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Supplementary Information for
“Understanding quantum machine learning also requires rethinking generalization”

SUPPLEMENTARY NOTE 1 - PROOF OF THEOREM 1

In this section, we re-state and prove Theorem 1.

Theorem 1 (Finite sample expressivity of quantum circuits). Let ρ1, . . . , ρN be unknown quantum states on n ∈ N qubits, with
N ∈ O(poly(n)), and let W be the Gram matrix

[W ]i,j = tr(ρiρj) . (1)

If W is well-conditioned, then, for any y1, . . . , yN ∈ R real numbers, we can construct a quantum circuit of depth poly(n) as
an observable My such that

tr(ρiMy) = yi . (2)

Proof. We prove the statement directly and constructively. It is interesting to note that if we had imposed pairwise orthonormal
states instead of just linearly independent, the Gram matrix would simply be the identity W = I, in which case we would only
need to set

M̃y :=

N∑
k=1

ykρk. (3)

We would have, for each i ∈ {1, . . . , N},

tr(ρiM̃y) = tr

(
ρi

N∑
k=1

ykρk

)
=

N∑
k=1

yk tr(ρiρk) (4)

=

N∑
k=1

ykδi,k = yi . (5)

In the second-to-last step, we used the pairwise orthogonality and normalization of the quantum states, which we briefly intro-
duced for illustration purposes.

Now, if we go back to only requiring a well-conditioned Gram matrix, we need to introduce the intermediate variable z =
(z1, . . . , zN ), which we define as the solution to the linear system of equations

Wz = y . (6)

We know we can solve this system of linear equations, reaching a unique solution, becauseW is well-conditioned per hypothesis.
With this, we take the same observable as before, but this time with the intermediate variable weighting the sum over states, to
get

My = M̃z :=

N∑
k=1

zkρk . (7)

Indeed, this observable produces the correct output for each i ∈ [N ],

tr(ρiM̃z) = tr

(
ρi

N∑
k=1

zkρk

)
=
∑
k=1

zk tr(ρiρk) (8)

=

N∑
k=1

zkWi,k = yi . (9)

In order to compute tr(ρiρk) for unknown states ρi and ρk, we could employ the SWAP test, using one auxiliary qubit.
Notice that even though this construction is theoretical and assumes access to many copies of the input states every time we

want to run the quantum circuit, the observable’s expected outcome can still be estimated in practice following these steps:



2

1. From y and W , obtain z.

2. From z, obtain the probability distribution p = (p1, . . . , pN ) as

pk =
|zk|∑N
j=1|zj |

, (10)

and the vector of signs s = (s1, . . . , sN ) as

sk =
|zk|
zk

, (11)

so that zk = skpk
∑N

j=1|zj |.

3. Sample k ∼ (p1, . . . , pN ) and prepare ρk.

4. Estimate tr(ρiρk) for the desired ρi and the ρk just sampled, for instance using the SWAP test.

5. If sk = −1, flip the outcome in the last step.

6. Repeat the last three steps until convergence.

7. Output the expected value multiplied with
∑N

j=1|zj |.

This procedure realizes an unbiased estimator for the expectation value of M̃z with error decreasing linearly with the number
of repetitions. With this, the proof is complete.

SUPPLEMENTARY NOTE 2 - PROOF OF THEOREM 2

Here, we re-state and prove Theorem 2.

Theorem 2 (Finite sample expressivity of PQCs). Let ρ1, . . . , ρN be unknown quantum states on n ∈ N qubits, with N ∈
O(poly(n)), and fulfilling the distinguishability condition of Definition 1. Then, we can construct a PQC of poly(n) depth as a
parametrized observable M̂(ϑ) such that, for any y = (y1, . . . , yN ) ∈ R real numbers, we can efficiently find a specification of
the parameters ϑy such that

tr(ρiM̂(ϑy)) = yi . (12)

Proof. This proof follows the steps of Theorem 1. We show the statement directly and constructively. Now, instead of using the
quantum states themselves, we shall first find easy-to-prepare approximations and then define the observable based on the latter.

By construction, ρ1, . . . , ρN fulfill the distinguishability condition. That means we can obtain efficient PQC-based approxi-
mations ρ̂1, . . . , ρ̂N , with which we can furbish the matrix Ŵ , with entries

[Ŵ ]i,j = tr(ρiρ̂j) . (13)

Moreover, we can efficiently prepare ρ̂j by applying a now-known parametrized unitary, Uj , to, e.g., the |0⟩ state vector,

ρ̂j = Uj |0⟩⟨0|U†
j . (14)

This means we do not require using the SWAP test every time anymore, nor continuous coherent access to the input quantum
states, since we can now apply the inverse unitary to ρi and then measure in the computational basis, to get

tr(ρiρ̂j) = tr
(
ρiUj |0⟩⟨0|U†

j

)
= ⟨0|U†

j ρiUj |0⟩ . (15)

In the case of ρi being a pure state ρi = |ψi⟩⟨ψi|, the inner product is just |⟨0|U†
j |ψi⟩|2. This can be clearly computed as a PQC.

We repeat this approach for each (ρi, ρ̂j)-pair, until we fill the matrix Ŵ . We can finally obtain the intermediate variable ẑ,
now as the solution to the linear system with Ŵ and y,

N∑
k=1

Ŵi,kẑk = yi . (16)
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Again, we can find a unique solution to this linear system because of the well-conditioned requirement of Ŵ in Definition 1. It
is then sufficient to construct the measurement observable M̂(ϑy) as

M̂(ϑy) =

N∑
k=1

ẑkρ̂k . (17)

We clear the relation between ϑy and ẑ further below, which is crucial in this construction.
The fact that the construction produces the correct outcome for each i ∈ [N ] should not be surprising by now

tr(ρiM̂(ϑy)) = tr

(
ρi

N∑
k=1

ẑkρ̂k

)
=

N∑
k=1

ẑk tr(ρiρ̂k) (18)

=

N∑
k=1

ẑkŴi,k = yi . (19)

The question remains whether we can implement M̂(ϑy) as a PQC since, so far, we have only stated each of the approx-
imated states ρ̂j can individually be prepared as a PQC. Indeed, we could use classical controls to prepare each of the Uj

state-preparation-unitaries, along with extra log(N) auxiliary qubits.
Suppose we wanted to stay in the spirit of Theorem 1. We could first construct a classical probability distribution from ẑ and

then sample and prepare the ρ̂k with probability proportional to |ẑk|, keeping track of potential sign flips. However, potentially,
for each different ρ̂k, we would need to run a different circuit Uk. This would give up the PQC picture slightly. Hence we need
to reconcile this sampling from the ẑ-probability distribution as part of the PQC itself, for which we shall use a few extra qubits.

As before, from ẑ = (ẑ1, . . . , ẑN ), we construct the probability distribution p̂, and a vector of signs ŝ, ŝj = sign(ẑj), with

p̂k =
|ẑk|∑N
j=1|ẑj |

∝ |ẑk|, (20)

so that it holds ẑk = ŝkp̂k
∑N

j=1|ẑj |. We initialize a quantum circuit with two registers, the n-qubit input register, and a

⌈log2(N)⌉-qubit auxiliary register. First, we perform amplitude encoding V (ϑ
(1)
y ) for the distribution p̂ on the auxiliary register,

to get

V (ϑ(1)y )|0⟩ =
N∑
j=1

√
p̂j |j⟩ . (21)

For amplitude encoding, we consider the arbitrary state preparation protocol proposed in Ref. [1]. There, with a fixed circuit
structure, we find the mapping from the amplitudes to be encoded to the rotation angles to be used in the parametrized circuit.
With our notation, this mapping corresponds to p̂ 7→ ϑ

(1)
y . The protocol in [1] is efficient in the length of the vector to be

encoded. For fixed ρ1, . . . , ρN , the probabilities p̂ depend only on y, hence the explicit y-dependence of ϑ(1)y . We call these
parameters ϑ(1)y because they are not the only variational parameters that come into play.

Next, for each k ∈ [N ], we construct the controlled rotation CUk which, if the auxiliary register is in state |k⟩, implements
the inverse of the kth state-preparation-unitary U†

k on the input register, and does nothing if the auxiliary register is in a different
state

CUk [ρ⊗ |k′⟩⟨k′|] :=

{
U†
kρUk ⊗ |k⟩⟨k| if k = k′

ρ⊗ |k′⟩⟨k′| else .
(22)

We call CU the sequence of all such controlled gates CU := CUN . . .CU1. With this, if the auxiliary register is in a single
computational-basis state vector |j⟩, the effect of CU is

CU [ρ⊗ |j⟩⟨j|] = U†
j ρUj ⊗ |j⟩⟨j| . (23)

After all the controlled rotations, we perform a product measurement on both registers O(ϑ
(2)
y ) = Oinput ⊗ Oaux(ϑ

(2)
y ). On the

input register, we measure the projector onto the |0⟩ state Oinput = |0⟩⟨0|. On the auxiliary register, we perform a computational
basis measurement with sign flips according to the sign vector ŝ to arrive at

Oaux(ϑ
(2)
y ) =

N∑
j=1

ŝj |j⟩⟨j| . (24)
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Again, ŝ depends on y, so now the variational parameters ϑ(2)y are the ones controlling whether the jth computational basis state
has a sign-flip sj = −1 or not sj = 0. We can again fix a circuit structure such that each specification of ŝ corresponds only to
altering the variational parameters ϑ(2)y . we shall denote ϑy = (ϑ

(1)
y ;ϑ

(2)
y ), uniting both kinds of variational parameters.

Measuring the combined observable on the system while the auxiliary state is in the computational basis state |k⟩ produces
the outcome

tr
[
ρ⊗ |k⟩⟨k|O(ϑ(2))

]
= tr [ρOinput] tr

[
|k⟩⟨k|Oaux(ϑ

(2))
]
= ⟨0|ρ|0⟩ŝk . (25)

Finally, we put everything together to prove the correctness of the construction.
For a given ρi, our task is to measure tr[ρiM̂(ϑ

(2)
y )]. The computation starts with the input register initialized as ρi and the

auxiliary register on the |0⟩ state. First, we perform amplitude encoding V (ϑ(1)) on the auxiliary register and then apply the
controlled rotation unitary CU, to arrive at

CU
[
ρi ⊗ V (ϑ(1))|0⟩⟨0|V †(ϑ(1))

]
=
∑
j,j′

√
p̂j p̂j′ CU [ρi ⊗ |j⟩⟨j′|] =

∑
j,j′

√
p̂j p̂j′U

†
j ρiUj′ ⊗ |j⟩⟨j′| . (26)

Second and last, we measure O(ϑ(2)) on this state, to get

tr

∑
j,j′

√
p̂j p̂j′U

†
j ρiUj′ ⊗ |j⟩⟨j′|O(ϑ(2))

 =
∑
j,j′

√
p̂j p̂j′ tr

[
U†
j ρiUj′ ⊗ |j⟩⟨j′|Oinput ⊗Oaux(ϑ

(2))
]

(27)

=
∑
j,j′

√
p̂j p̂j′ tr

[
U†
j ρiUj′Oinput

]
tr
[
|j⟩⟨j′|Oaux(ϑ

(2))
]
. (28)

We only need to rearrange the formulas to get our original statement out, up to a multiplicative factor of
∑

k|ẑk|, to get

∑
j,j′

√
p̂j p̂j′ tr

[
U†
j ρiUj′Oinput

]
tr
[
|j⟩⟨j′|Oaux(ϑ

(2))
]
=
∑
j,j′

√
p̂j p̂j′ tr

[
U†
j ρiUj′ |0⟩⟨0|

]
tr

[
|j⟩⟨j′|

∑
k

ŝk|k⟩⟨k|

]
(29)

=
∑
j,j′

√
p̂j p̂j′ tr [ρiρ̂j ] ŝjδj,j′ (30)

=
∑
j

p̂j ŝj tr [ρiρ̂j ] (31)

=

∑
j ẑj tr [ρiρ̂j ]∑

k|ẑk|
(32)

=
tr
[
ρiM̂y

]
∑

k|ẑk|
. (33)

Indeed, in order to reach our goal, we need to multiply the result of the construction with the 1-norm of the intermediate variable
ẑ. Thus completing the proof that PQCs with fixed structure can learn arbitrary data labelings, provided the input states are
distinguishable enough.
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