contents from PedsCom co-housed mice (Control N = 4, Cohoused N = 5). Bile acid concentrations from SPF cecal contents included for comparison (N = 6). I. The median molar ratios of primary deconjugated to primary conjugated bile acids in PedsCom co-housed mice (Control N = 4, Co-housed N = 5). J. Percent mucosal IgA and systemic lg binding to PedsCom co-housed fecal microbes (Control N = 4, Co-housed N = 5). K. Percentage of pTreg cells in the cecum, large intestine lamina propria and spleen of adult PedsCom mice supplemented with short-chain fatty acids at weaning and controls (Control N = 4, SCFA treated N = 5). Data presented with box and whisker plot. Mann-Whitney-Wilcoxon test *p<0.05, **p<0.01

Relative abundance

Non-PedsCom taxa age association

F

Relative abundance

Fig. S2

Α Weighted UniFrac of PedsCom during ontogeny

100%

975% apnuqauce 50%

Relative 52%

0%

D14

PedsCom

D21

PedsCom

D21

Community dynamics during ontogeny - Small intestine

CMCom

D21

D28

Community dynamics during ontogeny - Cecum

D14

D14

Axis 1 (51.9%)

Small intestine

Large intestine

Cecum

С

Family Enterobacteriaceae Lactobacillaceae Muribaculaceae Sutterellaceae

Lachnospiraceae Burkholderiaceae Bacteroidaceae

Tannerellaceae Peptostreptococcaceae

Desulfovibrionaceae

Other

D

PedsCom community structure in adulthood

D28

-0%

Species P. distasonis K. cowanii L. murinus Anaerostipes sp. L. johnsonii E. faecalis C. intestinale S. sciuri S. xylosus

100%

-75% Relative abundance

0%

D28

Fig. S3

Weighted UniFrac comparison of gnotobiotic consortia to pre and postweaning SPF vivarium 3 mice Α Community • PedsCom • Oligo-MM12 • SPF (Vivarium 3) ** * * <u>Age</u> *Pre-weaning Post-weaning Axis 2 (28.1%) * ✻ * * 0 0 *° ° ** ¥ * * * *** ***** 0 0 0 * ° * 0 ** 0 * 0 0 8880 0 00 Axis 1 (31.8%)

Weighted UniFrac distance of gnotobiotic consortia to SPF vivarium 3 mice during ontogeny

В

0% 0 PC PC+CC PC PC+C

0

Control SCFA Control SCFA Control

SCFA

%

0%