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Peer Review File

Understanding quantum machine learning also requires 
rethinking generalization



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In this manuscript, the authors use numerics (also supported by theorefical results which I think not 

essenfial) to show that the most commonly used complexity measures (like the VC dimension, the 

Rademacher complexity and all their uniform relafives) from tradifional stafisfical learning theory 

pessimisfically esfimate the performance of quantum machine learning models. The authors argue that 

these findings highlight the need for a paradigm shift in the design of quantum models for machine 

learning. Let me explain their result briefly and roughly/non-accurately in the following.

The performance of a machine learning model = training error + generalizafion gap. In the tradifional 

learning theory or the complexity measures the author menfioned in this manuscript, both these two 

terms are properfies of models (or more professionally hypothesis class) instead of properfies of both 

model and data. So the training error is prefty small usually means the model has large memory capacity 

/ expressive power if without taking advantage of the structure of data when designing the model. In 

this case, the generalizafion gap is usually large. This corresponds to the overfifting regime. In contrast, 

the generalizafion gap is prefty small usually means the model has small expressive power or 

equivalently the model is simple. In this case, the training error is usually large. This corresponds to the 

underfifting regime. There is a trade-off between these two terms. In order to make both terms small, 

according to the understanding of tradifional stafisfical learning theory, the model should be both simple 

enough (i.e., not too many training parameters) and capture the structure of data properly.

However, in this manuscript, they authors show a different picture deviafing from tradifional stafisfical 

learning theory. There are 3 types of data: a. “natural data” (data from phase classificafion problem on a 

physical Hamiltonian), b. randomized data from a (which eliminate the physical structure of the data) 

and c. corrupted data (which can be viewed as a kind of interpolafion between a and b). The authors use 

Quantum Convolufional Neural Network (QCNN) as the model for all these types of data. For b, the 

authors use both numerics and analyfical results to show the training error is very small. Which means 

QCNN should have large enough memory capacity. Then due to the limit amount of data, we expect this 

would imply large generalizafion gap. Then the numerics confirms this point. These suggest that the 

QCNN model used has large enough size which should causes overfifting according to the above picture 

given by the stafisfical learning theory. However, when applied to a by the same model, both training 

error and generalized gap are small. For c, the training error is also small and the generalizafion gap 

behaves as the interpolafion between the generalizafion gaps of an and b. In addifion, by definifion of 

those complexity measures menfioned above, the generalizafion gap from them should be even not less 

than the generalizafion gap in b. However, the real world problem should be like a. So this implies that 

generalizafion gap from tradifional learning theory fails to explain the behavior of quantum machine 

learning model for “real-world” problem. And this also implies that the structure of data influence the 

performance a lot even using the same model class.



According to the above line of logic, the authors arrive at the conclusion “These findings expose a 

fundamental challenge in the convenfional understanding of generalizafion in quantum machine learning 

and highlight the need for a paradigm shift in the design of quantum models for machine learning tasks.” 

and “Our numerical results suggest that we must reach further than uniform generalizafion bounds to 

fully understand quantum machine learning (QML) models”. I cannot fully agree with the authors on 

these conclusions. According to the recent development of machine learning (mainly deep learning), it is 

well-known that the picture provided by the “convenfional understanding of generalizafion” and 

“uniform generalizafion bounds” does not work. For example, the Large Language Models (LLM) 

obviously belong to the over-parameterized regime (the authors clearly know this situafion according to 

their discussion) but the performance is great (here I mixed the discussion of classificafion/regression 

and generafive model, but the spirit should be conveyed). The conclusion from this manuscript sounds 

like this phenomena is specific to QML but actually not, it exists in classical machine learning and is well-

known. Even rephrased as something like “also in QML”, “highlight the need for a paradigm shift” is a 

liftle bit over-claimed. I think not too many people think tradifional stafisfical learning theory can explain 

modern machine learning. There is even a joke from Internet that “the modern applicafion of stafisfical 

learning theory is being exam material for ML students”. Besides, classical machine learning people also 

know the importance of the structure of data as evidenced that the success of ChatGPT parfially due to 

the quality of data (by data disfillafion and human annotafion).

In summary, I think the result of this manuscript is good to know for anyone working on QML. However, 

the significance might be over-claimed given the widely known situafion in classical machine learning.

Reviewer #2 (Remarks to the Author):

The paper considers the issue of generalizafion in quantum machine learning. The work is inspired by the 

influenfial work "Understanding deep learning requires rethinking generalizafion” from classical machine 

learning. The paper shows the limitafions of uniform generalizafion bounds in quantum machine 

learning with numerical simulafions consisfing of randomizafion of the data/labels and analyfical 

discussions.

Overall, the paper is well wriften and addresses interesfing quesfions in QML. While the paper is a 

valuable contribufion, I would judge the paper to be borderline with respect to Nature Communicafions. 

The paper’s contribufion are rather subtle points on uniform generalizafion and does not explain 

why/how QML models could achieve good generalizafion performance.



More detailed comments:

- Quantum convolufional neural networks are used for the numerical simulafions. Can the authors 

comment on the efficient classical simulability of these networks for a large number of qubits? After 

each layer, many (half) of the qubits are measured, hence the network is quite shallow and 

entanglement is limited. What are the classical hardness results for such networks?

- For the numerics, it is unclear if the amount of data samples is too small to guarantee randomness in 

distribufion.

Is it possible that instead of the brute force memorizafion, the results are caused by the relafive ease to 

find pafterns that fit the given labels from the small set of data?

- The theorefical results support the argument but are relafively straighfforward. Theorem 1 is analogous 

to a classical classifier that is defined by a linear combinafion of the training vectors such as in the 

support vector machine, regression, etc. For the theorem, the vectors are replaced by density matrices 

but conceptually it is the same and the linear algebra works out as one expects.

- In the Theorem 1 statement M_y probably shouldn’t be called “circuit” but rather “observable”, like the 

authors write in the proof of the theorem.

- “W is well-condifioned per construcfion”. Isn’t it per hypothesis?

- Theorem 2 is similar to Theorem 1, however now further assumpfions are imposed and a PQC classifier 

is achieved. These assumpfions seem to be quite strict. While it is conceivable that the density matrices 

can be constructed from parameterized quantum circuits, it is less conceivable that the resulfing kernel 

matrix is well-condifioned. Theorem 3 provides a result on finding well-condifioned matrices, but the 

connecfion is not enfirely clear.

- In Theorem 3 it is unclear how the sigma’s are defined with respect to the original rho’s. It seems that it 

is not relevant for this theorem that the sigma’s are approximafions of the rho’s. This fact is not used in 

the proof. If the fact is relevant then the approximafion should be defined more properly in the theorem 

statement.



- The subroufine presented in Theorem 2 for implemenfing the measurement operator appears to be 

essenfially the LCU technique. Given controlled unitaries, we implement a linear combinafion of the 

unitaries. Citafions to previous works should be given.

- PQCs are usually considered to be candidate circuits in the near-term quantum compufing sefting 

(NISQ). While Theorem 2 allows the classifier to be in the PQC framework, the construcfion appears not 

very NISQ friendly. We have addifional ancilla qubits, the state preparafion of the probability 

distribufion, and the select operafion, which require substanfial quantum resources.

Reviewer #3 (Remarks to the Author):

We have reviewed with interest the manuscript fitled “Understanding quantum machine learning also 

requires rethinking generalizafion”. In this work, the authors started with QNNs’ learning with original, 

label-randomized, and state-randomized datasets with a focus on generalizafion errors. By combining 

these numerical results and stafisfical learning theory, the authors pointed out the imperfecfions of the 

commonly used complexity measures for QML models, after which a further theorefical construcfion 

made the framework more complete.

We found this work interesfing, and helpful for a befter understanding of QML. The paper is clearly 

wriften and the claims are supported by numerical simulafions / theorefical construcfions (and opening 

source the source code/data is appreciated). We just have a few quesfions/comments for the authors:

1) In Fig 3a, the gen(f) of random labels starts to decrease at N = 10 since the memorizafion capability of 

the applied QCNNs is limited. As we can imagine, when N becomes very large, this gen(f) will approach 0. 

We wonder whether the authors can expand the range of the “Training set size N” to visualize this point?

2) In Eq. (3), the authors used argmin (e.g., when y = 01, we try to opfimize the model towards 

outpufting the probability (a, 0, b, c)), instead of argmax (e.g., when y = 01, we try to opfimize the model 

towards outpufting the probability (0, 1, 0, 0)). Is this choice made for befter training performance from 

some engineering perspecfive?



Response to Reviewer 1

We would like to thank the reviewer for the time and effort of writing the elaborate and highly
valuable report. In order to further clarify our proposal, we have answered the reviewer’s comments
and we have proceeded with some improvements in the manuscript, which are detailed individually
and point by point.

In this manuscript, the authors use numerics (also supported by theoretical results which I think
not essential) to show that the most commonly used complexity measures (like the VC dimension,
the Rademacher complexity and all their uniform relatives) from traditional statistical learning
theory pessimistically estimate the performance of quantum machine learning models. The authors
argue that these findings highlight the need for a paradigm shift in the design of quantum models for
machine learning. Let me explain their result briefly and roughly/non-accurately in the following.

Reply: We appreciate Reviewer 1’s thorough review of our manuscript and the valuable sug-
gestions provided, which have resulted in an improvement in the clarity and readability of the text.
The theoretical results serve to establish a comprehensive foundation for our numerical findings,
extending their applicability beyond near-term quantum devices. To emphasize this, we have clari-
fied the goals of the theoretical results in the initial paragraph of Section C. Additionally, we have
heeded the suggestion to modify the phrasing in the abstract from “paradigm shift in the design of
quantum models” to “paradigm shift in the study of quantum models”, as also mentioned below by
Reviewer 1.

The performance of a machine learning model = training error + generalization gap. In the
traditional learning theory or the complexity measures the author mentioned in this manuscript,
both these two terms are properties of models (or more professionally hypothesis class) instead of
properties of both model and data. So the training error is pretty small usually means the model
has large memory capacity / expressive power if without taking advantage of the structure of data
when designing the model. In this case, the generalization gap is usually large. This corresponds to
the overfitting regime. In contrast, the generalization gap is pretty small usually means the model
has small expressive power or equivalently the model is simple. In this case, the training error is
usually large. This corresponds to the underfitting regime. There is a trade-off between these two
terms. In order to make both terms small, according to the understanding of traditional statistical
learning theory, the model should be both simple enough (i.e., not too many training parameters)
and capture the structure of data properly. However, in this manuscript, they authors show a
different picture deviating from traditional statistical learning theory. There are 3 types of data: a.
“natural data” (data from phase classification problem on a physical Hamiltonian), b. randomized
data from a (which eliminate the physical structure of the data) and c. corrupted data (which can be
viewed as a kind of interpolation between a and b). The authors use Quantum Convolutional Neural
Network (QCNN) as the model for all these types of data. For b, the authors use both numerics and
analytical results to show the training error is very small. Which means QCNN should have large
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enough memory capacity. Then due to the limit amount of data, we expect this would imply large
generalization gap. Then the numerics confirms this point. These suggest that the QCNN model
used has large enough size which should causes overfitting according to the above picture given by
the statistical learning theory. However, when applied to a by the same model, both training error
and generalized gap are small. For c, the training error is also small and the generalization gap
behaves as the interpolation between the generalization gaps of a and b. In addition, by definition
of those complexity measures mentioned above, the generalization gap from them should be even
not less than the generalization gap in b. However, the real world problem should be like a. So
this implies that generalization gap from traditional learning theory fails to explain the behavior of
quantum machine learning model for “real-world” problem. And this also implies that the structure
of data influence the performance a lot even using the same model class.

Reply: These are good and valid points. The account given here by Reviewer 1 has made
us realize that the terminology used when discussing the mathematics of supervised learning is
different from the language sometimes used by ML practitioners. To address this, we have included
two additional paragraphs at the end of Section II.A to draw bridges between both languages.

According to the above line of logic, the authors arrive at the conclusion “These findings expose
a fundamental challenge in the conventional understanding of generalization in quantum machine
learning and highlight the need for a paradigm shift in the design of quantum models for machine
learning tasks.” and “Our numerical results suggest that we must reach further than uniform
generalization bounds to fully understand quantum machine learning (QML) models.”. I cannot
fully agree with the authors on these conclusions. According to the recent development of machine
learning (mainly deep learning), it is well-known that the picture provided by the “conventional
understanding of generalization” and “uniform generalization bounds” does not work. For example,
the large language models (LLM) obviously belong to the over-parameterized regime (the authors
clearly know this situation according to their discussion) but the performance is great (here I mixed
the discussion of classification/regression and generative model, but the spirit should be conveyed).
The conclusion from this manuscript sounds like this phenomena is specific to QML but actually
not, it exists in classical machine learning and is well-known. Even rephrased as something like “also
in QML”, “highlight the need for a paradigm shift” is a little bit over-claimed. I think not too many
people think traditional statistical learning theory can explain modern machine learning. There is
even a joke from Internet that “the modern application of statistical learning theory is being exam
material for ML students”. Besides, classical machine learning people also know the importance of
the structure of data as evidenced that the success of ChatGPT partially due to the quality of data
(by data distillation and human annotation).

Reply: We acknowledge Reviewer 1’s partial disagreement with our conclusions and have made
changes accordingly. We separate the statements and address them individually.

• “These findings expose a fundamental challenge in the conventional understanding of general-
ization in quantum machine learning and highlight the need for a paradigm shift in the design
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of quantum models for machine learning tasks.”

– We have addressed this concern by modifying the statement from “paradigm shift in the
design of quantum models” to “paradigm shift in the study of quantum models”. This ad-
justment aims to clarify our intention, which is to emphasize the importance of designing
quantum models with the goal of enhancing our understanding of their generalization capa-
bilities. In particular, we wanted to clarify that the current way generalization is studied,
through traditional statistical learning theory, is not the right approach to understanding
generalization, and we anticipate that our findings will stimulate further research studying
non-uniform approaches for QML models. We recognize that our initial phrasing might be
read as an overstatement, as it could be interpreted as proposing specific design principles to
improve the overall performance of QML models, which was not our intention.

• “Our numerical results suggest that we must reach further than uniform generalization bounds
to fully understand quantum machine learning (QML) models. I cannot fully agree with the
authors on these conclusions. According to the recent development of machine learning (mainly
deep learning), it is well-known that the picture provided by the ‘conventional understanding
of generalization’ and ‘uniform generalization bounds’ does not work.”

– As mentioned by Reviewer 1, we know that uniform approaches to generalization must fail
for large, overparametrized, classical deep neural networks. Indeed, LLMs are a good example,
there is no fundamental difference in this case between generative and supervised learning.
However, it is imperative to recognize that classical and quantum models are fundamentally
different. They not only operate on distinct computing platforms of a physically different
nature, but also, the functions produced by neural networks are typically different from those
produced by parametrized quantum circuits. As a consequence, caution is warranted in ex-
pecting these two different learning models to behave equally when faced with randomization
experiments based on unrelated learning tasks. The fact that the quantum and classical
learning models display similar results should not be taken for granted, especially for small
quantum models. We have elaborated on this discussion in Section III for further clarity.

• We take special notice of Reviewer 1’s statement: “The conclusion from this manuscript sounds
like this phenomena is specific to QML but actually not, it exists in classical machine learning
and is well-known.”

– Here, we would take the liberty to politely disagreeing with Reviewer 1, as this is the
opposite of the message we wanted to convey. But of course, we see the point that we should
have explained this point better. We have carefully reconsidered the discussion in Section
III to ensure clarity regarding the observed phenomenon. At no point do we mention this
phenomenon is specific to QML. In fact, we acknowledge the existence of analogous phenomena
in classical machine learning by directly mentioning the paper that initiated this line of thought
from deep learning [1], which we have cited multiple times both in the previous and new
versions of the manuscript. The title of our manuscript is a clear wink to this foundational
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reference, reflecting our awareness of the broader literature. We believe the revisions in Section
III effectively address this concern, but we remain open to further suggestions from Reviewer
1 to improve the clarity of our message.

In summary, I think the result of this manuscript is good to know for anyone working on
QML. However, the significance might be over-claimed given the widely known situation in classical
machine learning.

Reply: We appreciate Reviewer 1’s valuable feedback on our manuscript and the overall positive
response. The suggested revisions have enhanced the clarity and coherence of our message, in
our assessment. Regarding the significance of our work, we respectfully assert that our results
are more than “good to know for anyone working on QML”. After careful consideration of the
existing literature in QML, we honestly think that our manuscript is actually “important for anyone
working on QML”, and at least “good to know for potential applications of QML”, including quantum
computing-based approaches to classifying ground states of many-body Hamiltonians and other
learning tasks about physical properties from data.

We suspect that there may be a difference of opinion between Reviewer 1 and ourselves regarding
“what was already known in the field of generalization in QML.” In our response, we have elucidated
the relation between our manuscript and the seminal Ref. [1]. We summarize our perspective on
the state of knowledge before the emergence of our results:

• We believe researchers in QML were aware of the classical literature and the modern ap-
proaches to generalization for large overparametrized neural networks.

• The main message of Ref. [1] is that traditional learning theory fails to explain the success of
deep convolutional neural networks.

• On the one hand, we discuss the difference between large classical models and current quantum
models in terms of scale (discussed in Section III).

• On the other hand, there is a point to be made on the distinction between classical neural net-
works and quantum neural networks. Recent efforts have been directed towards understanding
the comparative behavior of classical and quantum models. It is not directly apparent that
quantum neural networks should display the same behavior as classical neural networks when
it comes to exhibiting good generalization even in the case of overfitting. Regarding random-
ization tests in particular, these are specific to different model-task configurations (also now
discussed in Section III).

• The research in generalization in QML over the past few years has seen numerous papers
employing traditional learning theory. In fact, works in this vein started emerging in 2020 [2],
well after Ref. [1]. We cite some of these studies [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
as evidence of the uncertainty surrounding the direct applicability of results from classical
literature to QML, especially within near-term QML.
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Finally, in a broader context, our findings hold deep implications for all works studying tradi-
tional learning theory applied to QML. We do not imply that those results are false, but instead,
we show they are vacuous in practice. In particular, this extends to recent publications in Nature
Communications [11, 12]. Again, we would like to thank the reviewer for the elaborate report.
The constructive criticism expressed there has helped us to substantially sharpen our core message.
Having accommodated the concerns, we hope that our work is now suitable for publication in its
present form.
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Response to Reviewer 2

We would like to thank the reviewer wholeheartedly for the elaborate and helpful report, and for
the time invested in reviewing the previous version of our manuscript.

The paper considers the issue of generalization in quantum machine learning. The work is
inspired by the influential work “Understanding deep learning requires rethinking generalization”
from classical machine learning. The paper shows the limitations of uniform generalization bounds in
quantum machine learning with numerical simulations consisting of randomization of the data/labels
and analytical discussions.

Reply: Thanks again, we believe Reviewer 2 has clearly understood the overall message and
ideas of our manuscript.

Overall, the paper is well written and addresses interesting questions in QML. While the paper
is a valuable contribution, I would judge the paper to be borderline with respect to Nature Com-
munications. The paper’s contribution are rather subtle points on uniform generalization and does
not explain why/how QML models could achieve good generalization performance.

Reply: We appreciate Reviewer 2’s positive assessment of our manuscript. Of course, we
are delighted to read that our work is “well written and addresses interesting questions in QML”.
Regarding the significance of our manuscript in a broader context, we are now convinced that our
presentation of a few key ideas in the first version could have been clearer. It is well possible that
we have been a bit carried away by our results and have not elaborated sufficiently on the broader
implications of our work. We have addressed this problem by heavily re-working the discussion in
Section III.

We would like to point out that regarding the question of “why/how QML models could achieve
good generalization performance”, it is important to note that this remains a challenging question
even in the mature field of classical machine learning, and in fact, it is the final goal of the entire
field regarding generalization. We believe it would be an unattainable expectation for a paper in
QML. The literature includes many proposals studying restricted cases of uniform explanations for
generalization in QML, some of which we have cited [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Our contribution demonstrates that these proposals are already vacuous for existing quantum
models, including those published in Nature Communications [11, 12]. While we do not provide a
complete solution to the field, our work problematizes essentially the entire literature on generaliza-
tion in QML. We anticipate that our findings will stimulate further research studying non-uniform
approaches. We believe this represents a significant impact in the field of QML, with broad impli-
cations for applications such as classifying phases of ground states of many-body Hamiltonians.

More detailed comments: - Quantum convolutional neural networks are used for the numerical
simulations. Can the authors comment on the efficient classical simulability of these networks for
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a large number of qubits? After each layer, many (half) of the qubits are measured, hence the
network is quite shallow and entanglement is limited. What are the classical hardness results for
such networks?

Reply: We have included a paragraph in Section II.B.1 explaining that the QCNN cannot be
simulated for arbitrary input states. The logarithmic circuit depth makes the circuit simulable for,
e.g., low-entanglement input states that admit efficient MPS representations. However, if the input
state cannot be efficiently represented and stored in classical memory, classical simulation of the
circuit becomes infeasible.

For the numerics, it is unclear if the amount of data samples is too small to guarantee randomness
in distribution. Is it possible that instead of the brute force memorization, the results are caused
by the relative ease to find patterns that fit the given labels from the small set of data?

Reply: We appreciate Reviewer 2’s inquiry regarding the potential influence of data sample
size on the observed results. This is a key idea that we want to make sure is clear upon first reading
of the manuscript. In response to Reviewer 2’s query, our reworking of the discussion in Section
III also aims at addressing it. We emphasize that our use of the term memorization refers to the
capability of a model to perfectly fit the training data while failing to generalize to unseen data.
This concept is now elaborated upon in Section II.A. With this standard definition, “the relative
ease to find patterns that fit a small training set” is just a manifestation of the fact that it is easier
to memorize a small training set. For instance, if the training set consisted of only one point, that
would be considered memorization.

We acknowledge the importance of this distinction, as it underlies our experimental design. Our
randomization experiments demonstrate that the QCNN can memorize training sets of sizes up to
20. Notably, the same QCNN, with the same number of training examples, learns (not memorizes)
the true data distribution, achieving comparable training accuracy to the randomized cases. This
distinction forms the basis for our problem size and training set selection. We are aware, also from
Ref. [11], that the QCNN is capable of learning this phase diagram with these many training points.
We show that it is also capable of memorizing sets of the same size, thus leading to the failure of
uniform generalization bounds. We understand this message needed to be clearer in the previous
version. We hope our additions to Sections II.A and III have clarified these points, addressing any
prior ambiguity.

The theoretical results support the argument but are relatively straightforward. Theorem 1 is
analogous to a classical classifier that is defined by a linear combination of the training vectors such
as in the support vector machine, regression, etc. For the theorem, the vectors are replaced by
density matrices but conceptually it is the same and the linear algebra works out as one expects.

Reply: We agree with the assessment of Reviewer 2, although it is to an extent unclear to us
whether Reviewer 2’s remark should be taken as criticism, as we see no clear actionable advice from
it.
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Initially, we considered skipping Theorem 1 and directly presenting Theorem 2, which would
provide limited insight into the proof of the latter in the main text. However, we decided to include
Theorem 1 to facilitate the reader’s comprehension of the underlying principles leading to Theorem
2.

As Reviewer 2 notes, the construction of Theorem 1 is an application of linear regression. The
construction of Theorem 2 builds upon the concepts established in Theorem 1, with the additional
constraint that part of the calculation can be written as a PQC. This approach was taken to elucidate
the mathematical underpinnings for the benefit of the reader. At the same time, we would argue
that the difficulty of the proof of a theorem does not affect the validity of the statement.

In the Theorem 1 statement My probably shouldn’t be called “circuit” but rather “observable”,
like the authors write in the proof of the theorem.

Reply: We have modified Theorems 1 and 2 as advised.

“W is well-conditioned per construction”. Isn’t it per hypothesis?

Reply: We replaced “construction” by “hypothesis” in Appendix Section A.

Theorem 2 is similar to Theorem 1, however now further assumptions are imposed and a PQC
classifier is achieved. These assumptions seem to be quite strict. While it is conceivable that the
density matrices can be constructed from parameterized quantum circuits, it is less conceivable
that the resulting kernel matrix is well-conditioned. Theorem 3 provides a result on finding well-
conditioned matrices, but the connection is not entirely clear.

Reply: We agree with Reviewer 2 that the applicability of Theorem 2 was unclear in the
previous version of the manuscript. Our goal was only to establish sufficient conditions and show
how PQCs of arbitrary size could be universal in the sense of finite sample expressivity rather than
proving universality in all cases. To clarify this point, we have included a sentence in the first
paragraph of Section II.C.

Furthermore, we also agree with Reviewer 2 that the connection between Theorems 2 and 3
has not been sufficiently clearly stated in the previous version of the manuscript. In response, we
have included an explanatory paragraph following the proof of Theorem 3, explicitly stating the
relation between these two theorems. Lastly, it is important to note that Ŵ may not always be a
kernel matrix, as the approximations ⇢̂s of ⇢s may not necessarily be accurate, as we elaborate in
the following reply.

In Theorem 3 it is unclear how the sigma’s are defined with respect to the original rho’s. It
seems that it is not relevant for this theorem that the sigma’s are approximations of the rho’s. This
fact is not used in the proof. If the fact is relevant then the approximation should be defined more
properly in the theorem statement.
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Reply: We have addressed the concerns raised by Reviewer 2 regarding the relation between ⇢

and � in Theorem 3. In particular, we have included an additional paragraph after Algorithm 1 to
clarify that the success of the algorithm does not strictly depend on the quality of the approximation
of �s to ⇢s. While it is indeed a sufficient condition, provided the Gram matrix W is well-conditioned,
it is not a necessary one for the algorithm to succeed. The key criterion is the well-conditioning of
the matrix of inner products Ŵ , which may hold even if the initial states ⇢ are poorly approximated.
For instance, Ŵ could end up being proportional to a non-trivial permutation matrix, in which case
it would be well-conditioned, and some of the ⇢̂s would be far away from the corresponding ⇢s.

We have tried to phrase the results with the goal of not being more restrictive than necessary,
but we recognize that the previous version may have been overly abstract in its formulation.

The subroutine presented in Theorem 2 for implementing the measurement operator appears to
be essentially the LCU technique. Given controlled unitaries, we implement a linear combination
of the unitaries. Citations to previous works should be given.

Reply: We thank Reviewer 2 for pointing out to us this relevant prior literature. We have
added a reference after Theorem 2.

PQCs are usually considered to be candidate circuits in the near-term quantum computing
setting (NISQ). While Theorem 2 allows the classifier to be in the PQC framework, the construction
appears not very NISQ friendly. We have additional ancilla qubits, the state preparation of the
probability distribution, and the select operation, which require substantial quantum resources.

Reply: As noted by Reviewer 2, PQCs are commonly considered within the NISQ context. Our
randomization experiments are conducted within this framework, where we identify good general-
ization behavior of the QCNN architecture. Having shown the limitations of uniform generalization
bounds for near-term PQCs, our goal is to show that our results also carry over beyond the near-
term regime. This is precisely the motivation behind our analytical results. We have addressed this
clarification in the first paragraph of Section II.C.

We would like to once again thank Reviewer 2 for their thoughtful and valuable comments.
Their suggestions have enabled us to present our ideas in a substantially more organized and clear
manner. Having accommodated all comments and concerns, we hope that our work is now suitable
for publication in its present form.
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Reponse to Reviewer 3

We would like to thank Reviewer 3 for the time invested in reviewing and for their kind assessment
of the manuscript. The report has been very helpful for us.

We have reviewed with interest the manuscript titled “Understanding quantum machine learning
also requires rethinking generalization”. In this work, the authors started with QNNs’ learning with
original, label-randomized, and state-randomized datasets with a focus on generalization errors.
By combining these numerical results and statistical learning theory, the authors pointed out the
imperfections of the commonly used complexity measures for QML models, after which a further
theoretical construction made the framework more complete. We found this work interesting, and
helpful for a better understanding of QML. The paper is clearly written and the claims are supported
by numerical simulations / theoretical constructions (and opening source the source code/data is
appreciated).

Reply: We thank the reviewer for this positive assessment of our work. Needless to say, we are
delighted to see that the reviewer “found this work interesting, and helpful for a better understanding
of QML”. We also share the sentiment on code and data availability.

We just have a few questions/comments for the authors:
In Fig 3a, the gen(f) of random labels starts to decrease at N = 10 since the memorization

capability of the applied QCNNs is limited. As we can imagine, when N becomes very large, this
gen(f) will approach 0. We wonder whether the authors can expand the range of the “Training set
size N” to visualize this point?

Reply: We appreciate Reviewer 3’s valuable suggestion regarding expanding the range of the
training set size to visualize how the generalization gap gen(f) for real and random labels will ap-
proach zero. While we agree that exploring the behavior of gen(f) as N tends to larger values would
show a nice curiosity, we believe that in the context of our current study, it will not add substan-
tial value to the results we aim to convey. Our primary focus lies within a practical and relevant
range of training set sizes. Expanding the range to larger N introduces additional usage of heavy
computational resources without yielding significant insights to our central findings. Therefore, we
have decided to maintain the current range of sizes.

In Eq. (3), the authors used argmin (e.g., when y = 01, we try to optimize the model towards
outputting the probability (a, 0, b, c)), instead of argmax (e.g., when y = 01, we try to optimize
the model towards outputting the probability (0, 1, 0, 0)). Is this choice made for better training
performance from some engineering perspective?

Reply: This classification rule and loss function, which involve selecting the outcome with the
lowest probability, was already utilized in Ref. [11]. The authors found that employing this seemingly
counter-intuitive loss function could lead to good generalization performance. In our manuscript, we
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reproduced their experimental design. We have added a paragraph in Section II.B.1 for clarification.

Again, we thank the reviewer for the time invested in the report and, at the same time, the
positive response. It has been helpful for us. Having accommodated the comments, we hope that
our work is now suitable for publication in its present form.
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

If the authors claim the main result as "it is not directly apparent that the quantum neural networks 

should display the same behavior as classical neural networks when it comes to exhibifing good 

generalizafion even in the case of overfifting" as commented in their reply and this study this in detail at 

least for some examples like randomized data, then I agree with Reviewer 2 that this paper is on the 

borderline of Nature Communicafions.

Although I sfill think claiming the limitafion of tradifional learning theory is not a big deal (which can be 

verified by talking to most of the modern machine learning pracfifioners), according to the authors' reply 

that there are already two papers on tradifional learning theory for QML published on Nature 

Communicafions, this manuscript should worth being published.

Reviewer #2 (Remarks to the Author):

Regarding Theorem 3:

- The first "then" of the theorem in "Then, the real numbers" seems clearly not necessary. This sentence 

is defining quanfifies.

- Isn't the theorem also assuming that we have been given the tr{\rho_i \sigma^j_k)?

- Polynomial fime when we have the traces. Without traces also poly fime?

- After the theorem: "it suffices for us to assume that the resulfing matrix Wˆ is well-condifioned". Using 

the word "assume" here seems incorrect. This is a result of the theorem, something the theorem can 

cerfify. See the third "then" of the theorem statement, "one can then decide in polynomial fime 

whether".

Generally the paper should be interesfing to the community.



Reviewer #3 (Remarks to the Author):

The authors have addressed my comments with clarity and in detail. With the revised version of the 

manuscript, I'm happy to recommend it for publicafion in Nature Communicafions.



Response to Reviewer 2

We sincerely thank the reviewer for the thoughtful report.

Regarding Theorem 3:
- The first "then" of the theorem in "Then, the real numbers" seems clearly not necessary. This
sentence is defining quantities.

Reply: We thank the referee for the pointer. We have amended it.

- Isn’t the theorem also assuming that we have been given the tr(ρi σ
j
k)?

Reply: We agree with the referee. We now explicitly spell it out for completeness.

- Polynomial time when we have the traces. Without traces also poly time?

Reply: We had implicitly assumed this, and now we have added it explicitly for completeness.
We thank the referee for pointing this out, as now it should be clear for everyone who reads the
theorem.

- After the theorem: "it suffices for us to assume that the resulting matrix Ŵ is well-conditioned".
Using the word "assume" here seems incorrect. This is a result of the theorem, something the
theorem can certify. See the third "then" of the theorem statement, "one can then decide in
polynomial time whether".

Reply: We completely agree with the referee. We have amended the sentence.

Generally the paper should be interesting to the community.

We want to thank Referee 2 again for the time invested in the report and for their thoughtful
comments.
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