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Movies S1 to S5



Fig. S1. D. virilis bilateral song is sexually monomorphic. (A) To compare bilateral song 
produced by +/+ males and females, we recorded song from heterosexual (left) and homosexual 
(right) pairs. (B) +/+ males are capable of singing bilateral song when courted by another male. 
(C) Bilateral song pulses from +/+ males are similar in appearance to +/+ female bilateral song
and distinct from the stereotyped bouts of +/+ male unilateral song. (D) Total % of courtship
time, defined as the time between the first and last pulse (from either sex) of each recording, that
contains unilateral song. Although +/+ males take turns courting one another, the amount of
male-directed courtship, as measured by the amount of unilateral song, is significantly lower
than female-directed (Wilcoxon rank sum z=5.4, p<1e-7). (E-G) IPI (E), pulse duration (F), and
response time (delay between onset of unilateral bout and center of first following bilateral
pulse) (G) of +/+ male bilateral song compared to +/+ male unilateral and +/+ female bilateral
songs. Each dot represents the within-fly median. Kruskal-Wallis and pairwise Wilcoxon rank
sum tests with Bonferroni correction were used to detect significant differences between groups.
(H) +/+ males sing more total bilateral song than +/+ females relative to the amount of unilateral
song in a given recording (Wilcoxon rank sum z=-3.7, p<1e-3). n=11-22 flies/group in (D-H).





Fig. S2. FruM expression in D. virilis fruD  tra/+ and fruD  tra/fruD  tra female brains. (A) Antibody 
staining for FruM (green) and bruchpilot (nc82; magenta) in anterior D. virilis +/+ male 
(top),  fruD tra/+ female (middle), and fruD tra/fruD tra female brains. Three individuals from each 
genotype are shown. Clusters corresponding to FruM+ cell types in D. melanogaster (as defined 
in (84)) are indicated. We were able to identify all eight anterior FruM+ clusters in the central 
brain of D. virilis. Somas corresponding to the SG cluster in fruD  tra/fruDtra females appeared in 
more posterior sections than in fruD  tra/+ females and +/+ males and are thus indicated in (B). (B) 
Same as (A) for the posterior portions of the same brains. In general, posterior staining was more 
faint than anterior, and thus even in +/+ D. virilis males, we were only able to identify 4-5 of the 
8 FruM+ clusters described in posterior D. melanogaster brains (84). FruM+ cluster names 
follow those labeled in the top row unless otherwise indicated. Ocelli (arrowheads) are 
immunoreactive for FruM. The faintness of FruM staining in the posterior brain resulted in a low 
signal to noise ratio, such that optimizing visualization of FruM+ somas required contrast and 
brightness adjustments that make the protocerebral bridge appear in the green channel in a few 
brains. 





Fig. S3. Convolutional neural network (CNN)-based song segmenter for D. virilis songs. (A) 
Architecture of the CNN trained to distinguish between unilateral song, bilateral song, overlap of 
the two song types, and no song. The input is a raw microphone recording with a window size of 
400.1 ms, and the output is a series of classification probabilities for each time point in the 
recording. This network was good at identifying unilateral song and overlap portions, but often 
classified noises, such as jumping or grooming, as bilateral song. (B) For this reason we trained a 
second network to specifically distinguish between bilateral song and no song. This 2-class CNN 
was similar to the 4-class network (A) except it used a smaller window size of 200.1 ms. (C) 
Example of song segmenter pipeline. Determinations of unilateral song and overlap (which is 
rare) come from the 4-class network, and thus those portions of the recording are ignored in the 
output of the 2-class network. The classification probabilities for bilateral song and no song are 
averaged between the two networks. The segmenter assigns each point in the recording 
according to the maximum classification probability, with a few heuristics (see Materials & 
Methods). (D-F) Sensitivity (D), precision (E), and their harmonic mean F (F) of the segmenter 
performance on unilateral (left) and bilateral (right) song compared to manual segmentations. 
n=18, 3, 1 (left) and 12, 4, 3, 3 (right) flies.     



Fig. S4. D. melanogaster fruDtra females produce male courtship behaviors but aberrant 
unilateral song. (A) We paired single fruDtra/fru4-40 and fruDtra/+ D. melanogaster females with a 
+/+ (NM91) female. Single +/+ males and females each paired with a +/+ female served as 
controls. (B) A fruDtra/+ female performs unilateral wing extensions (arrowhead) directed toward 
a +/+ female. (C-D) Percentage of bins containing tarsal contact (C) or unilateral wing 
extensions (D) produced by each genotype when paired with a +/+ female. Each dot represents 
one fly. n=31, 54, 38, 34 flies. (E) Seven-second microphone recordings showing sounds 
concurrent with unilateral wing extensions directed toward a +/+ female. Unilateral wing 
extensions by males generate complex song bouts consisting of switches between pulse and sine 
song, whereas unilateral wing extensions by fruDtra females only infrequently generate pulses 



(never sine). Some of these pulses are detected by the D. melanogaster song segmenter (red) 
(82). (F) Enlargements of the boxed regions in (E). fruDtra female pulses detected by the D. 
melanogaster segmenter (red) lack the structure of +/+ male pulses (top). 



Fig. S5. Removing a copy of fruM from D. virilis males has no effect on courtship behaviors. 
(A) To generate a fruM-null allele, we designed CRISPR-Cas9 guide RNAs flanking the S-exon
(top) to remove the S-exon (bottom). (B) We confirmed deletion of the S-exon with PCR using 1
reverse primer (R1) and 2 forward primers (F1, F3) due to the size of the S-exon. (C) PCR
results using the primers shown in (B). In +/+ flies, the F1-R1 product is too large to amplify, so
the product present is F3-R1 (left). The same product is present in -/+ flies due to the wild-type
allele, in addition to the F1-R1 product, which is shorter due to the removal of the S-exon (right).



(D) To test whether removal of a fruM copy affected male courtship behaviors, we paired single
-/+ males with a +/+ female. Single +/+ males (siblings to -/+ males) paired with a +/+ female
served as controls. (E-G) Percent of bins containing tarsal contact (E), proboscis extension (F),
and unilateral wing extension (G) directed toward a +/+ female. Each dot represents one fly.
n=29 and 26 flies. (H) 14 sec microphone recording of a duet between a -/+ male and +/+
female. (I) A single unilateral song bout from a +/+ and a -/+ male. (J-O) Amount of bilateral
song (from +/+ female) relative to unilateral song (from male) (J), median IPI (K), median pulse
duration (L), median number of pulses per bout (M), percent time spent singing (N), and median
response time (delay between offset of bilateral pulse and onset of following unilateral bout) (O)
of unilateral song from each genotype when paired with a +/+ female. Each dot represents one
fly. n=22 and 18 flies in (J-O). (P) Cumulative percent copulation over the 25 min observation
period. Values are normalized relative to +/+ males. (Q-R) Percent bins with fencing/sparring
(Q) and curling/spinning (R) behaviors. n=29 and 26 flies in (P-R).



Fig. S6. Amount of courtship and aggressive behaviors in pairings with wild-type males. 
(A-C) Percentage of bins containing tarsal contact (A), proboscis extension (B), and unilateral 
wing extension (C) from the +/+ male toward females of each genotype. Even within fruDtra/+ 
females, males produced equal amounts of courtship regardless of whether the pair copulated. 
Kruskal-Wallis one-way ANOVA tests were significant for all 3 variables (A-C) but pairwise 
Wilcoxon rank sum tests did not meet significance after Bonferroni correction for multiple 
comparisons. n=13, 13, 25, 24 flies. (D) Percent courtship time occupied by bilateral song in 
pairings with +/+ males. Bilateral song in these pairings was produced solely by the female. (E) 
Same as (D) for unilateral song, which was produced solely by the +/+ male. Each dot represents 
one fly. n=83, 114, 22 flies. Statistical tests were Kruskal-Wallis one-way ANOVA followed by 
pairwise Wilcoxon rank sum tests with Bonferroni correction. (F-G) Percentage of bins 



containing fencing/sparring (F) and curling/spinning (G) between females paired with +/+ males. 
There were no differences in the amount of these two behaviors in copulating vs. non-copulating 
fruDtra/+ females. n=13, 13, 25, 24 flies. Statistical tests were Kruskal-Wallis one-way ANOVA 
followed by pairwise Wilcoxon rank sum tests with Bonferroni correction. 



Movie S1. D. virilis fru∆tra/fru∆tra female taps, licks, and sings unilateral song to a +/+ female 
(white dot). The +/+ female responds with bilateral song. 

Movie S2. D. melanogaster fru∆tra/+ female taps, licks, and performs unilateral wing extensions 
directed toward a +/+ female (white dot). The wing extensions produce some sounds but not 
male-typical song. 

Movie S3. D. virilis fru∆tra/fru∆tra female sings bilateral song while duetting with a +/+ male 
(smaller fly). 

Movie S4. Low-posture fencing between D. virilis fru∆tra/fru∆tra female (larger fly) and +/+ male. 
The interaction begins with duetting, then the fru∆tra/fru∆tra female turns to the male and 
approaches him with her front tarsi. She also produces a brief curling event and a few wing 
flicks. The male quickly resumes courting her once the aggression subsides. 

Movie S5. Curling and spinning between D. virilis fru∆tra/fru∆tra female (larger fly) and +/+ male. 
The interaction begins with the male courting the fru∆tra/fru∆tra female and then the fru∆tra/fru∆tra 
female initiates curling, in which she curls her abdomen toward the male and at times shoves him 
with it. The male appears to try to continue tapping and licking the fru∆tra/fru∆tra female from 
behind, which results in the pair spinning around together. Duetting immediately resumes when 
the spinning bout ends.  
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