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Supplementary Notes 

Supplementary Note 1.  

Promoter accessibility as a measure of gene activity 

Given the recent demonstration that ambient RNA released from the cytoplasm or nucleus is a source 

of contamination in single nucleus RNA-seq studies of brain tissue1 and the likelihood that low-level 

ambient RNA can confound studies of differential gene expression, we used promoter accessibility as 

an independent measure of active genes2. To this end, we excluded genes for which none of their 

annotated transcriptional start sites (TSS) overlapped with regions of accessible chromatin in that cell 

type, as defined by the presence of a consensus peak in ATACseq data generated from the isolated 

nuclei (Fig. 1d and Supplementary Table 3, please see section ‘ATACseq Data Processing’ Methods). 

Based on the criterion of promoter accessibility, the average number of genes expressed in each striatal 

cell type is ~13,000 – 14,000 (Extended Data Fig. 2c).  

Supplementary Note 2.  

Instability of mHTT CAG tract in striatal oligodendrocytes 

To reveal differences in the “non-expanding” striatal cell types, we calculated their ratios of somatic 

expansion - a metric that has been used for describing the distribution of CAG tract sizes in cells 

undergoing modest somatic repeat expansion3. These data demonstrated that striatal oligodendrocytes 

had consistently greater CAG expansions compared to microglia, astrocytes, and SST+, PVALB+ and 

TAC3+ INs (Extended Data Fig. 3b). There was no evidence of somatic expansion of the normal HTT 

allele CAG repeat tract in any of the cell types analyzed (Extended Data Fig. 3c).  

Supplementary Note 3.  

Expression of HD age at onset modifier candidate genes in human striatum 

We also studied the expression pattern of the remaining genes that were identified as candidates 

potentially modulating HD age at onset4. As expected, we found that candidate genes involved in MMR 

(marked with an asterisk on Fig. 5c and Extended Data Fig. 4a), as well as those lacking an obvious 

association with DNA repair are expressed at significant levels in human MSNs (Supplementary Fig. 

3a,b). Notable exceptions are RRM2B and SYT9 which are expressed at very low levels in MSNs, but 

at higher levels in microglia (RRM2B) and oligodendrocytes (SYT9) in both caudate nucleus and 

putamen (Supplementary Fig. 3a,b,d). While this expression pattern could not have been predicted 

from published cell type-specific gene expression analysis of mouse striatum5 (Supplementary Fig. 

3c), it is supported by corresponding differences in chromatin accessibility at the promoter regions of 

human RRM2B and SYT9 (Supplementary Fig. 3e). Although these data will need to be verified by 

further experimentation, our data suggests that genetic variants near these genes may act in glia to 



influence disease onset through mechanisms that do not impact somatic expansion of the mHTT CAG 

tract. 

Supplementary Note 4 

Putative transcriptional regulators of HD-associated gene expression changes 

Having mapped accessible sites in the chromatin of MSNs, we used Motif Enrichment Analysis6 (MEA) 

to ask whether the over-representation of transcription factor-binding motifs within genes with HD-

associated expression change would predict the involvement of specific transcription factors (TFs) in 

the regulation of these transcriptional changes. Of the binding-motifs over-represented in genes up- 

and downregulated in HD MSNs (Supplementary Table 9, Supplementary Fig. 6a), we identified 

those for which the respective TF gene transcript was present at a high level in MSNs and exhibited a 

disease-associated change in its level. This approach led to the identification of KLF5, KLF7, ZFP14, 

SP3, ZKSCAN5, ZNF93, MEF2D and NFATC2 (Supplementary Fig. 6b) as candidate regulators for 

which the direction of motif over-representation (either in up- or downregulated genes) matches what 

is known about their function (transcriptional activator, repressor or both) and HD-associated transcript 

level change (up- or downregulated in HD). Interestingly, the absence of NFATC2 has been reported to 

increase striatal mHTT aggregate load and exacerbate neurological symptoms of HD model mice7, thus 

pointing to the possibility that reduced NFATC2 levels contribute to the dysfunction of human MSNs in 

HD. 

Supplementary Note 5 

Downregulation of genes essential for MSN viability in HD mouse models 

We also asked whether any of the genes previously shown to preserve MSN viability in mice expressing 

mHTT with extra-long CAG tract8 were strongly downregulated in HD MSNs. Extended Data Fig. 6d 

depicts genes that were found to be essential for MSN viability in the zQ175 and R6/2 mouse models, 

and had undergone the largest expression level decreases in human MSNs in HD donors. We consider 

these genes as candidates for further investigation as they can help to identify molecular processes 

that may contribute to loss of MSN viability in HD. Among these, HD-associated downregulation of 

TATA-binding protein-associated factor 1 gene (TAF1) in MSNs is an example of a change that could 

be detrimental to human MSN survival, as reduced expression and aberrant splicing of TAF1 is thought 

to be the cause of MSN loss seen in X-linked dystonia-parkinsonism9-11. See also Supplementary 

Figure 7. 

 

 



Supplementary Note 6 

Expansion of mATXN3 CAG tract in striatal MSNs 

Mouse models of HD and SCA312-15, like humans with HD or SCA316-20, show age-dependent somatic 

CAG expansions in the CNS and peripheral tissues. Brain region patterns of CAG expansions are 

similar, yet mice show limited levels of degeneration. It is evident from our data that in MSNs the 

expansion of the mHTT CAG tract (mean somatic length gain approx. 22 repeat units, with repeats 113 

CAG units long detected in all MSN samples from donors carrying fully penetrant mHTT alleles) is more 

extensive than the expansion of the mATXN3 CAG tract, as very few mATXN3 allele copies had gained 

more than 20 repeat units in MSNs (Fig. 5a, mean somatic length gain approx. 5 repeat units, and 

therefore only extending over the size range observed for inherited mATXN3 alleles). These data 

demonstrate that in addition to the CAG repeat tract length there are other locus-specific properties 

that are important for the dramatic expansion of the mHTT CAG tract. Nevertheless, despite expansion 

of mATXN3 CAG tract to over 80 CAG repeats, we did not observe a clear decrease in the number of 

MSN nuclei isolated from SCA3 donor samples, a finding that is consistent with neuroanatomical 

studies reporting MSN loss in SCA3 to be variable21. This reinforces the interpretation that the presence 

of a very long CAG repeat tract in RNA, or polyQ domain in any protein, does not necessarily lead to 

cell loss in the human brain. These considerations place additional emphasis on proteins that interact 

with mHTT in vivo22, and the cell type-specific expression profiles we have made available in this study 

will help to delineate the cell type-specificity of these interactions in order to understand their role in HD 

pathogenesis. 

Supplementary Note 7 

Possible trans-acting factors involved in somatic expansion 

Our results are suggesting that there are trans-acting factors that are rate-limiting in the process of 

repeat expansion or stabilization, and that their level of expression or activity differs between MSNs 

and cell types where both mHTT and mATXN3 CAG tracts are more stable. In light of previously 

published reports on the effect of Msh2 and Msh3 in somatic CAG expansion in HD mouse models23-

26, our finding that levels of both MSH2 and MSH3 are higher in MSNs compared to other striatal cell 

types suggests that the actions of the MutSβ complex at the mHTT locus may be a rate-limiting step 

that contributes significantly to the selective vulnerability of MSNs.  

We do note that our observations on elevated levels of MSH2 and MSH3 in MSNs do not rule out the 

presence of other factors that favor the expansion of mHTT CAG repeat tract in MSNs and CHAT+ INs. 

However, none of the candidate genes for modulating HD age at onset or genes influencing somatic 

CAG expansion in HD mouse models27 stood out in the transcriptional profiles of CHAT+ IN nuclei as 



clear candidates for facilitating somatic CAG expansion in this cell type. We note that not all factors 

involved in somatic repeat expansions are known, as novel factors, including primate-specific ones, are 

still being reported28. 

Supplementary Note 8 

High MutSβ levels inhibit cleavage of slipped-CAG DNA substrates by FAN1 

Our data show that an excess of MutSβ inhibits FAN1 nucleolytic excision of excess CAG slip-out DNA 

substrates, putative intermediates of expansion mutations. In contrast, MutSα, a complex of MSH2 with 

MSH6, does not affect FAN1 excision of slip-outs, consistent with a lack of involvement of MutSα in 

somatic expansions24. While both MutSα and MutSβ bind to heteroduplex DNAs, MutSβ has a very 

different binding mode, stronger affinity, and longer protein-loop DNA lifetimes than MutSα29-31, and 

hydroxy-radical footprinting of MutSβ on CAG slip-outs showing extensive protection of the slip-out32,33. 

Excess levels of FAN1 could partly overcome the extended dwelling time of MutSβ on a CAG slip-

out29,31, resulting in slip-out excision so as to avoid retention of the excess repeats. Therefore, our 

results also present a possible mechanistic explanation of how genetic variants that increase FAN1 

expression can delay onset of HD34. While mechanistic studies performed in vitro are limited to 

assessing the effects of only some of the proteins putatively involved, the model where slip-out DNA 

excision rates are determined by competitive binding to either MutSβ or FAN1 is appealing because 

the expression of MSH2 and MSH3, unlike that of other repair proteins’ genes, is consistently higher in 

MSNs when compared to any striatal interneuron type where the CAG repeat is stable, and this 

expression level difference stands out because of its magnitude as well. 

Supplementary Note 9 

Distinctions between mouse and human transcriptional responses in HD MSNs.  

Analyses of gene expression changes in HD mouse models carrying human mHTT alleles of different 

CAG repeat sizes have documented a wide variety of transcriptional alterations, and there is strong 

evidence that these transcriptional changes are responsible for behavioral phenotypes in the absence 

of striatal cell loss35,36. While extensive transcriptional dysregulation that accompanies somatic 

expansion of mHTT CAG tract in MSNs is generally consistent with the “transcriptionopathy” that has 

been reported in HD mouse models35,36, roughly only a quarter of individual genes reported as altered 

in the striatum of BAC-CAG mouse model are exhibiting an HD-associated expression change in 

human MSN FANSseq data36 (Supplementary Fig. 8a). There is a similar degree of overlap even 

when HD-associated changes are compared to those genes that are most consistently altered in the 

striatum of HD mouse models - the striatal HD signature genes37 (Supplementary Fig. 8b, 



Supplementary Table 11). Conversely, most of the HD-associated nuclear transcript level changes 

seen by FANSseq are not recapitulated in HD mouse models for which MSN-specific RNAseq data is 

available (Supplementary Fig. 9a,b). Nevertheless, downregulation of some of the MSN-enriched 

striatal HD signature genes (PDE10A, ANO3, PTPN7, PCP4, RGS9, ARPP21) that has been reported 

in HD mouse models takes place in human MSNs in HD as well (Supplementary Table 11), 

representing an HD-associated process that is recapitulated in mouse models of this disease36-38.  

In summary, the comprehensive transcriptional profiles we have generated from striatal cell types show 

that HD associated changes in MSNs have only a partial overlap to gene expression changes 

documented in published datasets from HD mouse models. Although it is difficult to directly compare 

the human FANSseq data with transcriptional changes occurring in bulk RNAseq data from the striatum 

or MSN translational profiling (TRAP) data from HD mouse models, the apparent discrepancies 

between molecular events occurring in mouse model systems and human HD donor samples place a 

strong emphasis on the importance of human data when initiating focused studies of candidate 

mechanisms of HD pathogenesis. 

Supplementary Note 10 

Oligonucleotides used for the generation of slip-out DNA substrates in the context of anchored duplex 
flanks.  

Name  Oligonucleotides  Length (nt) 

(CAG)0 5’-ATGCA (CAG)10 ATCGT-3’ FAM 40 

(CAG)2 5’-ATGCA (CAG)12 ATCGT-3’ FAM 46 

(CAG)4 5’-ATGCA (CAG)14 ATCGT-3’ FAM 52 

(CAG)8 5’-ATGCA (CAG)18 ATCGT-3’ FAM 64 

(CAG)14 5’-ATGCA (CAG)24 ATCGT-3’ FAM 82 

CTG-Bottom 5’-ACGAT (CTG)10 TGCAT-3’ 40 

Note: CTG-bottom is used to make all the anchored slipped-DNA.” 
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Supplementary Figure 1. Representative FANS plots showing the labeling of dMSN and iMSN nuclei 
with Primeflow probes specific for DRD1 and DRD2 transcripts, respectively. Note that while there is 
a clear reduction in the abundance of MSN nuclei in striatal tissue from HD donors, these probes can 
still be used for the separation and isolation of MSN subtypes.
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Supplementary Figure 2. a, Relative expression level of HTT and ATXN3 in cell types of the putamen. 
Heatmaps depict log2-transformed relative expression in each cell type, calculated based on the mean 
of DESeq2-normalized counts from 6-8 control donors. b, FANS plots showing the percentage of 
nuclei stained with anti-NeuN antibody in two oldest SCA3 donors, and in two representative HD 
donors and control donors.
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Supplementary Fig. 3. a and b, Relative expression level of HD age-at-onset modifying candidate 
genes unrelated to DNA repair. Heatmaps depict log2-transformed relative expression in each cell type 
of (a) caudate nucleus and (b) putamen, calculated based on the mean of DESeq2-normalized counts 
from 6-8 control donors. c, Cell type-specific expression according to snRNA-seq data from mouse 

5striatum , calculated from 'transcripts per 100,000' values. d, Representative distribution of human 
FANSseq and e, ATACseq reads mapped to RRM2B and SYT9 genes. Arrows mark the position of 
annotated transcriptional start sites. The data are from a 41-year-old male control donor.
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Supplementary Figure 4

Supplementary Fig. 4. MutSβ inhibits FAN1 nuclease activity on an anchored slipped-DNA with variable 
amounts of excess repeats. a, 3'-FAM-labelled CAG-slipped DNA substrates had either 0, 2, 4, 8, or 14 excess 
CAG repeats on one of the strands and were anchored with 20 base pairs on each end (schematics are shown). 
100 nM substrate DNAs were pre-incubated with 0 nM or 200 nM of MutSβ, reactions were initiated by adding 
50 nM FAN1 and stopped 20 minutes later by adding 95% formamide-EDTA stop buffer. Reaction products were 
resolved on a 6% denaturing PAGE, fluorescent signals visualized by Typhoon FLA-9500, and nuclease activity 
quantified by comparing the intensity of the cleaved versus un-cleaved DNA, by ImageQuant. FAN1 cleavage 
sites are indicated by brackets in the schematics to the right of each gel. Notably, cleavage only occurred within 

39the repeat for slip-outs of >8 excess repeats, in agreement with recent findings . b, Quantification results for 
FAN1 cleavage products in absence and presence of MutSβ are plotted on graph (mean ± SD, N = 3 replicate 
experiments). Two-sided unpaired t-test was used for the comparison of cleavage in the presence vs absence 
of MutSβ (p=0.0002 (***), p<0.0001(****)).



Supplementary Figure 5
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Supplementary Fig. 5. Disease-associated changes in genes associated with GO Cellular Component 
terms (a) 'Respirasome' (GO:0070469) and (b) 'Lysosomal membrane' (GO:0005765). For statistically 
significant enrichments both q and P adj. values are shown (calculated by hypergeometric test using the 
enrichGO function of clusterProfiler package, adjusted for multiple comparisons). Dashed line denotes the 
threshold of statistical significance for differential expression of individual genes (P adj = 0.05 by DESeq2).

p. adj = 1.59e-11
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Supplementary Fig. 6. a, Transcription factor binding motifs over-
represented in MSN chromatin accessible sites in genes that exhibit 
HD-associated transcript level increases or decreases in MSNs (see 
Methods). Heatmap depicts adjusted P values calculated using 
Fisher's Exact Test for motif enrichment analysis (adjusted for multiple 
comparisons). Motifs of transcription factors not expressed in MSNs 
are excluded (based on the inaccessibility of their TSS in MSNs). 
b, Selected transcription factors with HD-associated transcript level 
change and binding motif enrichment in genes either up- or down-
regulated in MSNs (denoted with red and blue gene name labels, 
respectively). The P values indicated on heatmap represent statistical 
significance of transcript level differences calculated with DESeq2 
and are adjusted for multiple comparisons (n=7 individuals with HD 
and n=8 control individuals). See also Supplementary Note 4.
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Supplementary Figure 7

Mutations known to cause autosomal 
dominant form of focal dystonia (DYT24, 
https://omim.org/entry/615034).

Mutations known to cause 
dyskinesia and striatal degeneration 
(https://omim.org/entry/616921, 
https://omim.org/entry/616922).

Reduced expression and aberrant 
splicing of TAF1 is thought to be 
the cause of MSN loss seen in 

9-11.X-linked dystonia-parkinsonism
See Supplementary Note 5.

Supplementary Fig. 7. Transcript levels of ANO3, PDE10A and TAF1 in HD MSNs represented as % of their 
transcript level in control donor MSNs (mean plotted). n=7 individuals with HD and n=8 control individuals. 
P values were calculated with DESeq2 and are adjusted for multiple comparisons: P=1.9e-07 for ANO3 in 
dMSNs, P=0.00015 for ANO3 in iMSNs, P=2.4e-10 for PDE10A in dMSNs, P=1.1e-08 for PDE10A in iMSNs, 
P=0.048 for TAF1 in dMSNs and P=0.00039 for TAF1 in iMSNs. 



Supplementary Figure 8
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Supplementary Fig. 8. HD-associated transcript level change in human orthologues of (a) genes with 
36 37altered expression in the striatum of BAC-CAG mice (FDR < 0.1)  and (b) Str266R HD signature genes . 

The comparisons exclude genes for which none of their annotated TSS positions overlapped with ATAC-seq 
consensus peaks defined from control or HD donor MSN data. Genes with a significant transcript level 
change in human FANSseq data are marked with black color (p adj. < 0.05 by DESeq2 after adjusting for 
multiple comparisons, n=7 individuals with HD and n=8 control individuals).
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Supplementary Figure 9

Supplementary Fig. 9. Genes with disease-associated transcript level change in FANSseq data from human 
iMSN or dMSN (|log2FC|>0.415 and P adj. < 0.05 by DESeq2 after adjusting for multiple comparisons, n=7 
individuals with HD and n=8 control individuals) were plotted against the mouse orthologue transcript level 
change in translational profiling (TRAP) data from iMSNs or dMSNs of (a) zQ175 mice (compared to Q20 

38mice) and or (b) R6/2 mice (compared to wt mice) . Genes with a significant transcript level change in the 
HD mouse model (P adj. < 0.05) are marked with black color. Note that for most of these genes in mouse 
there is no significant transcript level change according to these criteria.
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