

Supplementary Material

Supplementary figure 1: The effect of 13 microRNA mimics on the differentiation of CG-4 cells in RT-qPCR (screening). The plots show the relative expression (mean with SD of $2^{-\Delta\Delta Ct}$) of the differentiation markers *Mbp* and *Plp1* to the differentiation vehicle control (DIFF VehCo)

resulting from the double transfection of each microRNA mimic (as labelled on the *x*-axis) in CG-4 cells in differentiation culture conditions, as well as the proliferation vehicle control (PROL VehCo). The dotted line represents the mean relative expression of the differentiation vehicle control to which the relative expression $(2^{-\Delta\Delta Ct})$ of each sample was calculated. The adjusted p-value was calculated by Dunnett's multiple comparison test to each control separately (gray bars), i.e. the differentiation vehicle control (*) and the microRNA mimic negative control (miR-NC, #), as recommended following a parametric one-way ANOVA on all conditions: ns for non-significant, */# for $p \le 0.05$, **/### for $p \le 0.01$, ***/#### for $p \le 0.001$. Data of 3 experiments for each microRNA with each condition in triplicate. SD, standard deviation.

Supplementary figure 2: The effect of 5 microRNA mimics on the differentiation of CG-4 cells in RT-qPCR (confirmation). The plots show the relative expression (mean with SD of $2^{-\Delta\Delta Ct}$) of several OPC, pre-OL, OL and astrocyte markers to the differentiation vehicle control (DIFF VehCo) resulting from the single transfection of each microRNA mimic (as labelled on the *x*-axis) in CG-4 cells in differentiation culture conditions, as well as the proliferation vehicle control (PROL VehCo). The dotted line represents the mean relative expression of the differentiation vehicle control to which the relative expression ($2^{-\Delta\Delta Ct}$) of each sample was calculated. The adjusted p-value was calculated by Dunn's or Dunnett's multiple comparison test to each control separately (gray bars), i.e. the differentiation vehicle control (*) and the microRNA mimic negative control (miR-NC, #), as recommended following a parametric/non-parametric one-way ANOVA on all conditions: ns for non-significant, */# for p ≤ 0.05 , **/##

for $p \le 0.01$, ***/### for $p \le 0.001$, ****/#### for $p \le 0.0001$. Data of 3 experiments with each condition in triplicate. OPC, oligodendrocyte progenitor cells; OL, oligodendrocytes; SD, standard deviation.

Supplementary figure 3: The effect of 5 microRNA mimics on the proliferation and differentiation of CG-4 cells in immunocytochemistry. These fluorescence micrographs are representative of the staining of (A) proliferation marker Pcna (green), (B) OPC marker A2B5 (orange), (C) late progenitor/early differentiation marker O4 (green), and (D) mature oligodendrocyte marker Mbp (yellow) and astrocyte marker Gfap (green) in CG-4 cells following the single transfection of each microRNA mimic (as labelled in white) in differentiation culture conditions, alongside the proliferation and differentiation vehicle controls (PROL and DIFF VehCo). Of note, Mbp-staining suggests the branching morphology of mature oligodendrocyte progenitor cells; miR-NC, microRNA negative control.

miR-33-3p miR-34c-5p miR-124-5p miR-145-5p miR-214-3p miR-33-3p miR-33-3p minic+L2K minic+tabilitor miR-34c-5p miR-34c-5p mimic+L2R mimic+inhibitor PROL VenCo DIFF VenCo miR-124-5p miR-124-5p mimic+L2K minic+inhibitor miR-145-5p miR-145-5p mimic+L2K mimic+Inhibitor PROL VehCo PROL VehCo DIFF VehCo PROL VehCo DIFF VehCo PROL VehCo DIFF VehCo miR-214-3p miR-214-3p minic+125 mimic+tinhibiter DIFF VehCa 5 PROL VehCe DIFF VehCe reiR-33.dp miR-33-3p minic+L3K minic+inhibitor PROL WebCo OPP WebCo meR-346-5p miR-340-5p minic+12K minic+inhibitor PROL VelvCe DIFF VelvCe miR-138.5p miR-138.5p mimic+L2R mimic+inhibitsr PROLVERCO DEFE VERCO MURITARIAN PER 145-8p mimic+12K mimic+101bBor PROL VehCo DIPP VehCo mitt.214-3a mitt.214-3p mittlic+L3K mittlic-L3KBitter ---mill-34c-5p mill-34c-5p ministertL2K ministertabilition PROL Venco DIFF Venco relR-124-5p mill-124-5p relation-C2N minute-relation PROL WebCe DIFF VebCe miR-145-5p mR-145-5p E PROL Vehico DIFF Vehico milit-33-3p milite-33-3p milite-4-28 militeria-1-28 militeria-1-28 PROL VehCa DIFF VehCa PROL VehCo DIPP VehCo milli 214-3p milli 214-3p winks 41,2K ministrativiti id a Pip! Pip. miR-34c-5p miR-34c-5p minuk=L2K minuk=behiluk miR-124-5p miR-124-5p mimic+L2R mimic+inhibitor miR-145-5p miR-145-5p mime-142K mimic-1abibitor PHOL VehCo DIFF VehCo miR-33-3p miR-33-3p mimic+L2K mimic+inhibitor PROL VehCe DIFF VehCe PROL VehCo DIFF VehCo mill-214-3p mill-214-3p minut-1,28 minute-tertilation PROL VehCo DEF VehCo PROL VENCO DIFF VENCO Mbg Mbp

niR-128-5p wiR-526-5p B minic+L2K minic+inhibitor reiR-145-5p eiR-565-5p minic+L2K minic+inhibitor

Vehicle Control mimic+L2K mimic+inhibitor

miR-214-3p miR-314-3p mimic+L2K mimic+inhibitor

milt-Ma-Sp milt-146-Sp B minic+LDK minic+Unlikker B

PROL VINCO

DIFF VenCo

DIFF VehCo

64

Myrf

Plp1

Mbp

Mobp

reiR-d3-dp exiR-d3-3p mimic+L2K mimic+inhibitor Supplementary Material

Supplementary figure 4: The effect of 5 microRNA mimics and their inhibitors on the differentiation of CG-4 cells in RT-qPCR. The plots show the relative expression (mean with SD of $2^{-\Delta\Delta Ct}$) of the OPC marker (*Id4*) and OL markers (*Myrf, Plp1, Mbp,* and *Mobp*) to the differentiation vehicle control (DIFF VehCo, gray bar), resulting from the sequential transfection of each microRNA mimic followed (black bar) or not (white bar) by its inhibitor (as labelled on the *x*-axis) in CG-4 cells in differentiation culture conditions, as well as the proliferation vehicle control (PROL VehCo, gray bar). The dotted line represents the mean relative expression of the differentiation vehicle control to which the relative expression ($2^{-\Delta\Delta Ct}$) of each sample was calculated. The adjusted p-value was calculated by Dunn's or Dunnett's multiple comparison test to the differentiation vehicle control (*) and by Sidak's, Tamhane's T2 or Dunn's multiple comparison test between the microRNA mimic and its inhibitor (#), as recommended following a parametric/non-parametric one-way ANOVA on all conditions: ns for non-significant, */# for $p \le 0.05$, **/## for $p \le 0.01$, ***/#### for $p \le 0.001$. Data of 3 experiments for each microRNA with each condition in triplicate. L2K, LipofectamineTM 2000; SD, standard deviation.

Supplementary figure 5: Potential mRNA targets of each microRNA verified in RT-qPCR by (A) the microRNA mimic and (B) the microRNA mimic and its inhibitor. The plots show the relative expression (mean with SD of $2^{-\Delta\Delta Ct}$) of the potential mRNA targets of each microRNA to the differentiation vehicle control (DIFF VehCo, gray bar), resulting (A) from the single transfection of each microRNA mimic, or (B) from the sequential transfection of each microRNA mimic followed (black bar) or not (white bar) by its inhibitor (as labelled on the xaxis) in CG-4 cells in differentiation culture conditions, as well as the proliferation vehicle control (PROL VehCo). The dotted line represents the mean relative expression of the differentiation vehicle control to which the relative expression $(2^{-\Delta\Delta Ct})$ of each sample was calculated. The adjusted p-value was calculated (A) by Dunn's or Dunnett's multiple comparison test to the differentiation vehicle control (*) and to the microRNA negative control mimic (miR-NC, #), and (B) by Dunnett's multiple comparison test to the differentiation vehicle control (*) and by Sidak's or Tamhane's T2 multiple comparison test between the microRNA mimic and its inhibitor (#), as recommended following a parametric/non-parametric one-way ANOVA on all conditions: ns for non-significant, */# for $p \le 0.05$, **/## for $p \le 0.01$, ***/### for $p \le 0.001$, ****/#### for $p \le 0.0001$. Data of 3 experiments for each microRNA with each condition in triplicate. L2K, LipofectamineTM 2000; SD, standard deviation.

А

mRNA	Forward primer - sequence 5'-3'	Reverse primer - sequence 5'-3'		
rno_Akap13	TGCAGAAATGAACCAGCGGA	GGGACACCAGCTCATACTTCT		
rno_Bnip31	TGTCTCACTTAGTCGAGCCGC	CTCCACCCAGGAACTGTTGA		
rno_Cnp	GAGCTTCGACACTTCATTTCTGG	TGGCCTTCCCGTAGTCACAG		
rno_Cpeb1	CTCTGGAAGAAGAATCAGGAAGGA	CCAGTGAATCATCCAAAATGGCA		
rno_Eif4e	AGATGGCGACTGTGGAACCG	CCAGAGTGCCCACCTGTTCT		
rno_Elmo1	TGATGAGAGGAGACAGGAGATGG	GTGCTCGGATGACATGGGTTA		
rno_Errfi1	GGGGCAGTCGCAATGAGTT	AGAAGCACATCCGAGGGTTG		
rno_Gfap	GGGATGGCGAGGTCATTAAG	TCTGAGGAGGGAGCTTTAGG		
rno_Grb2	TCTCCCTGTCAGTCAAGTTTGG	CTTCACCACCACAGGAAGTAC		
rno_Hnrnpf	GCATCTGTGGTGGTTCTTTAAGC	ATTGAGCAGGACCAGGGTAG		
rno_Hprt1	GTCATGTCGACCCTCAGTCC	GCAAGTCTTTCAGTCCTGTCC		
rno_Id4	CGTTGTGACAAGCGAACTGT	AAAAGTTCCCCGCCCTGTTA		
rno_Mbp	GTGGGGGTAAGAGAAACGCA	CGAACACTCCTGTGGAACGA		
rno_Mobp	CAGAGCACTTCAGCATCCACT	CTCCTCCTTCTCAATCTGGTCTTC		
rno_Myrf	TGCCAACAACATGCGGAAGAAG	GGGTTAGAGGCCCGAACAATGA		
rno_Ng2	AGGCCCTCAGGGGAATAGAC	CAGGGCTCCTCTGTGTGAGA		
rno_Notch1	TGCGTGGACAAGATCAACGA	GGTCCCCGTGTAACCTTCTG		
rno_Ntrk2	CGGGAGCATCTCTCGGTCTA	CCTTTCATGCCAAACTTGGAATG		
rno_Olig2	TCAAATCGAATTCACATTCGGAAG	CGTGGATGAGGACACGGTTC		
rno_Pdgfra	TCTTATGGCGTTCTGCTCTG	CCATCCTGTATCCGCTCTTG		
rno_Plp1	GGCGACTACAAGACCACCAT	AATGACACACCCGCTCCAAA		
rno_Ptprj	CCAAGTTAATCCGAGTGGAGA	TCCAATCAGCTTCAGATCCTCA		
rno_Rab10	GAAAGGCAAAGGAGAGCAGATTG	TCAGCTAATGTGAGGAACGCC		
rno_Rras2	GACCATCAGAGACAGGTAACGC	AACTCGGACAAGTTCGTGGAA		
rno_Sox10	AGGTTGCTGAACGAGAGTGAC	CGCCGAGGTTGGTACTTGTAG		
rno_Tcf7l2	ATGGTTAGTACCACAGCAAGGT	AGAGTGTGATGGGGGAGGGAC		
rno_Vamp2	CCCTGCACCTCCTCCAAATC	GATGTCCACCACCTCATCCAC		

miRCURY LNA miRNA (Qiagen)	Mimic (Cat No. 339173)	Inhibitor (Cat. No. 339121)	PCR Assay (Cat. No. 339306)		miRBase
microRNA ID		GeneGlobe ID	sequence 5'-3'	MIMAT ID	
hsa-miR-15a-3p	YM00471094	NA	NA	CAGGCCAUAUUGUGCUGCCUCA	MIMAT0004488
hsa-miR-20a-5p	YM00472205	NA	NA	UAAAGUGCUUAUAGUGCAGGUAG	MIMAT0000075
hsa-miR-29c-3p	YM00470481	NA	NA	UAGCACCAUUUGAAAUCGGUUA	MIMAT0000681
rno-miR-33-3p	YM00471597	YI04100217	YP02113481	CAAUGUUUCCACAGUGCAUCA	MIMAT0017104
hsa-miR-34a-5p	YM00473212	NA	NA	UGGCAGUGUCUUAGCUGGUUGU	MIMAT0000255
hsa-miR-34c-5p	YM00472810	YI04101981	YP00205659	AGGCAGUGUAGUUAGCUGAUUGC	MIMAT0000686
hsa-miR-103a-3p	NA	NA	YP00204063	AGCAGCAUUGUACAGGGCUAUGA	MIMAT0000101
hsa-miR-124-5p	YM00470547	YI04101111	YP00204266	CGUGUUCACAGCGGACCUUGAU	MIMAT0004591
hsa-miR-145-5p	YM00470014	YI04102423	YP00204483	GUCCAGUUUUCCCAGGAAUCCCU	MIMAT0000437
hsa-miR-146a-5p	YM00472124	NA	NA	UGAGAACUGAAUUCCAUGGGUU	MIMAT0000449
mmu-miR-155-5p	YM00470919	NA	NA	UUAAUGCUAAUUGUGAUAGGGGU	MIMAT0000165
hsa-miR-181c-5p	YM00471280	NA	NA	AACAUUCAACCUGUCGGUGAGU	MIMAT0000258
rno-miR-214-3p	YM00472862	YI04105003	YP00205512	ACAGCAGGCACAGACAGGCAG	MIMAT0000885
hsa-miR-219a-5p	YM00470876	NA	NA	UGAUUGUCCAAACGCAAUUCU	MIMAT0000276
rno-miR-297	YM00470075	NA	NA	AUGUAUGUGUGCAUGUAUGCAUG	MIMAT0000899
Negative Control	YM00479902	NA	NA	UCACCGGGUGUAAAUCAGCUUG	NA

Supplementary table 1: Sequences of mRNA primers, microRNA mimics and microRNA primers. (A) List of forward and reverse primers of the investigated mRNAs. (B) List of microRNA mimics, inhibitors, and PCR Assay primers (miRCURY LNA miRNA, Qiagen) with corresponding GeneGlobe ID (Qiagen database), sequence and MIMAT ID (miRbase database). Interspecies compatibility was strictly verified. hsa, *Homo sapiens*; mmu, *Mus musculus*; rno, *Rattus norvegicus*; NA, not applicable.

A

	vs. DIFI	F VehCo	vs. miR-NC				
mRNA	padj	Log2(FC)	padj	Log2(FC)			
miR-33-3p targets							
Ntrk2	2.41E-08	-0.18	2.73E-14	-0.34			
Rab10	4.28E-05	-0.15	2.96E-06	-0.19			
Eif4e	5.57E-21	-0.36	6.28E-06	-0.25			
Bnip31	3.78E-10	-0.22	1.96E-05	-0.18			
Stim2	1.69E-02	-0.14	4.45E-03	-0.20			
Fam168b	5.15E-03	-0.10	2.11E-03	-0.13			
Sec63	1.37E-08	-0.23	1.25E-12	-0.34			
miR-34c-5p ta	rgets						
Vamp2*	5.08E-28	-0.43	8.74E-17	-0.38			
Vdr*	1.05E-24	-0.59	6.85E-13	-0.53			
Rras2*	1.23E-03 -0.30 ns						
miR-124-5p ta	rgets						
Rras2*	8.31E-16	-0.67	2.93E-02	-0.28			
Cdon*	5.43E-07	-0.55	1.86E-05	-0.60			
Hnrnpab*	1.76E-28	-0.44	2.57E-21	-0.50			
Hnrnpf	1.91E-04	-0.11	2.24E-02	-0.10			
miR-145-5p targets							
Myrf	2.96E-76	-0.77	6.53E-32	-0.56			
Snx27	4.45E-09	-0.22	1.59E-03	-0.18			
miR-214-3p targets							
Id4 ⁺	3.05E-04	-0.28	1.24E-06	-0.50			
Errfi1	2.71E-04	-0.26	1.17E-05	-0.37			
Grb2*	1.19E-04	-0.14	7.59E-06	-0.22			
Fgfr1 ⁺	3.10E-06	-0.15	9.30E-11	-0.28			

	vs. DIFF VehCo		vs. miR-NC		Gene Ontology term (Biological Process)	
mRNA	padj	Log2(FC)	padj	Log2(FC)		
miR-33-3p	targets					
Calm2	4.68E-07	-0.16	1.36E-02	-0.11	cell division	
Etnk1	4.15E-02	-0.08	4.01E-02	-0.11	phospholipid biosynthetic process	
Far1	2.67E-21	-0.40	6.05E-12	-0.40	phospholipid biosynthetic process	
					long-chain fatty-acyl-CoA metabolic process	
Ndel1	2.75E-04	-0.19	4.09E-03	-0.20	chromosome segregation	
Ntrk2	2.41E-08	-0.18	2.73E-14	-0.34	myelination	
					axon ensheathment	
Rab10	4.28E-05	-0.15	2.96E-06	-0.19	cell division	
Slc1a3	1.51E-02	-0.12	3.91E-13	-0.41	generation of precursor metabolites and energy	
Ube2j1	2.79E-02	-0.13	6.40E-05	-0.27	regulation of protein catabolic process	
Ube2n	8.00E-30	-0.46	1.32E-10	-0.35	DNA repair	
miR-34c-5p targets						
Ago4	4.62E-07	-0.46	2.69E-04	-0.44	ribonucleoprotein complex assembly	
Atg4b	3.59E-03	-0.13	2.92E-02	-0.13	regulation of protein catabolic process	
Dixdc1	7.73E-03	-0.14	5.39E-03	-0.17	Wnt signaling pathway	
					stress-activated MAPK cascade	
					axonogenesis	

D111	3.24E-04	-0.29	5.77E-10	-0.54	astrocyte differentiation
					glial cell differentiation
Erc1	1.09E-21	-0.31	4.33E-02	-0.11	synapse organization
Erlin1					regulation of lipid biosynthetic process
					cholesterol metabolic process
Map1a	6.31E-13	-0.23	6.03E-05	-0.16	regulation of protein catabolic process
					axonogenesis
Notch1	1.54E-28	-0.32	6.11E-21	-0.34	Wnt signaling pathway
					Ras protein signal transduction
					astrocyte differentiation
					oligodendrocyte differentiation
					negative regulation of gliogenesis
					axonogenesis
Pdgfra	7.60E-47	-0.34	7.92E-60	-0.50	positive regulation of kinase activity
					regulation of phospholipid metabolic process
Pip5k1a	1.16E-09	-0.26	7.49E-08	-0.29	glycerolipid biosynthetic process
Ppp2r5a	8.38E-06	-0.23	9.80E-05	-0.29	regulation of lipid metabolic process
Synj1	1.67E-02	-0.14	6.32E-04	-0.22	regulation of gliogenesis
Vcl	2.86E-06	-0.37	4.27E-07	-0.47	axonogenesis
miR-124-5	p targets				-
Atxn2	1.42E-04	-0.17	5.32E-03	-0.17	ribonucleoprotein complex biogenesis
Hnrnpf	1.91E-04	-0.11	2.24E-02	-0.10	mRNA processing
					RNA splicing
miR-145-5	p targets				
Adpgk	1.75E-02	-0.15	2.49E-02	-0.17	pyruvate metabolic process
Arl6ip5	7.97E-06	-0.19	9.17E-03	-0.15	stress-activated protein kinase signaling cascade
Elmo1	2.10E-06	-0.29	5.30E-09	-0.40	Ras protein signal transduction
Map4k4	3.37E-13	-0.20	5.96E-03	-0.13	Ras protein signal transduction
					stress-activated protein kinase signaling cascade
Myrf	2.96E-76	-0.77	6.53E-32	-0.56	oligodendrocyte differentiation
					gliogenesis
					myelination
					axon ensheathment
Rtkn	7.52E-16	-0.35	3.17E-14	-0.42	Ras protein signal transduction
					Rho protein signal transduction
					cell division
miR-214-3	p targets				
Akap13	4.54E-26	-0.35	9.44E-30	-0.49	positive regulation of kinase activity
Atg13	1.97E-03	-0.18	2.81E-02	-0.17	autophagy
Atp2a2	1.25E-56	-0.41	9.92E-28	-0.38	autophagy

Cdip1	2.05E-06	-0.23	2.09E-02	-0.16	intrinsic apoptotic signaling pathway
Cpeb1	3.74E-03	-0.83	6.65E-04	-1.13	cytoplasmic translation
Csf1	3.21E-03	-0.26	5.09E-06	-0.45	positive regulation of kinase activity
					gliogenesis
Errfi1	2.71E-04	-0.26	1.17E-05	-0.37	response to platelet-derived growth factor
					negative regulation of ERBB signaling
					pathway
Gpd1	2.23E-14	-1.10	1.72E-17	-1.35	glycerolipid metabolic process
					generation of precursor metabolites and
					pyruvate biosynthetic process
					carbohydrate catabolic process
					ATP biosynthetic process
TC 1	1 105 00	0.02	4.025.11	0.22	generation of precursor metabolites and
Ifnar1	1.18E-08	-0.23	4.03E-11	-0.32	energy
Mtmr3	6.38E-03	-0.11	2.89E-02	-0.12	phospholipid metabolic process
					glycerolipid metabolic process
					autophagy
Mtmr4	5.09E-03	-0.13	1.23E-02	-0.15	phospholipid metabolic process
					glycerolipid metabolic process
					autophagy
Plec	1.18E-26	-0.38	8.89E-08	-0.26	glial cell differentiation
					myelin maintenance
					generation of precursor metabolites and
				0.00	energy
Ptprj	3.88E-15	-0.29	2.55E-17	-0.39	insulin receptor signaling pathway
					negative regulation of EKBB signaling pathway
					glial cell differentiation

Supplementary table 2: Potential mRNA targets of each microRNA. The potential mRNA targets were predicted by *in silico* analysis, by their downregulation in RNA sequencing and by (A) a Pubmed search of their involvement in OPC/OL physiology or (B) the gene annotation to downregulated Gene Ontology terms of interest as illustrated by the Venn diagrams. We selected the targets predicted by 3-4 databases in both rats and humans, except for (*) only in rats and (⁺) only in humans and predicted by 0-2 databases in the other species. Each table contains the fold change (FC, expressed as logarithm base 2 [Log2(FC)] of the gene expression value of the potential mRNA targets to the differentiation vehicle control (DIFF VehCo) and to the microRNA negative control mimic (miR-NC), highlighted by a blue-color gradient [dark blue for a bigger negative fold change, to light blue for a smaller negative fold change]), as well as the adjusted p-value (padj) in RNA sequencing. DEG, differentially expressed genes; GO, Gene Ontology; hsa, *Homo sapiens*; ns, non-significant; OPC, oligodendrocyte progenitor cells; OL, oligodendrocytes; rno, *Rattus norvegicus*.

Furthermore, we will briefly highlight other targets we did not investigate, but that might deserve further attention, namely Fyn related Src family tyrosine kinase (*Frk*) and vitamin D receptor (*Vdr*) (mir-34c-5p), as well as fibroblast growth factor receptor 1 (*Fgfr1*) (miR-214-3p). *Frk* (miR-34c-5p) has not been described in OPCs, but it is related to Fyn tyrosine kinase. Fyn tyrosine kinase regulates morphological OPC differentiation by activation of Rac1 and inactivation of RhoA, involved in stress fiber formation and actin polymerization, and allows *Mbp* translation in RNA transport granules by phosphorylating Hnrnpa2/Hnrnpf (Liang et al., 2004; White et al., 2012; Pedraza et al., 2014) *Vdr* (miR-34c-5p) was only predicted by one database in humans. However, vitamin D treatment, both *in vitro* and *in vivo*, as well as Vdr signaling induce OPC differentiation (de la Fuente et al., 2015; Gomez-Pinedo et al., 2020; Mengozzi et al., 2020; Li et al., 2022). Herein, vitamin D inhibits OPC proliferation by downregulating Myc proto-oncogene BHLH transcription factor, and upregulates Ras protein signal transduction, that has been linked to OPC differentiation (Mengozzi et al., 2020; Li et al., 2022). Finally, *Fgfr1*, a target of miR-214-3p predicted in humans but not in rats, is involved in OPC specification and proliferation (Baron et al., 2000; Furusho et al., 2011).

References

- Baron, W., Metz, B., Bansal, R., Hoekstra, D., and de Vries, H. (2000). PDGF and FGF-2 Signaling in Oligodendrocyte Progenitor Cells: Regulation of Proliferation and Differentiation by Multiple Intracellular Signaling Pathways. *Molecular and Cellular Neuroscience* 15, 314– 329. doi: 10.1006/mcne.1999.0827.
- de la Fuente, A. G., Errea, O., van Wijngaarden, P., Gonzalez, G. A., Kerninon, C., Jarjour, A. A., et al. (2015). Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. *J Cell Biol* 211, 975–985. doi: 10.1083/jcb.201505119.
- Furusho, M., Kaga, Y., Ishii, A., Hébert, J. M., and Bansal, R. (2011). Fibroblast Growth Factor Signaling Is Required for the Generation of Oligodendrocyte Progenitors from the Embryonic Forebrain. J. Neurosci. 31, 5055–5066. doi: 10.1523/JNEUROSCI.4800-10.2011.
- Gomez-Pinedo, U., Cuevas, J. A., Benito-Martín, M. S., Moreno-Jiménez, L., Esteban-Garcia, N., Torre-Fuentes, L., et al. (2020). Vitamin D increases remyelination by promoting oligodendrocyte lineage differentiation. *Brain Behav* 10, e01498. doi: 10.1002/brb3.1498.
- Li, N., Yao, M., Liu, J., Zhu, Z., Lam, T.-L., Zhang, P., et al. (2022). Vitamin D Promotes Remyelination by Suppressing c-Myc and Inducing Oligodendrocyte Precursor Cell Differentiation after Traumatic Spinal Cord Injury. *Int J Biol Sci* 18, 5391–5404. doi: 10.7150/ijbs.73673.
- Liang, X., Draghi, N. A., and Resh, M. D. (2004). Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. *J Neurosci* 24, 7140–7149. doi: 10.1523/JNEUROSCI.5319-03.2004.

- Mengozzi, M., Hesketh, A., Bucca, G., Ghezzi, P., and Smith, C. P. (2020). Vitamins D3 and D2 have marked but different global effects on gene expression in a rat oligodendrocyte precursor cell line. *Mol Med* 26, 32. doi: 10.1186/s10020-020-00153-7.
- Pedraza, C. E., Taylor, C., Pereira, A., Seng, M., Tham, C.-S., Izrael, M., et al. (2014). Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro 6, 1759091414538134. doi: 10.1177/1759091414538134.
- White, R., Gonsior, C., Bauer, N. M., Krämer-Albers, E.-M., Luhmann, H. J., and Trotter, J. (2012). Heterogeneous Nuclear Ribonucleoprotein (hnRNP) F Is a Novel Component of Oligodendroglial RNA Transport Granules Contributing to Regulation of Myelin Basic Protein (MBP) Synthesis *. *Journal of Biological Chemistry* 287, 1742–1754. doi: 10.1074/jbc.M111.235010.