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Supplementary Methods

Alternative specifications of the statistical model

Our main specification uses year ⇥ month-of-year ⇥ hour-of-day fixed effects and only includes

total system demand (lagged for up to 24 hours) as the control variables. The time fixed effects

control for the long-term, seasonal, as well as the diurnal unobserved effects in wind power and

EGU emissions. Our main specification constrains the “diurnal effect” to be constant across all days

in the same month, which may not be the case as these patterns could differ between weekdays

and weekends or differ on specific dates. To address this issue, we estimate the equations with two

other specifications for time fixed effects: (1) year ⇥ month-of-year ⇥ hour-of-day ⇥ day-of-week

and (2) year ⇥ month-of-year ⇥ hour-of-day + year ⇥ month-of-year ⇥ day-of-month. Specification

(1) allows the diurnal effect to differ by day-of-week, and specification (2) incorporates potential

differences between different days in the same month. We find the aggregated marginal effects

remain highly consistent across different specifications of time fixed effects (results shown in column

(2) and (3) of table S1 to S3).

Our main specification does not explicitly capture the potential joint effect of wind power and gas

price on coal power plants (40 ).To test the magnitude of this effect, we conduct a sensitivity analysis

that includes natural gas prices and the interaction term between gas price and the contemporary

wind power in the regression. We use the monthly natural gas price (electric sector) at state level

from the EIA-923 reports. The results (coefficients for the main terms of wind power) can be found

in column (4) of table S1 to S3. In summary, we find that the marginal effects remain largely

similar across models with/without the gas price terms in most ISO regions. The effects of wind

power alone on SO2 emissions increase by 30% (i.e. the emission reductions due to wind power are

overestimated when the joint effect of gas prices is not considered) in ERCOT and PJM, consistent

with findings from (40 ) that natural gas price and wind power jointly displaces generation from

coal. Because quantifying this interaction is not the primary focus of our paper, we still use the

original model specification (which focuses on the average impacts) for air quality analysis.

We also include congestion status of the grid as additional control variables. We focus on

ERCOT, MISO, NYISO, and PJM, due to the availability of congestion data and the importance of

congestion issues (information derived from the recent National Electric Transmission Congestion

Study (74 )). For ERCOT and MISO, we use the constructed hourly dummy variables of the



congestion status (based on zonal congestion prices) from (41 ). For PJM and NYISO, we use the

hourly congestion prices (or shadow prices of transmission constraints) as a proxy for the congestion

status. The results can be found in column (7) of table S1 to S3. In summary, we find the aggregated

marginal effects remain highly similar before/after considering the congestion status in most ISO

regions. Only in ERCOT, we observe that the magnitude of SO2 and NOx emission reductions

increases by ⇠10% after controlling for the congestion status. This is consistent with the likely

fact that wind power contributes to the transmission congestion, and congestion results in smaller

emission offsets from wind power (41 ).

Our main specification uses all non-missing values (including both zeros and non-zeros) of emis-

sion and generation at EGU level to estimate the impacts of wind power. This does not differentiate

operating hours from non-operating hours in estimating effects of wind power on emissions. In

practice, impacts of wind power may be different for operating and non-operating EGUs, as EGUs

(coal-fired units in particular) do not usually run at very low capacity factors. To examine the im-

portance of this effect, we evaluate two alternative specifications of our model. In one specification,

we re-estimate the impacts of wind power on emissions, solely focusing on the hours that the EGU

was in operation (i.e. estimating the regressions only with positive generation and emission values).

The results are shown in column (5) in tables S1 to S3). In another specification, we include all

operating and non-operating hours in our estimations, and in particular, include all missing values

and treat them as zeros. We include all the missing values because missing values may potentially

indicate the non-operating status for EGUs. Result of this specification is shown as column (6) in

tables S1 to S3). In summary, we find that the marginal effects of wind power on electricity gener-

ation and emissions remain largely similar across models regardless of our choices in handling zero

values or missing values (except for in ISONE and NYISO where the uncertainty of the estimates

are large, and SO2 emissions for PJM where bituminous coal EGUs are more prevalent).

Changes in electricity export to neighboring regions due to wind power

Our statistical model does not capture the potential effects of wind power on fossil fuel EGUs

in the neighboring ISO regions through inter-regional export of electricity. However, increases in

wind power can increase the export of electricity generation to the neighboring regions (or decrease

import from neighboring regions), and likely displace electricity generation from fossil fuel EGUs in

the neighboring regions. For simplicity, we will refer increases in export or decreases in import as

increases in net export in this section. Increases in net export of electricity generation due to wind



power provide an upper bound for the potential impacts of wind power on the electricity generation

of fossil fuel EGUs in the neighboring regions, since electricity generation from other fuel types can

be displaced as well. Following methods from (10 ), we quantify changes in electricity export to

neighboring ISO regions due to wind power with the following equation:

Yi,ymdh = �iWi,ymdh + �iXi,ymdh + �i,ymd + ⌘i,h + "i,ymdh [1]

where Yi,ymdh is the hourly net export of electricity from ISO i to all neighboring regions at year y,

month of year m, day of month d, and hour of day h. Wi,ymdh is the wind power production in ISO

region i. Xi,ymdh is the set of control variables including the solar generation, electricity demand

of ISO i, electricity demand, wind and solar generation in all the neighboring regions. �i,ymd is the

year-month-day fixed effects, and ⌘i,h is the hour-of-day fixed effects. �i is the coefficient of interest

that quantifies the increases in electricity net export due to an increase of wind power by 1 MWh.

Table S6 shows the estimated increases in electricity export in each ISO region. Estimations are

performed with a separate dataset of hourly electricity generation and export from EIA (39 ), which

only includes observations starting since July, 2018.

For an increase in wind power by 1 MWh, we estimate that the electricity net export to neighbor-

ing regions increases by 0.427 MWh in CAISO, and 0.396 MWh in NYISO. Increases in electricity

net export are less substantial in other ISO regions, with an increase by 0.131 MWh in PJM, 0.130

MWh in SPP, 0.122 MWh in MISO, and 0.028 MWh in ERCOT. Quantifying the implications of the

increased electricity export on emissions and air quality is challenging because 1) many “neighboring

regions” are not in our sample (not ISO regions), 2) the estimation is performed with a different

sample during a different time period, and 3) it is difficult to estimate the effects on each individ-

ual EGU. Therefore, we only use the estimates from our main model (which only estimates effects

within ISO region) in the subsequent analysis on emissions, air quality, and exposure disparities.

Due to the large changes in electricity export in CAISO and NYISO, we perform a sensitivity

analysis to quantify the potential effects of the electricity exchange on emissions and air quality

in these two regions. In addition to results shown in table S6, we further quantify the changes in

electricity exchange with the specific neighboring region due to wind power in CAISO and NYISO.

To do this, we re-estimate equation 1 to regress wind power in NYISO or CAISO on its neet export to

a specific neighboring region, while controlling for the export to other neighboring regions. Results

are shown in table S7. For NYISO, we estimate that 28% and 30% of the wind-driven changes of



electricity exchange is associated with PJM and ISONE (with the rest to Canada). For CAISO,

we estimate that 80% and 17% of the wind-driven changes of electricity exchange is associated

with the Northwest and Southwest electricity regions, respectively (with the rest to Mexico). We

then quantify the effects of the changes of electricity exchange on EGU emissions in ISONE, PJM,

Northwest, and Southwest. For ISONE and PJM, we use the EGU-level effects derived from our

analysis. For Northwest and Southwest (which are not included in our main analysis), we assume the

emissions offset is proportional to the size of fossil EGUs. We then use the InMAP model to estimate

the changes in annual PM2.5 concentrations due to the increased electricity export (proportional

to RPS-related wind power) from NYISO and CAISO. We find that changes in annual PM2.5

concentration due to the wind-driven changes of electricity export are ⇠7% of the effects of RPS-

related wind power estimated in our main analysis (which ignores the electricity export), while most

changes occur near a few coal plants in Utah (out of our range of primary analysis). The effects are

limited because 1) the amount of wind power in NYISO is quite small, and 2) the electricity grid

in the Northwest is quite clean.

Seasonal and diurnal heterogeneity of the marginal effects

In our main analysis, we do not explicitly account for the potentially different marginal impacts of

wind power on EGU emissions during different seasons and different hours of the day. To examine

the potential importance of this issue, we perform a sensitivity analysis to estimate the impacts

of wind power on each individual EGU for different seasons and different hours of the day. To do

this, we run the same regression as in the main analysis, but only using data from certain seasons

or hours of the day. The results are shown in figure S3 and S4. We find that the effects of wind

power on total emissions do not differ substantially across different seasons and hours of the day.

For MISO, SPP, PJM and ERCOT (i.e. regions that drive the results of air quality effects), the

differences between marginal effects are generally within 16% across different seasons, and within

15% across different hours of the day. The marginal effects of wind power on SO2 emissions differ by

39% and 29% across different seasons in ERCOT and PJM, respectively. However, these seasonal

variations of the emission responses to wind power would still be dominated by the seasonal and

diurnal pattern of wind power production itself (which has seasonal and diurnal differences up to

300%).



Examining exposure disparities for different population groups

Environmental justice is a multi-faceted concept, and metrics that apply certain thresholds may

not capture the full effects of a policy on the disadvantage communities. As there are varying

definitions of EJ, we choose to apply two major criteria drawn from the U.S. EPA’s environmental

justice screening tool for our primary evaluation of the current distribution of air quality benefits

against EJ-relevant targets. To explore additional multi-dimensional aspects of our EJ analysis, we

conduct additional analyses to quantify the impacts on many alternative demographic groups.

For analysis on income groups, we quantify the relative benefits of each income group (10 groups

in total, from households earning less than 10k annually to those earning over 200k). Doing this

allows us to get a more complete understanding of the impacts of wind power development on the

pollution disparity by income groups. Results are shown in figure S14 and S17. In general, we find

limited differential effects of wind power benefits across different income groups. Population groups

with annual household income >200k each year generally get smaller PM2.5 benefits (by ⇠5%)

across most states. Groups with household income from 10-75k receive slightly larger benefits (by

⇠2%). We further quantify the fraction of health benefits accrue to each income group (figure S24).

For analysis on racial/ethnic groups, we quantify the relative benefits for each racial/ethnic

group (Black, Hispanic, White, Asian, and Native American), and the fraction of benefits that

accrue to each group (shown in figure S14 and S24).

For analysis on groups with different baseline exposure to air pollution, we follow the approach

from (75 ) to differentiate grid cells into 10 decile groups based on baseline PM2.5 concentration

in 2014. We then quantify how wind power influences the air quality in each of the ten groups.

This offers us a more complete understanding of the effects of wind power on the existing PM2.5

disparities between locations with different baseline pollution conditions. As shown by figure S16 and

S18, only the 10-20% dirtiest regions in each state receive larger-than-average benefits (by 5-10%).

The cleaner half of each state generally gets lower benefits, with large state-level heterogeneity.

Air quality modeling

We estimate the unit-level impacts of wind power production on air quality using the adjoint of

the GEOS-Chem model. We use archived model outputs from Dedoussi et al. (38 ) that calculate

the sensitivities of the state-level population-weighted PM2.5 and O3 concentrations to the SO2 and

NOx emissions changes in each grid cell in the contiguous US. The GEOS-Chem adjoint model is



simulated for the year 2011 with a horizontal resolution of 0.5�⇥0.666�. EGUs are linked to the

location specific sensitivities derived from the adjoint model based on their latitude, longitude and

stack height. The marginal impact of wind power on air quality at the EGU level is then calculated

as the linear combination of the product of marginal impact of wind power on emissions and the

associated air quality sensitivities for both SO2 and NOx emissions. In general, the combined

sensitivities of SO2 and NOx overestimate the impacts of the combined emission changes on air

quality due to nonlinear interactions between emitted chemicals (38 ). This effect is likely to be

limited here, however, as the marginal emissions changes due to wind power are very small.

To compare with previous studies, we also quantify the air quality impacts with four reduced

complexity methods: the InMAP model (72 ), the AP2 model (76 ), the Estimating Air pollution

Social Impact Using Regression (EASIUR) model (77 ), and health benefits estimates (per ton of

SO2 and NOx emissions) developed by the US EPA (78 ) (see figure S8).

We use the GEOS-Chem forward model to simulate the air quality impacts of the wind power

used to meet RPS targets in 2014, under different scenarios, and for our analysis of the exposure

disparities. We use GEOS-Chem version 12.3.0 with a horizontal resolution of 0.5�⇥ 0.625� in

North America. For each forward run, we first simulate a global run at a horizontal resolution of

4�⇥ 5� from January 2014 to December 2014, with a six-month spin-up. These global simulations

are then used as the boundary conditions for nested simulations in the US with finer resolution of

0.5�⇥0.625�. We use meteorological data from the Modern-Era Retrospective analysis for Research

and Applications, Version 2 (MERRA 2) (79 ). We use the hourly SO2 and NOx emissions reported

in AMPD in 2014 as our baseline emissions for the power sector. We add the unit-hour level

emissions changes of SO2 and NOx due to wind power to the baseline emissions to project the

counterfactual emissions in 2014 in absence of this wind power. The emissions of other sectors

and other species (NH3, BC, OC and VOCs) from the power sector are derived from the National

Emission Inventory (NEI) of 2011 and are scaled to match the total emissions reported in NEI 2014.

Idealized theoretical scenarios

We design four theoretical scenarios: three that use unit-level emissions intensity (CO2, SO2, and

NOx), and one that uses unit-level impacts on premature mortality as the decision criteria. The three

emissions minimizing scenarios minimize the total emissions from fossil EGUs and thus maximize the

avoided emissions due to wind power generation by displacing electricity generation from EGUs with

higher emissions intensity. The health damage minimizing scenario minimizes the health damages



from fossil EGUs based on their impacts on premature mortality.

Our main scenarios do not include any dispatch constraints on how much generation could be

displaced for each unit (as long as displacement is below generation for each hour). Therefore, these

scenarios are used to provide theoretical (rather than realistic) maxima for emissions reductions

and health benefits. We perform sensitivity analyses that evaluate these four scenarios with some

dispatch constraints that the electricity generation is allowed to be displaced up to a certain frac-

tion (ranging from 1% to 30%, calculated with the interannual variability of unit-level generation).

The extra avoided emissions under the idealized theoretical scenarios (compared with the ex post

scenario) are 48-65% smaller with the dispatch constraints, but the extra benefits remain substan-

tial (see figure S27). The four main theoretical scenarios displace the same amount of electricity

generation as the ex post scenario for each ISO region. We also design four additional sensitivity sce-

narios that displace the same amount of electricity generation as the ex post scenario for each state

(instead of each ISO region). Scenarios with these alternative constraints are designed to simulate

the impacts of a situation in which each state is only allowed to coordinate the dispatch schedule of

EGUs within the state to maximize the avoided emissions or health benefits of the renewable policy

at the state level (without cross-state coordination).

We also quantify the air quality benefit of wind power development under another counterfac-

tual scenario. In this scenario, we keep the displacement patterns same as the ex post scenario, but

reallocate the amount of wind power across ISO regions. The amount of wind power is reallocated

from ISO regions with low air quality benefits to regions with high air quality benefits. This scenario

quantifies the potential air quality effects of alternative siting decisions for wind power deployment

(similar ideas have been evaluated for rooftop solar in (80 )). We focus on the reallocation within

ISONE, NYISO, PJM, SPP, and MISO, which are all interconnected as part of the Eastern Inter-

connection. Following a similar grid stability constraint in Sexton et al., we assume the hypothetical

amount of wind power generated to meet RPS targets in one ISO region does not exceed the existing

generation associated with RPS by 100%. Reallocating the wind power capacity from ISONE and

NYISO to PJM and MISO (where air quality benefits of wind power development are higher) leads

to an extra air quality benefit of the same amount of wind power development by 15%.



Supplementary tables

Table S1: Aggregated effects of a marginal increase in wind power (1 MWh) on total electricity
generation from fossil fuel EGUs (unit: MWh).

(1) (2) (3) (4) (5) (6) (7)

CAISO -0.488 -0.485 -0.675 -0.300 -0.491 -0.587
(0.011) (0.016) (0.022) (0.033) (0.012 (0.015)

ERCOT -0.730 -0.701 -1.026 -0.798 -0.730 -0.854 -0.790
(0.008) (0.009) (0.013) (0.034) (0.007 (0.013) (0.009)

ISONE -0.992 -1.041 -0.938 -0.996 -1.087 -0.891
(0.105) (0.165) (0.136) (0.132) (0.098) (0.114)

MISO -0.884 -0.869 -0.834 -0.918 -0.849 -0.910 -0.879
(0.013) (0.016) (0.017) (0.022) (0.011) (0.018) (0.016)

NYISO -0.443 -0.400 -0.339 -0.300 -0.412 -0.346 -0.426
(0.034) (0.041) (0.048) (0.059) (0.034) (0.062) (0.037)

PJM -1.097 -1.065 -0.926 -1.269 -1.088 -0.842 -1.079
(0.036) (0.042) (0.043) (0.053) (0.032) (0.057) (0.037)

SPP -0.935 -0.911 -1.072 -0.887 -0.951 -0.839
(0.010) (0.013) (0.015) (0.024) (0.010) (0.015)

Year ⇥ Month ⇥ Hour Y Y Y Y Y Y
Year ⇥ Month ⇥ Hour ⇥ Day of week Y
Year ⇥ Month ⇥ Day of Month Y
Gas price Y
Excluding zeros Y
Including NAs Y
Congestion status Y

Notes: Aggregated effects are calculated as the sum of EGU-level effects within each ISO region.
Standard errors are reported in parentheses. Standard errors of the aggregate effects are calculated
with the EGU-level standard errors, assuming independence between these EGU-level estimates.



Table S2: Aggregated effects of a marginal increase in wind power (1 MWh) on total SO2 emissions
(unit: lbs).

(1) (2) (3) (4) (5) (6) (7)

CAISO -0.001 -0.002 -0.001 -0.001 -0.001 -0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ERCOT -0.515 -0.797 -0.489 -0.755 -0.528 -0.441 -0.563
(0.022) (0.030) (0.026) (0.082) (0.021) (0.025) (0.030)

ISONE -0.057 -1.084 -0.605 0.083 -0.121 0.328
(0.333) (0.804) (0.588) (0.399) (0.329) (0.149)

MISO -1.053 -1.075 -1.027 -1.075 -1.040 -0.976 -1.128
(0.042) (0.039) (0.051) (0.061) (0.042) (0.044) (0.057)

NYISO -0.105 -0.008 -0.156 -0.034 -0.131 -0.030 -0.118
(0.032) (0.039) (0.041) (0.058) (0.036) (0.018) (0.036)

PJM -2.215 -1.671 -2.331 -2.987 -2.142 -1.312 -2.192
(0.212) (0.223) (0.257) (0.410) (0.233) (0.245) (0.241)

SPP -0.925 -0.779 -0.921 -0.807 -0.934 -0.789
(0.020) (0.024) (0.027) (0.043) (0.021) (0.026)

Year ⇥ Month ⇥ Hour Y Y Y Y Y Y
Year ⇥ Month ⇥ Hour ⇥ Day of week Y
Year ⇥ Month ⇥ Day of Month Y
Gas price Y
Excluding zeros Y
Including NAs Y
Congestion status Y

Notes: Aggregated effects are calculated as the sum of EGU-level effects within each ISO region.
Standard errors are reported in parentheses. Standard errors of the aggregate effects are calculated
with the EGU-level standard errors, assuming independence between these EGU-level estimates.



Table S3: Aggregated effects of a marginal increase in wind power (1 MWh) on total NOx emissions
(unit: lbs).

(1) (2) (3) (4) (5) (6) (7)

CAISO -0.010 -0.008 -0.004 0.011 -0.011 -0.017
(0.004) (0.005) (0.006) (0.011) (0.004) (0.002)

ERCOT -0.194 -0.305 -0.189 -0.113 -0.196 -0.181 -0.241
(0.005) (0.008) (0.006) (0.020) (0.005) (0.006) (0.013)

ISONE 0.279 0.006 0.298 0.330 0.256 0.083
(0.075) (0.121) (0.138) (0.096) (0.074) (0.037)

MISO -0.611 -0.554 -0.607 -0.609 -0.612 -0.558 -0.622
(0.015) (0.019) (0.018) (0.026) (0.015) (0.016) (0.018)

NYISO -0.018 0.001 -0.015 0.012 -0.017 -0.009 -0.015
(0.011) (0.015) (0.013) (0.021) (0.011) (0.010) (0.012)

PJM -0.853 -0.702 -0.852 -0.939 -0.850 -0.615 -0.847
(0.047) (0.057) (0.058) (0.073) (0.050) (0.057) (0.051)

SPP -0.761 -0.912 -0.751 -0.650 -0.828 -0.571
(0.014) (0.021) (0.017) (0.034) (0.015) (0.013)

Year ⇥ Month ⇥ Hour Y Y Y Y Y Y
Year ⇥ Month ⇥ Hour ⇥ Day of week Y
Year ⇥ Month ⇥ Day of Month Y
Gas price Y
Excluding zeros Y
Including NAs Y
Congestion status Y

Notes: Aggregated effects are calculated as the sum of EGU-level effects within each ISO region.
Standard errors are reported in parentheses. Standard errors of the aggregate effects are calculated
with the EGU-level standard errors, assuming independence between these EGU-level estimates.



Table S4: Heterogeneous impacts of wind power on EGUs of different characteristics

Electricity CO2 SO2 NOx

max heat input �0.052 �0.056 0.056⇤ �0.010
(0.044) (0.042) (0.030) (0.034)

age �0.107⇤⇤ �0.103⇤⇤ �0.018 �0.070
(0.054) (0.051) (0.052) (0.074)

NOx removal �0.375⇤ �0.405⇤ �0.335⇤⇤ �0.087
(0.222) (0.207) (0.149) (0.173)

SO2 removal �0.111 �0.127 �0.147⇤⇤ �0.182⇤

(0.103) (0.111) (0.063) (0.095)
fuel NG �0.477⇤⇤⇤ �0.519⇤⇤⇤ �0.172 �0.311

(0.172) (0.178) (0.149) (0.197)
fuel SUB �0.277⇤⇤ �0.339⇤⇤⇤ �0.139⇤ �0.288⇤⇤

(0.118) (0.128) (0.081) (0.114)
Observations 1,205 1,186 1,205 1,205
Adjusted R2 0.158 0.162 0.014 0.041

Notes: Dependent variables (the relative sensitivity of electricity generation and emissions), the
maximum capacity of heat input and unit age are normalized. Relative sensitivity is calculated as
the fraction of emissions or generation change due to marginal increase of wind power at the EGU

level. Standard errors clustered at plant level are reported in parentheses. For fuel type, the
reference/omitted category is bituminous coal. Significance: ⇤ p<0.10, ⇤⇤ p<0.05, ⇤⇤⇤ p<0.01



Table S5: Avoided mortalities due to wind power associated with RPS in different scenarios esti-
mated with alternative concentration response functions.

ex post
health damage

minimizing
SO2

minimizing
NOx

minimizing
CO2

minimizing

Krewski et al., 2009
231 1009 927 701 496

(146, 318) (637, 1391) (586, 1278) (443, 967) (313, 684)

Lepeule et al., 2012
355 2425 2229 1686 1193

(287, 843) (1253, 3679) (1152, 3382) (871, 2557) (616, 1811)

Hoek et al., 2013
247 1079 992 750 531

(166, 326) (726, 1425) (668, 1310) (505, 990) (357, 701)

Di et al., 2017
299 1305 1199 907 642

(291, 306) (1270, 1339) (1167, 1231) (883, 931) (625, 659)

Pope et al., 2018
247 1079 992 750 531

(42, 442) (184, 1932) (169, 1776) (128, 1343) (91, 951)

Notes: We calculate the PM2.5-related all-cause avoided mortality due to wind power under different
scenarios. The 95% confidence interval is shown in the parenthesis.



Table S6: Changes in electricity export to neighboring regions due to increases in wind power.

CAISO ERCOT ISONE MISO NYISO PJM SPP
(1) (2) (3) (4) (5) (6) (7)

Wind 0.427⇤⇤⇤ 0.028⇤⇤⇤ 0.070⇤⇤⇤ 0.122⇤⇤⇤ 0.396⇤⇤⇤ 0.131⇤⇤⇤ 0.130⇤⇤⇤

(0.022) (0.001) (0.024) (0.006) (0.026) (0.010) (0.003)
Observations 55,079 55,080 55,080 55,078 55,080 55,079 55,077
R2 0.815 0.651 0.855 0.879 0.828 0.916 0.755

Notes: This table shows changes in electricity export to neighboring regions due to an increase in
wind power for each ISO region (unit: MWh per MWh wind power). The dependent variable is

the export of electricity to neighboring regions (positive values indicate net export). The
estimations are performed with hourly electricity generation data from EIA-930, from July 2018 to

October 2021 (using all available data). Control variables include electricity demand and solar
power in the ISO region, and demand, wind power and solar power in the neighboring ISO regions.

Standard errors are clustered at year-month-day level.

Table S7: Changes in electricity export to neighboring regions due to increases in wind power
(CAISO and NYISO).

CAISO-NW CAISO-SW CAISO-MEX NYISO-PJM NYISO-ISONE NYISO-CAN
(1) (2) (3) (4) (5) (6)

Wind 0.245⇤⇤⇤ 0.060⇤⇤⇤ 0.012⇤⇤⇤ 0.140⇤⇤⇤ 0.154⇤⇤⇤ 0.204⇤⇤⇤

(0.016) (0.012) (0.001) (0.016) (0.017) (0.019)
Observations 55,079 55,079 55,079 55,080 55,080 55,080
R2 0.865 0.907 0.745 0.867 0.849 0.755

Notes: This table shows changes in electricity export to each neighboring region due to increases
in wind power in CAISO and NYISO (unit: MWh per MWh wind power). The dependent

variable is the export of electricity to a specific neighboring region, e.g., from CAISO to Northwest
(NW). SW: Southwest; MEX: Mexico; CAN: Canada. The estimations are performed with hourly

electricity generation data from EIA-930, from July 2018 to October 2021 (using all available
data). Control variables include electricity demand and solar power in the ISO region, and
demand, wind power and solar power in the neighboring ISO regions. Standard errors are

clustered at year-month-day level.
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Figure S1: Comparison of the marginal impacts of wind power on CO2, SO2, and NOx emissions
estimated in our work (orange) with the estimates reported in Millstein et al. (blue) (ref 15 ).
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Figure S2: Distribution of the unit-level marginal impacts of wind power on electricity generation
(A), CO2 emissions (B), SO2 emissions (C), and NOx emissions (D).
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Figure S3: Aggregated impacts of wind power on SO2 and NOx emissions within each ISO region,
by different seasons. The results are estimated using data in each of the seasons respectively: MAM
(March, April, May), JJA (June, July, August), SON (September, October, November), and DJF
(December, January, February).
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Figure S4: Aggregated impacts of wind power on SO2 and NOx emissions within each ISO region, by
different hours of the day. The results are estimated using data in each of these periods respectively:
1am-6am, 7am-12pm, 13pm-18pm, 19pm-12am.
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Figure S5: Unit-level impacts of wind power on monetized health impacts due to changes in PM2.5

and O3 concentrations (2014 dollars). Premature mortalities are derived using changes in the annual
average PM2.5 and MDA8 O3 across the contiguous US from 1 MWh wind power per hour during
the whole year (therefore 24⇥365 MWh). Health impacts are monetized using a value of statistical
life (VSL) of 7.4 million dollars (2006 dollars) recommended by EPA (44 ). Seven ISO regions are
colored on the map. Colored plants on the map represent plants whose health impacts account for
more than 5% of the total health impacts of all units in the ISO region (only plants with >10% of
the total ISO impacts are colored in the ISONE and NYISO regions). Blue indicates health benefits
from avoided mortality, while red indicates health damages from increased mortality. Point A and
B on the maps show two power plants as illustrations (discussed in the text). We scale VSL value
to the 2014 dollars to adjust for inflation. Monetized impacts are expressed in 2014 dollars.
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Figure S6: Benefits of wind power from air quality improvements, cost savings and CO2 reductions at
the ISO level (2014 dollars), compared to cost estimates of wind power development. Levelized cost
of wind energy is derived from 2017 Cost of Wind Energy Review (49 ) and adjusted for the regional
capacity factors of wind energy. Cost of RPS policy represents the loss of household consumption due
to the constraints of RPS, derived from Dimanchev et al., 2019 (19 ). Health impacts are monetized
using a value of statistical life (VSL) of 7.4 million dollars (year 2006 dollars) recommended by the
US EPA. CO2 benefits are calculated using a social cost of carbon (SCC) of $35 (year 2007 dollars).
We scale SCC and VSL values to year 2014 dollars to adjust for inflation. Monetized benefits are
expressed in 2014 dollars.
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Figure S7: Air quality benefits of wind power at the state level (2014 dollars). Order of the states
is based on their total air quality benefits (from left to right, small to large).
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Millstein et al. (ref. 15)

this work

Figure S8: Marginal impacts of wind power on the air pollution-related health impacts estimated
in our work (orange) and estimates reported in Millstein et al. (blue) (ref 15 ). Orange square
indicates the estimates reported in our main text (calculated using the GEOS-Chem adjoint model).
Other orange dots indicate the impacts calculated with alternative valuation approaches using our
estimates of unit-level emissions impacts (see SI section “Air quality modeling”). Blue dots indicate
the estimates reported in Millstein et al. under different valuation approaches. For simplicity,
we calculate the “EASIUR”, “EPA”, and “COBRA” estimates by averaging over the high and low
estimates of each method reported in Millstein et al. Population and VSL are adjusted to be
consistent across different approaches. All estimates are adjusted to dollars in 2014 by scaling VSL
values to year 2014 dollars to adjust for inflation.
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Figure S9: RPS annual targets associated with wind power in 2014.



Figure S10: Impacts of wind power used to meet RPS targets on premature mortality, PM2.5, and
O3 concentrations under the ex post scenario. Premature mortality includes all cause mortality due
to PM2.5 exposure and O3 mortality attributed to respiratory diseases. Air quality impacts are
characterized as the changes in annual average PM2.5 concentrations (unit: µg/m3) and the annual
average MDA8 O3 (unit: ppb).



Figure S11: Additional impacts of wind power used to meet RPS targets on electricity generation,
premature mortalities, PM2.5 and O3 concentrations under the health damage minimizing scenario
relative to the ex post scenario. Panel A shows the changes in electricity generation at the EGU level
(blue: higher displaced generation due to wind power under the health damage minimizing scenario;
red: lower displaced electricity generation). Premature mortality includes all cause mortality due
to PM2.5 exposure and O3 mortality attributed to respiratory diseases. Air quality impacts are
characterized as the changes in annual average PM2.5 concentrations (unit: µg/m3) and the annual
average MDA8 O3 (unit: ppb).
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Figure S12: Total benefits of wind power under different scenarios, as functions of value of statistical
life (x-axis, panel A) and social cost of carbon (x-axis, panel B). Total benefits are quantified as
the sum of health benefits due to reduction in air pollution, climate benefits, and cost saving. The
values of VSL and SCC used in the main analysis are shown with the dashed lines. Monetized
benefits are expressed in 2014 dollars.



Figure S13: Additional impacts of wind power used to meet RPS targets on electricity generation,
premature mortalities, PM2.5 and O3 concentrations under the health damage minimizing scenario
relative to the scenario which states make their own decision to minimize health damages (without
cross-state cooperation). Panel A shows the changes in electricity generation at the EGU level
(blue: higher displaced generation due to wind power under the health damage minimizing scenario;
red: lower displaced electricity generation). Premature mortality includes all cause mortality due
to PM2.5 exposure and O3 mortality attributed to respiratory diseases. Air quality impacts are
characterized as the changes in annual average PM2.5 concentrations (unit: µg/m3) and the annual
average MDA8 O3 (unit: ppb).
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Figure S14: Percentage difference in air quality benefits for different income groups (upper panel)
and racial/ethnic groups (lower panel). Benefits are calculated as the relative differences between
the mortality rate changes experienced by specific population groups and the nation-wide mortality
rate change due to wind power. Positive relative benefits indicate the subgroup experiences a larger
reduction in mortality rates compared to the average population in the studied regions. The three
emissions scenarios are shown in different colors.



Figure S15: Percentage of low income and minority populations living in each county. Definitions
of low income and minority groups are adopted from EPA’s Environmental Justice Mapping and
Screening Tool (EJSCREEN).
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Figure S16: Percentage difference in air quality benefits for groups living in areas with different
levels of PM2.5 concentration. The x-axis shows the percentile of PM2.5 concentration (from the
cleanest areas (left) to the dirtiest areas (right)) of the studied regions. Positive relative benefits
indicate the subgroup experiences a larger reduction in PM2.5-related mortality rates compared to
the average population in the studied regions. The three emissions scenarios are shown in different
colors.
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Figure S17: Percentage difference in air quality benefits for different income groups in each state.
Each point on the box plot indicates a state. Positive relative benefits indicate the specific income
group experiences a larger reduction in PM2.5-related mortality rates compared with the state-wide
average.
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Figure S18: Percentage difference in air quality benefits for groups living in areas with different levels
of PM2.5 in each state. The x-axis shows the percentile of PM2.5 concentration (from the cleanest
areas (left) to the dirtiest areas (right)) in each state. Each point on the box plot indicates a state.
Positive relative benefits indicate the specific population group experiences a larger reduction in
PM2.5-related mortality rates compared with the state-wide average.
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Figure S19: Relative PM2.5 benefits within each state compared with the state-wide population.
Positive relative benefits indicate the specific population group experiences a larger reduction in
PM2.5-related mortality rates compared to the state-wide average. Negative benefits indicate smaller
reductions in mortality rates. The three emissions scenarios are shown in different colors.
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Figure S20: Spatial resolution of the GEOS-Chem model simulations (Panel A) and InMAP simu-
lations (B). The size of GEOS-Chem grid cell is comparable to typical US counties (C). The grid
cell size of InMAP varies dynamically based on the population density (smaller cell size in the ur-
ban populous regions). InMAP grid cell size is comparable to the size of census tracts (see table
D). Table D shows the approximate size of GEOS-Chem grid cell, InMAP grid cell, county, and
census tract. The 5th and 95th percentages of the spatial areas are shown for InMAP grid cells, US
counties, and US census tracts.
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Figure S21: Percentage difference in air quality benefits for different demographic groups, calculated
with demographic data of different years. Results are estimated with the American Community
Survey (ACS) 5-year data from 2007-2011, 2013-2017, and 2015-2019, respectively. Benefits are
calculated as the relative differences between the mortality rate changes experienced by specific
population groups and the average population in the studied regions. The three panels show the
result under three emissions scenarios.
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Figure S22: Distribution of air quality benefits for different racial and income groups, calculated
with energy system data from 2011-2017 (main analysis) and data from 2017 alone. Panel A shows
the relative differences between the mortality rate changes experienced by specific population groups
and the average population in the studied regions. Panel B shows the faction of benefits accrued to
each group. Panel C and D show the relative benefits at the state level. Results are estimated with
the InMAP model.
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Figure S23: Percentage of total PM2.5 benefits from wind power associated with RPS targets flowing
to low income (upper panel) and minority populations (lower panel). Figure shows estimates derived
from GEOS-Chem (GC (county)), InMAP at two different resolutions (at county and census tract
level) and inverse distance weighted emissions (IDWE) using plant-level SO2 and NOx emissions.
Avoided premature mortalities (health benefits) are calculated with county-specific mortality rates.
Definitions of low income and minority groups are adopted from EPA’s Environmental Justice
Mapping and Screening Tool (EJSCREEN). The three emissions scenarios are shown in different
colors.
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Figure S24: Percentage of total health benefits from wind power associated with RPS targets flowing
to different income groups (upper panel) and racial/ethnic groups (lower panel). Black triangles
show the population fraction of the subgroup. Figure shows estimates derived from GEOS-Chem.
Health benefits are calculated with the avoided premature mortalities (PM2.5 and O3). The three
emissions scenarios are shown in different colors.



Figure S25: Normalized changes in pollution exposure of PM2.5 under the health damage minimizing
scenario using different air quality modeling approaches. The changes in the county-level exposure
are normalized as the ratio to the largest change in the pollution exposure (i.e. the exposure is
one in the county with the largest change in pollution exposure). The PM2.5 exposure is modeled
as concentrations (unit: µg/m3) in GEOS-Chem and InMAP, and modeled as inverse distanced
emissions in IDWE. The total number of avoided mortality under the health damage minimizing
scenario is included for GEOS-Chem and InMAP estimates.
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Figure S26: Relative PM2.5 benefits for low income and minority groups within each state (estimated
with InMAP). This figure shows the results calculated with InMAP at county and census tract
level. Positive relative benefits indicate the specific population group experiences a larger reduction
in PM2.5-related mortality rates compared to the state-wide average. Negative benefits indicate
smaller reductions in mortality rates. The three emissions scenarios are shown in different colors.
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Figure S27: The extra avoided emissions under idealized theoretical scenarios with (red) and without
dispatch constraints (turquoise) relative to the ex post scenario. Dispatch constraints are determined
by the interannual variability of unit-level generation (ranging from 1%-30%), which are used to
limit the fraction of electricity generation that can be displaced by wind power in any given hour.
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