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Supplementary Figure 1. Heat map of the U distance, UD, matrix of the 293 defined binding 

sites clustered by the Ward hierarchical clustering method [1] implemented in SciPy [2]. The 

tree is cut at DWard = 1.8, giving four clear clusters. These clusters are labelled so they 

correspond to the ones obtained with K-means [3]. Clusters in the heatmap are represented by 

dark squares around the diagonal. UD is a distance; therefore, clusters include sites that are 

similar to each other, and present lower distances (dark colour). 
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Supplementary Figure 2. Cluster analysis to assess the quality of the K-means clustering. For 

each 𝐾𝐾	 ∈ [2, 14], clustering is bootstrapped 1,000 times with different initial random states. 

Error bars indicate 1 SD. (A) Calinski-Harabasz Index (CHI) [4]; (B) Davies-Bouldin Index 

(DBI) [5]; (C) Inertia [6]; (D) Silhouette [7]. All methods agree the optimal clustering of this 

dataset lies in 𝐾𝐾	 ∈ [4, 6]. 
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Supplementary Note 1: MLP ablation studies 
A thorough hyperparameter optimisation was carried out by examining the effect that a series 

of hyperparameter changes have on the prediction accuracy relative to our current ML setup, 

labelled as current. Sixty-four single-hyperparameter changes were performed, one at a time. 

For each variation, 100 models were trained with different seeds and the average validation 

accuracies compared to our current multilayer perceptron (MLP). Sixty-four pairwise t-tests 

were conducted to compare the accuracy means, and Benjamini-Hochberg correction [8] 

applied. FDR and ∆!""= acc#$%&$'( − acc)*%%+'( are used to describe the results, where 

acc)*%%+'( is the average validation accuracy of our current ML setup across the 100 seeds, 

and acc#$%&$'( is the average accuracy across 100 seeds of each one of the 64 variant models. 

 

∆!""< 0 will represent a decrease in performance respect our current ML architecture, whereas 

∆!""> 0 will mean a higher accuracy. 

 

The results of these analyses are described below and graphically represented in Supplementary 

Figure 3 and Supplementary Table 1. 

 

Removing the single hidden layer resulted in a significant decrease in accuracy, ∆!""=

	−11%	(FDR < 0.05). 

 

The addition of more layers did not improve accuracy: 2-layer ∆!""= 	−1%	(FDR <

0.05), 10-layer ∆!""= 	−8.9%	(FDR < 0.05), or was not statistically different from our 

current setup baseline: 5-layer ∆!""= 	−0.15%	(FDR = 	0.42). 

 

The addition of neurons N,-./0,1 = [11, 20, 25, 50, 100] in the single layer did not 

improve the current accuracy (FDR > 0.05). 

 

 The removal of neurons did not have an effect of performance N,-./0,1 =

[4, 5, 6, 7, 8, 9] (FDR > 0.05), or a significant negative effect for 1 neuron, ∆!""=

	−15%	(FDR < 0.05), 2 neurons ∆!""= 	−4%	(FDR < 0.05), and 3 neurons, ∆!""=

	−1%	(FDR < 0.05). 
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 This result suggests that 5 neurons on a single hidden layer might be enough to achieve 

a comparable accuracy to our current model. 

 

The usage of different activation functions either negatively affected the accuracy of 

the MLP (∆!""< 0) or had no effect (FDR > 0.05). 

 

Most weight initialisers were tested and either negatively affected the accuracy of the 

MLP (∆!""< 0) or had no effect (FDR > 0.05). However, RandomNormal, RandomUniform, 

and TruncatedNormal did improve the accuracy but by less than 1%, ∆!""< 	+1%, (FDR <

0.05). 

  

 Regarding dropout rates, a rate = 75%, negatively affected prediction ∆!""<

	−2%, (FDR < 0.05). Lower dropout rates: 0.1, 0.25, and 0.33 did improve the accuracy, but 

the effect size is very small, ∆!""< 	+1%, (FDR < 0.05). 

 

This result agrees with the effect of the removal of neurons per layer and shows that 

fewer neurons on a single hidden layer might be enough to achieve a comparable accuracy to 

our current model, as dropping them out has no effect. 

 

Different loss functions resulted in terrible loss of accuracy ∆!""≈ 	−50%, (FDR <

0.05). This is expected as they are not appropriate for a multi-label classifier, unlike sparse 

categorical cross entropy. 

 

Regarding optimisers, they either severely negatively affected accuracy ∆!""≈

	−30%, (FDR < 0.05), had no significant effect (FDR > 0.05), or very slightly improved 

accuracy, such as RMSProp ∆!""< 	+1%, (FDR < 0.05). 

  

 Extreme learning rates of 0.001 (too small), and 1.0 (too big) negatively affected 

prediction ∆!""< 	−5%, (FDR < 0.05). Intermediate rates had either no significant effect 

(FDR < 0.05) nor relevant |∆!""| < 	1%. 

 

 Overall, implementing kernel, bias, or activity regularisation techniques did not 

improve prediction accuracy, but worsened it ∆!""∈ [−2.56, −0.46], (FDR < 0.05). 
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Supplementary Figure 3. Ablation study performed on the MLP. Sixty-four single 

hyperparameter changes are conducted one at a time to explore the hyperparameter space and 

the effect they have on the prediction accuracy relative to our current ML setup, labelled as 

current. Box and whiskers represent the distribution of validation accuracies across 100 

random seeds. Dashed lines mark the separation between different hyperparameters: number 

of layers, neurons, activation, loss functions, weight initialisers, optimisers, learning, dropout 

rates, and regularisation techniques. 
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Model Validation accuracy ∆𝒂𝒂𝒂𝒂𝒂𝒂 FDR 

CURRENT 0.94 - - 

no_layer 0.83 -11.00 0.00 

2_layer 0.93 -1.00 0.00 

5_layer 0.94 -0.15 0.42 

10_layer 0.85 -8.93 0.00 

1_neurons 0.79 -14.93 0.00 

2_neurons 0.90 -4.15 0.00 

3_neurons 0.93 -1.06 0.00 

4_neurons 0.94 -0.28 0.24 

5_neurons 0.94 -0.13 0.54 

6_neurons 0.94 -0.24 0.26 

7_neurons 0.94 -0.39 0.08 

8_neurons 0.94 -0.39 0.08 

9_neurons 0.94 -0.15 0.49 

11_neurons 0.94 0.09 0.65 

20_neurons 0.94 0.07 0.68 

25_neurons 0.94 -0.04 0.83 

50_neurons 0.94 -0.02 0.91 

100_neurons 0.94 -0.11 0.49 

sigmoid 0.92 -1.52 0.00 

elu 0.94 0.15 0.38 

selu 0.94 -0.26 0.15 

exp 0.93 -1.17 0.00 

tanh 0.94 -0.15 0.41 

softplus 0.93 -0.69 0.00 

softmax 0.90 -3.98 0.00 

softsign 0.94 -0.41 0.02 

MSE_loss_func 0.44 -49.81 0.00 

poisson_loss_func 0.44 -50.31 0.00 

kld_loss_func 0.44 -50.00 0.00 

initialiser_he_norm 0.94 -0.20 0.37 
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initialiser_he_uni 0.94 -0.26 0.21 

initialiser_rand_norm 0.94 0.41 0.02 

initialiser_rand_uni 0.94 0.44 0.01 

initialiser_trunc_norm 0.95 0.59 0.00 

initialiser_ones 0.90 -3.96 0.00 

initialiser_zeros 0.43 -51.35 0.00 

initialiser_glorot_normal 0.94 -0.06 0.79 

optimiser_SGD 0.47 -47.26 0.00 

optimiser_RMSProp 0.95 0.54 0.00 

optimiser_adadelta 0.29 -64.50 0.00 

optimiser_adagrad 0.55 -38.83 0.00 

optimiser_adamax 0.94 0.11 0.60 

optimiser_nadam 0.94 0.13 0.48 

optimiser_ftrl 0.35 -59.24 0.00 

learning_rate_0.001 0.89 -4.98 0.00 

learning_rate_0.005 0.94 -0.44 0.04 

learning_rate_0.05 0.94 -0.33 0.06 

learning_rate_0.1 0.94 0.31 0.05 

learning_rate_0.25 0.93 -0.83 0.27 

learning_rate_0.5 0.88 -5.70 0.00 

learning_rate_1.0 0.70 -24.37 0.00 

dropout_0.1 0.95 0.56 0.00 

dropout_0.25 0.95 0.61 0.00 

dropout_0.33 0.95 0.80 0.00 

dropout_0.5 0.94 0.11 0.54 

dropout_0.75 0.92 -2.02 0.00 

L1_regular 0.93 -1.48 0.00 

L2_regular 0.94 -0.46 0.04 

L1L2_regular 0.92 -1.93 0.00 

ortho_rows_regular 0.94 -0.46 0.02 

ortho_cols_regular 0.94 -0.09 0.62 

all_L1_regular 0.92 -2.11 0.00 
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all_L2_regular 0.92 -1.70 0.00 

all_L1L2_regular 0.91 -2.56 0.00 

 

Supplementary Table 1. Ablation study performed on the MLP. Sixty-four single 

hyperparameter changes are conducted one at a time to explore the hyperparameter space and 

the effect they have on the prediction accuracy relative to our current ML setup, labelled as 

CURRENT. Validation accuracy represents the validation accuracy average across 100 random 

seeds. ∆!"" represents the difference in performance between the variant MLP model and our 

current setup. Negative values result from a decrease in performance, whereas positive ones 

mean an improvement in classification accuracy. FDR was employed to assess the significance 

of these differences. Rows are coloured in green when ∆!""	> 0, orange when −5 < 	∆!""< 0, 

and red if ∆!""	≤ 	−5. Rows where |∆!""| ≥ 1 are in bold font.  
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Supplementary Figure 4. (A) Twenty-five defined ligand binding sites on the SARS-CoV-2 

main protease, MPro (P0DTD1) from 971 ligands from 511 structures; (B) Five of the 9 C1 

sites included the known MPro active site, and four known potential allosteric sites [9, 10]. 
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C1 site functional predictions supported by literature but not annotated in UniProt 

UniProt ID RSA NShenkin MES p # residues # ligands UniProt residue numbers Literature support 

Q32ZE1 17.4 38.4 -0.21 0.02 10 1 
[1762, 1763, 1765, 1766, 1769, 1791, 

1991, 2034, 2035, 2038] 

RNA binding [11] 

RNA exit site [12] 

D3 site [13] 

Q9Y2J2 14.6 38.2 0.01 0.84 15 1 
[117, 118, 119, 203, 206, 207, 210, 231, 

232, 235, 236, 253, 282, 283, 286] 
GPC binding [14] 

Q9Y2J2 13.4 43.3 0.02 0.7 21 4 

[154, 161, 162, 163, 164, 185, 186, 189, 

208, 212, 217, 295, 297, 298, 299, 300, 

301, 315, 375, 376, 379] 

Calmodulin binding 

[14] 

Q8WS26 16.2 28.9 -0.22 0.26 19 2 

[105, 106, 107, 108, 109, 112, 151, 154, 

155, 158, 159, 162, 170, 171, 173, 174, 

175, 176, 179] 

IPP, DMAPP binding 

[15, 16] 

Q8WS26 22.1 31 0.18 0.58 8 2 [308, 312, 315, 316, 320, 324, 384, 423] IPP binding [16] 

P18031 20.8 33.9 0.05 0.48 14 1 
[1, 2, 3, 4, 6, 10, 19, 242, 243, 244, 245, 

246, 247, 271] 

Conformational change 

[17] 

Cluster II [18] 

P47811 17.1 55 0.08 0 19 10 

[191, 192, 197, 198, 232, 236, 242, 246, 

249, 250, 251, 252, 255, 259, 291, 292, 

293, 294, 296] 

MAP insert motif, 

Trp197 pocket [19, 20] 
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Q6B0I6 15.8 41.8 0.12 0.43 12 5 
[193, 224, 225, 227, 228, 239, 240, 241, 

242, 243, 277, 279] 
Cryptic binding site [21] 

P0DTD1 12.9 34.3 -0.13 0.45 12 2 
[5501, 5503, 5809, 5810, 5811, 5838, 

5839, 5840, 5841, 5856, 5858, 5878] 
RNA binding [22] 

P0DTD1 22.3 51.5 -0.04 0.87 9 1 
[5806, 5809, 5810, 5811, 5839, 5874, 

5876, 5878, 5879] 
RNA binding [22] 

P22557 16 47.8 -0.09 0.61 16 10 
[148, 152, 155, 267, 268, 271, 272, 409, 

413, 506, 570, 572, 573, 574, 575, 576] 

Dimerisation interface 

[23] 

P22557 12.7 53.1 0.08 0.61 7 2 [271, 293, 294, 295, 296, 297, 575] 

Conformational change, 

PLP binding, succinyl-

CoA inhibition [23] 

Novel C1 cluster functional predictions 

UniProt ID RSA NShenkin MES p # residues # ligands UniProt residue numbers Literature support 

Q5T0W9 22.4 36.2 -0.24 0.08 12 10 
[149, 150, 151, 177, 233, 234, 235, 236, 

270, 273, 274, 277] 
- 

Q5T0W9 9.7 38.6 -0.05 0.79 12 2 
[125, 126, 127, 129, 229, 255, 256, 257, 

272, 275, 276, 279] 
- 

Q8WVM7 19.8 57.7 -0.23 0.62 5 1 [285, 288, 322, 325, 326] - 

Q15047 18.1 12.4 0.08 0.78 18 2 

[295, 296, 297, 298, 300, 301, 302, 324, 

328, 329, 330, 332, 333, 357, 389, 392, 

393, 394] 

- 
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Q8WS26 19.5 57.3 -0.11 0.57 21 26 

[84, 87, 88, 89, 90, 214, 217, 218, 221, 

222, 225, 268, 269, 273, 277, 281, 285, 

290, 295, 299, 303] 

- 

Q9UGL1 28.7 31.3 -0.09 0.66 10 1 
[53, 57, 506, 582, 583, 606, 607, 609, 

610, 613] 
- 

Q9UGL1 16.6 34 -0.01 1 12 3 
[658, 659, 662, 663, 666, 667, 670, 701, 

736, 737, 738, 741] 
- 

P15379 18.3 19.4 0.09 0.63 11 1 
[23, 24, 40, 41, 50, 146, 148, 162, 163, 

164, 165] 
- 

Q9UJM8 24.3 42.8 -0.11 0.86 6 1 [5, 11, 323, 327, 328, 331] - 

Q6B0I6 21.9 36.6 -0.15 0.68 4 1 [50, 209, 265, 285] - 

Q6B0I6 12.2 26 -0.06 0.84 7 1 [44, 199, 275, 276, 297, 300, 303] - 

Q9UKK9 9.8 29.6 -0.05 0.73 15 1 
[65, 66, 67, 69, 75, 77, 124, 125, 145, 

146, 147, 175, 200, 205, 206] 
- 

Q92835 16.5 33.7 -0.05 0.78 19 46 

[615, 616, 617, 618, 620, 621, 622, 624, 

625, 630, 631, 632, 633, 634, 635, 636, 

637, 638, 674] 

- 

Q92835 12.2 39.4 0.02 0.92 12 1 
[560, 561, 562, 570, 571, 572, 573, 574, 

578, 817, 839, 840] 
- 

Q96HY7 11.6 38.5 0.07 0.75 14 1 
[57, 58, 60, 61, 64, 105, 106, 107, 121, 

122, 125, 126, 147, 151] 
- 
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P22557 17.5 40.6 0.04 0.72 16 7 
[143, 145, 146, 149, 348, 349, 350, 351, 

352, 353, 380, 381, 383, 402, 403, 406] 
- 

P24821 14.2 24.4 -0.29 0 15 8 

[2010, 2011, 2012, 2025, 2045, 2046, 

2047, 2048, 2049, 2050, 2054, 2055, 

2056, 2057, 2060] 

- 

 

Supplementary Table 2. Twenty-nine RSA C1 ligand binding sites unannotated in UniProt, therefore classified as unknown function (UF). UniProt 

ID indicates the protein’s UniProt accession. RSA is the median site RSA. NSHENKIN is the average normalised Shenkin score for the site. MES is 

the average missense enrichment score for the site. p is the p-value associated to this site MES. # residues is the number of residues forming the 

site. # ligands is the number of ligands binding to the site. UniProt residue numbers is a list of the UniProt residue numbers of the residues forming 

the site. Literature support contains a brief description of the site function and adequate references for the 12 sites (top) supported by the literature. 

The other 17 sites (bottom) represent novel predictions of functional sites. 
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