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Supplementary Tables 

Supplementary Table 1 | The chemical composition of elements of the LaFe43.5+xSi2.6+0.06x (x 

= 0, 4, 8, 12, 16) series alloys which were attained by EPMA. 

Compositions α Phase, elements 

atom% 

L Phase, elements 

atom% 

Partition coefficient 

 Si Fe La Si Fe La SiL/Siα FeL/Feα 

LaFe43.5Si2.6 

3.162 96.733 0.104 11.731 82.457 5.812 3.709 0.852 
①

 

3.159 96.649 0.191 11.834 82.398 5.769 3.746 0.852 
②

 

3.622 96.285 0.093 12.022 82.343 5.6345 3.319 0.855 
③

 

LaFe47.5Si2.84 

3.158 96.721 0.121 11.953 82.206 5.505 3.785 0.850 
①

 

3.121 96.719 0.159 11.980 82.206 5.484 3.839 0.850 
②

 

3.274 96.548 0.176 11.844 82.354 5.470 3.617 0.853 
③

 

LaFe51.5Si3.08 

3.719 96.279 0.055 12.099 87.170 6.035 3.253 0.905 
①

 

3.737 96.260 0.072 12.264 86.989 6.091 3.282 0.904 
②

 

3.766 96.231 0.090 11.972 87.304 6.049 3.180 0.907 
③

 

LaFe55.5Si3.32 

4.204 95.132 0.663 12.940 81.403 5.656 3.078 0.856 
①

 

4.172 95.714 0.113 13.159 81.181 5.658 3.154 0.848 
②

 

4.311 95.570 0.119 12.512 81.769 5.719 2.902 0.856 
③

 

LaFe59.5Si3.56 

4.104 95.819 0.077 12.743 81.562 5.695 3.105 0.851 
①

 

4.043 95.855 0.101 12.332 82.013 5.654 3.050 0.856 
②

 

3.927 96.023 0.049 12.212 82.213 5.575 3.109 0.856 
③

 

Average ratio SiL/Siα: 3.342; FeL/Feα: 0.863 

Note：①、②、③ represent that three separate area collections were selected for each sample. 
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Supplementary Table 2 | The chemical composition of elements of the 

LaFe0.939xCo0.061xSi0.0583x (x = 37.5, 47.5, 57. and 67.5, labeled as S-1, S-2, S-3, and S-4, 

respectively) series alloys which were attained by EPMA. 

Compositions 
α Phase, elements  

atom% 

L Phase, elements  

atom% 

Partition coefficient 

 Co Si Fe La Co Si Fe La SiL/Siα FeL/Feα CoL/Coα 

S-1 

5.281 2.383 92.256 0.080 6.699 10.116 77.493 5.692 4.245 0.840 1.268 
①

 

5.277 2.476 92.157 0.090 6.639 10.089 77.904 5.368 4.075 0.845 1.258 
②

 

5.348 2.496 92.024 0.133 6.828 10.416 77.004 5.752 4.173 0.837 1.277 
③

 

S-2 

5.431 3.064 91.367 0.137 6.854 11.547 76.009 5.591 3.769 0.832 1.262 
①

 

5.452 3.140 91.256 0.152 6.981 11.517 75.853 5.65 3.668 0.831 1.280 
②

 

5.499 3.053 91.288 0.160 6.833 10.933 76.932 5.302 3.581 0.843 1.243 
③

 

S-3 

5.452 3.390 91.064 0.094 6.956 11.624 75.764 5.656 3.429 0.832 1.276 
①

 

5.505 3.307 91.100 0.088 6.682 11.019 78.044 4.255 3.332 0.857 1.214 
②

 

5.519 3.423 90.965 0.093 6.915 11.862 75.989 5.234 3.465 0.835 1.253 
③

 

S-4 

5.616 3.535 90.752 0.097 7.196 12.189 74.723 5.891 3.448 0.823 1.281 
①

 

5.626 3.551 90.759 0.064 7.047 12.428 74.994 5.531 3.500 0.826 1.253 
②

 

5.621 3.515 90.800 0.064 7.131 12.020 75.286 5.562 3.420 0.829 1.269 
③

 

  Average ratio SiL/Siα: 3.675; FeL/Feα: 0.836; CoL/Coα: 1.261 

Note：①、②、③ represent that three separate area collections were selected for each sample. 
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Supplementary Table 3 | The summary of ultimate strength (δUS, MPa) and strain (εf, %) in 

typical ZTE materials. 

Typical ZTE materials Strain (εf, %) Ultimate strength (δUS, MPa) References 

TbCo1.9Fe0.1 1.5 260 1 

Ho2Fe16Cr 2.0 50 2 

MnCoGe 1.0 70.4 3 

LaFe11Si2Hx 1.0 60 4 

Mn3Cu0.5Ge0.5N 1.0 161 5 

Hf0.87Ta0.13Fe2 2.7 380 6 

Mn3Ge0.9Sn0.1 5.0 450 7 

Mn3Ge 5.6 204 7 

Ho0.07Fe0.93 5.68 1275.8 8 

Ho0.05Fe0.95 8.08 796.8 8 

Ho0.04Fe0.96 15.6 878 8 

GDFC 1.2 154 9 

LaFe14.2Co1.2Si1.6 3.2 861.1 10 

LaFe16.2Co1.2Si1.6 3.6 883.6 10 

LaFe18.2Co1.2Si1.6 3.78 968.8 10 

LaFe20.2Co1.2Si1.6 3.87 1001.6 10 

LaFe10.1Cu0.5Si2.4 2.8 1325 11 

LaFe10.2Cu0.4Si2.4 2.6 1240 11 

La(Fe, Co, Si)13/Cu54.6 12.6 441.1 12 

La(Fe, Co, Si)13/Cu39.7 6.4 360.6 12 

La(Fe, Co, Si)13/Cu25.6 1.9 218.5 12 

La(Fe, Si)13/Resin3 4.2 116.2 13 

La(Fe, Si)13/Resin20 4.1 180.9 13 

La(Fe, Si)13/Resin80 5.3 203.8 13 

Ho2Fe16Co 2 49 14 

Er-Fe-V-Mo 2.31 1631.4 15 

La(Fe, Co, Si)13 1.6 256.4 16 

S-3 30.9 1110.1 This work 

Invar 30 680.0 ε = 30 % 
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Supplementary Figures 

 

 

Supplementary Fig. 1 | The calculation of SiL/Siα and FeL/Feα partition coefficient in La-Fe-

Si ternary system. a, The dilatometer thermal expansion of series LaFe43.5Six (x = 2.6, 3.0, 3.5, 

4.0, 4.5, 5.0, 5.5) alloys. b, The ratio of SiL/Siα and FeL/Feα in response to different compositions. 

c, The dilatometer thermal expansion of series LaFe43.5+xSi2.6+0.06x (x = 0, 4, 8, 12, 16) alloys. d, 

The corresponding magnetic measurements of the series alloys. 
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Supplementary Fig. 2 | The calculation of SiL/Siα, FeL/Feα and CoL/Coα partition coefficient. 

a, The dilatometer thermal expansion of series LaFe57.5-xCoxSi3.35 (x = 0, 1.5, 2.5, 3.5, 4.5) alloys. 

b, The ratio of SiL/Siα, FeL/Feα, and CoL/Coα in response to different compositions. c, The 

dilatometer thermal expansion of series LaFe57.5-xCoxSi3.35 (x = 0, 1.5, 2.5, 3.5, 4.5) alloys. d, The 

corresponding magnetic measurements of the series alloys. 
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Supplementary Fig. 3 | Schematic diagram of the relationship between ingot and coordinate 

system. The temperature gradient along the LD direction is the reason for the preferential growth 

of the sample. 
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Supplementary Fig. 4 | The cyclic thermal shock experiment undergoes a thermal shock from 

77 K to 373 K. a, The dilatometer thermal expansions of S-3 alloy in the 1st, 100th, and 200th cycles. 

b, The compressive stress-strain curves of the S-3 alloy after the 1st, 100th, and 200th cycles. 
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Supplementary Fig. 5 | a-d, The Rietveld refinement of synchrotron X-ray diffraction profile of 

the as-cast samples in composition LaFe0.939xCo0.061xSi0.0583x (x = 37.5, 47.5, 57.5, and 67.5, labeled 

as S-1, S-2, S-3, and S-4, respectively). 
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Supplementary Fig. 6 | The typical diffraction (hkl) reflections of the dual-phase alloy. a-b, 

The (110)α reflection was collected by bank 1 and bank 2 detectors, respectively. c-d, The (600)L 

and (531)L reflections were collected by bank 1 and bank 2 detectors, respectively. The 75 counts 

are used to collect the three-dimensional crystallographic information (11.25 degrees/step for 45-

degree vertical rotation; 24 degrees/step for 336-degree horizontal rotation). At each step, the two 

detectors will be collected, respectively. 
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Supplementary Fig. 7 | The microstructure and inverse pole figure (IPFZ) of S-3 alloy. a-c, 

The EBSD band contrast figure at different magnifications. d-f, The EBSD inverse pole figure 

(IPFZ) at different magnifications. 
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Supplementary Fig. 8 | The electro-probe micro-analyzer (EPMA) mappings of the S-3. a-c, 

The microstructure of S-3 in TD-ND plane at different magnifications. d-g, the elements mapping 

of La, Fe, Co, and Si, respectively. h-j, The microstructure of S-3 in LD-TD plane at different 

magnifications. k-n, the elements mapping of La, Fe, Co, and Si, respectively. We observed that 

there are certain differences in the morphology of the alloy (S-3) between the in-plane (TD-ND) 

and out-of-plane (LD-TD), the in-plane appearance is a continuous network and the out-of-plane 

shape is dendritic, which may be related to the growth direction of the as-cast alloy. As a result, 

the dilatometer thermal expansion behaves a negligible differences. 
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Supplementary Fig. 9 | The interface structure of the S-3alloy. a-d, The phase interfaces of the 

alloy and corresponding selected area electron diffraction (SAED). e-l, The HAADF-STEM 

images at the phase interface. 

  



 

 

15 

 

 

Supplementary Fig. 10 | Mechanical performance and small parts. a, Toughness comparison of S-

1, S-2, S-3, and S-4 series alloys and targeted synthesis of the L phase. b, The super-high toughness 

S-3 alloy is facile and precisely to be machined. The rods/tubes are melted under induction melting 

conditions and cast into  25 mm diameter rods, annealed under vacuum (1373 K + 24 hours), 

then machined to a suitable size and surface polished. 
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Supplementary Fig. 11 | Schematic diagram of the in-situ neutron diffraction experimental 

set-up from the top view. The sample is horizontal and positioned at 45° from the incident beam 

such that Bank 1 probes the strain component along the LD, while Bank 2 simultaneously probes 

the strain component in the TD, as shown in two insets. 
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Supplementary Fig. 12 | The compressive stress-strain curves of the pure L phase 

(LaFe10.30Co0.83Si1.87) and α phase (Fe92.42Co4.34Si3.07). The L phase shows brittle but negative 

thermal expansion, and the α phase behaves as plastic and has positive negative thermal expansion. 
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Supplementary Fig. 13 | Microstructure evolution of the dual-phase alloy (ZTE composition). 

a-c, Ex-situ EBSD phase contrast image under 5%, 10%, 15% strain (ε) conditions. Orange arrows 

represent shear cracks. d-f, Ex situ EBSD IPF inverse pole image under 5%, 10%, 15% strain (ε) 

conditions. 
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Supplementary Fig. 14 | Microstructure evolution of the dual-phase alloy (ZTE composition). 

a-c, Different stacking faults observed in the L phase at 5% strain (ε). This indicates that stacking 

faults are the main deformation mechanism in the initial stage of L-phase plastic deformation. d-

f, Dual-phase interface structures at 15% strain (ε). The microcracks in the L phase are hindered 

from propagating to the interface.  
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Supplementary Fig. 15 | The evolution of stacking fault illustrated by the crystal structure. 

To make the model clearer, we only keep La atoms here. 
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Supplementary Fig. 16 | a-c, Dual-phase interface structures at 15% strain (ε). The 

microcracks in the L phase are hindered from propagating to the interface. Noted: The cracks were 

affected by the thinning process. Noted: The structure of the cracks is affected to varying degrees 

by the thinning process. 
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Supplementary Fig. 17 | a-d, Fracture morphology of the S-3 and pure La(Fe, Co, Si)13 compound, 

dense and cross stripes demonstrated the large plastic deformation before failure. 
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Supplementary Fig. 18 | A typical interface of the dual-phase alloy (ZTE composition) at 15 % 

strain (ε). a-c, The interface structure of the dual-phase alloy is determined by TEM at different 

scales. 
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